

Benchmarking Diagnosis Algorithms With a Diverse Set of IC Deformations

T. Vogels, T. Zanon, R. Desineni, R. D. Blanton, W. Maly,
J. G. Brown, J. E. Nelson, Y. Fei, X. Huang, P. Gopalakrishnan, M. Mishra, V. Rovner, and S. Tiwary

Dept. of Electrical and Computer Engineering

Carnegie Mellon University, Pittsburgh, PA 15213
blanton@ece.cmu.edu

Abstract
Diagnosis algorithms for integrated circuits (ICs) are
typically developed and evaluated using a limited number
of logic-level models of defect behaviors. However, it is
well-known that real IC defects exhibit behavior well
outside these models. Consequently, the utility of IC
diagnosis methodologies may be uncertain. In this paper, a
simulation-based benchmarking strategy is developed that
uses circuit-level models to describe the complex nature of
real defects. Specifically, we have proposed a simple yet
powerful strategy using a small circuit and a set of
bounded deformations (i.e., defects) for measuring the
effectiveness of diagnosis techniques. Evaluation of
several simple and commercial diagnosis algorithms
indicates that this form of diagnosis benchmarking is
viable.

1. Introduction
In this first section, we motivate the need for
benchmarking to improve the increasing need for effective
diagnosis.

1.1. Motivation
Among the many consequences of rapidly introducing new
IC technologies [1] is the increased emphasis on achieving
high levels of manufacturability (e.g., [2]). This necessity,
combined with the significant complexity of advanced IC
products, elevates the task of yield learning to the top of
the IC industry agenda. As a result, the test domain is not
only asked: “Does the device under test (DUT) meet the
required specs?” but also: “Why does the DUT fail the
given test set?” Of course, both questions are not new to
the test community. What seems to be new, however, is
the emerging importance of the second question.

So far, reasons for yield loss have been investigated
with minimal involvement from the test domain.
Utilization of test results has been limited to flagging
defective parts and, in some cases, to indicate possible
locations of the defect. Defect scanners and physical

failure analysis (PFA) labs have carried out the bulk of the
yield learning effort.

In the era of a billion transistors on a single chip,
multi-layer interconnect obstructing visual inspection, and
many other PFA obstacles, it is virtually impossible to
approach yield learning without better utilizing
information available from test. Hence, the question:
“Why does the DUT fail the given test set?” implies the
growing importance of diagnosis in the deep sub-micron
era testing.

1.2. Traditional IC diagnosis
The majority of traditional test-based diagnosis tasks, also
referred to as fault diagnosis or logic-level diagnosis in the
literature, have focused on identifying the location of the
defect causing the detected IC malfunction. A large
number of theoretical and practical approaches dealing
with the localization of defects in a faulty IC have been
published in the literature. Almost all of these approaches
can be very broadly classified into two categories 
cause-effect diagnosis [3]-[15] and effect-cause diagnosis
[16]-[30]. Both approaches to localization essentially
involve finding the best match between the defective
behavior of a malfunctioning IC to the faulty behavior
predicted by a logic-level fault model. Cause-effect
diagnoses pre-compute fault-model behaviors, while
effect-cause approaches compute the fault-model
behaviors dynamically.

It is important to stress here that all of the cited
diagnosis approaches have adopted defect localization as
an end objective that PFA takes as an input for subsequent
analysis. It is also worth noting that, according to PFA
experts, for up to 50% of the investigated cases, the defect
could not be found regardless of the localization method
utilized. This important observation (unsupported by
rigorously collected evidence) is alarming from a yield-
learning perspective.

1.3. IC failure characterization
Co-ordinates of the defect location are useful if one can
use them to navigate PFA equipment to the IC’s defective

regions and also when some repair technique can be
applied to enhance yield. However, in the case when
neither repair nor PFA is feasible, the defect location
becomes irrelevant. What would be more useful in such a
case would be the physical characteristics of the defect
(e.g., information about which IC layers are involved, or
its size, shape, and conductivity). If such characteristics
were to be collected for a sufficiently large number of
samples, they would enhance yield learning.

1.4. IC diagnosis quality
For the reasons described above, we have focused upon
“defect characterization oriented diagnosis”, i.e., IC test-
based diagnosis whose objective is to determine a defect’s
physical characteristics, not just its location. This research
led to the results published in [31]-[38]. Most relevant for
the subject of this paper is the diagnostic method proposed
and evaluated in the traditional way [34]. Specifically, the
evaluation involves checking which of the assumed set of
defects, inserted into a circuit under test, could be detected
(and identified) by the proposed algorithm1 through
simulation.

The shortcoming of [34] and similar work is that we
“declare victory” optimistically, when we understand that
50% of the time PFA cannot locate the defect. One
significant source of this undeserved optimism stems from
the widely-accepted practice of using unrealistic models of
the defective circuit in the assessment of the effectiveness
of the proposed diagnostic algorithms. “Unrealistic” refers
to the limited spectrum of misbehaviors taken into account
during the assessment. In other words, “Mother Nature”
produces a much larger variety of circuit misbehaviors
than current diagnosis simulations are able to mimic.
Consequently, some new diagnostic algorithms that have
demonstrated good performance in assessment
experiments may be useless when confronted with the
physics of the real world. The objective of this paper is to
take the first step towards more realistic measurements of
the diagnostic accuracy of IC diagnosis methodologies
with special attention paid to defect characterization.

1.5. Benchmarking diagnostic algorithms
The key idea investigated in this paper is the concept of an
IC diagnosis benchmark. To be useful, such a benchmark
should have a simulation environment capable of
mimicking portions of real sub-micron ICs affected by a
large variety of circuit misbehavior.

We have identified the need for a benchmarking
activity by asking two simple questions. First, how can our
results, described in [34], be compared to other diagnosis
ideas without having a common and consistent basis?
Second, how will this or any other diagnosis cope with
unanticipated tester results?

1 Similar approaches have been applied in almost all of the
diagnosis-oriented papers cited.

To address these questions, we developed the concept
of a “benchmarking experiment” that could generate
“tester results” for a variety of defects, test sets, and test-
application approaches. We have also realized that other
developers of diagnosis software could use our benchmark
to evaluate their approach by checking whether or not their
diagnosis methodology delivers expected results.

A trivial but key component of this idea is the
generation of “tester responses” (through simulation) that
are “contaminated” by realistic and complex IC
misbehaviors. Here, we use the term “contaminated” to
stress that the proposed benchmarking methodology, like a
real tester, should produce unanticipated circuit
misbehaviors. Moreover, it should allow for more realistic
assessments as well as an “apples-to-apples” comparison
of diagnosis methodologies.

Most of the questions raised in the first section are
addressed in the remaining parts of this paper. Specifically,
we provide an overview of the method used to create the
benchmark data in section 2. We then describe the details
of the defects utilized and other characteristics of the
benchmark data (sections 3 and 4), which is followed by
diagnosis results of various algorithms (section 5). In
section 6, we end the paper with our vision for future use
and extensions of the diagnosis benchmarking effort along
with conclusions.

2. Benchmarking Framework
The best-possible diagnostic benchmark is a large
collection of defective ICs, each having well-understood,
completely-characterized, and fully-documented
deformations2, which could then be tested with a given test
set. However, for many reasons, such a benchmark does
not exist. Second-best is an experiment in which a
substantial number of diagnosed ICs would be subjected to
successful PFA. The results of PFA, in turn, would be
used to either confirm or reject the results of diagnosis.
But this is not a very realistic option either. (The
SEMATECH experiment [39], comes closest to these
options.) The third option is to build a simulation
environment in which a collection of well-understood and
efficient models of defective ICs is used to mimic the
testing procedure to generate the desired tester responses.
This third option is the framework that we utilize. Similar
approaches, albeit with different objectives, have been
previously presented, e.g. in [40] and [41].

2.1. Structure of the framework
Figure 1 depicts the structure of the simulation framework.
It is composed of the Test Set Definition Unit (TSDU), the
Collection of Defective Circuit Models (CDCM), the

2 Deformation is defined as any deviation from the nominal IC [32].

Deformations can be bounded or boundless, the former is typically
referred to as a “defect”. In this paper, deformation and defect will be
used interchangeably.

Simulation Engine (SE), and the Parser of Simulation
Results (PSR).

It is envisioned that the user of the framework would
be able to design a test set and then generate “tester
responses” for all or a subset of the available models of
defective circuits. It is also assumed that the user is not
able to modify the circuit models or test-application
conditions. The only “knob” available to the user in a
benchmarking experiment would be the test set.

2.2. Simulation of circuit misbehavior
Simulation fidelity of a circuit malfunction is the key to
successful implementation of our benchmarking strategy.
There are, however, two fundamental obstacles severely
limiting achievable fidelity of defective circuit
simulations. The first obstacle involves modeling sub-
micron size deformations that cause circuit malfunction.
This challenge must be traded off with the size of
simulated circuit, that is, the circuit should be large enough
to realistically mimic the interaction between the defective
portion of the circuit and the rest of the IC. The second
obstacle is that accurate simulation techniques, on all
levels of design abstraction, have been developed for
defect-free ICs. Thus, existing simulators become
inefficient, if not useless, if applied outside of the domain
of operation for which they have been developed. Also, the
limited portfolio of software developed for simulation of
defective circuits, such as CARAFE [42][43], VLASIC
[44] or CODEF [45][46] does not provide the necessary
accuracy or required speed of computation.

Taking into account the above tradeoffs and the utility
of the available software, it was decided that the
simulation of defective circuits should be conducted in the
following way:
1. It should rely on a single and widely-available circuit-

level simulator such as SPICE.
2. Each deformation should be encapsulated in the form

of a separate SPICE input file.
3. The spectrum of simulated deformations should be as

large as possible.
4. The mapping between deformation geometry and its

circuit-level implementation should be accomplished
in any conceivable way including automatic and
manual generation of models.

2.3. Benchmark circuit
The right choice for the benchmark circuit size is not a
trivial task because of the already mentioned tradeoff of

computational complexity versus simulation fidelity.
Equally important are the circuit’s structure, style of
layout, input/output count, etc. Analysis of various options
quickly led to the conclusion that there is no single ideal
solution that would satisfy a majority of the objectives and
constraints. Therefore, the first circuit utilized for our
benchmark experiment was selected to represent a typical

portion of an IC design that enabled, as much as possible,
a comprehensive characterization.

Hence, we have chosen a 4-bit ALU similar to the
‘181 [47] defined for TTL. The ALU was synthesized
from a Verilog description using Synopsys Design
Compiler [48] with a small library of 0.18µm CMOS
standard cells that only includes an inverter and 2- and 3-
input NAND and NOR gates. Table 1 and Figure 2
summarize key characteristics of the benchmark circuit.

Placement and routing were performed using Silicon
Ensemble from Cadence [49], assuming the availability of
a 0.18 µm, 5-metal-layer CMOS process. (The design,
however, only required 4 metal layers.) In addition to the
logic gates, a number of “filler gates” were placed to
assure uniform pattern density, a requirement for most
modern IC processes. Key characteristics of the resulting
layout are shown in Table 2 and Figure 3. The netlist in
SPICE format was extracted using a simple approach
based on the public domain layout tool Magic [50].
Transistor device models for circuit simulation were
obtained for TSMC’s 0.18µm CMOS process from the
publicly accessible MOSIS webpage [51].

The circuit characteristics of the ALU implementation
indicate it is far from its optimal version. It is not very

Figure 1: Structure of the simulation framework.

4 0 6

25 31

62

85 92 99

72
63

42
24

7 3
0

20

40

60

80

100

120

1 3 5 7 9 11 13 15

Logic Depth

N
um

be
r o

f P
at

hs

Figure 2: Histogram of logic depth for 615 paths.

Gate Type # of Gates Net Type # of Nets
Inverter 27 Primary input 14
Nand2 47 Primary output 8
Nor2 10 Power 2
Nand3 8 Inter-gate signals 109
Nor3 3 Intra-gate signals 85
Total 95 Total 196

Table 1: Key characteristics of the chosen benchmark circuit.

Te
st

 S
et

Te
st

er

R
es

po
ns

e

dense and its timing characteristics are sub par. But this
implementation choice was purposeful in that it represents
the typical design style utilized by industry to meet time-
to-market constraints.

3. Spectrum of deformations
One of the critical elements of the benchmark is the choice
of IC structure deformations that should (and can) be
accurately modeled on the circuit level of design
abstraction.

In the following description, we categorize all our
bounded deformations (i.e., defects) as either simple single
spots of extra metal (all of them are of “6 PM” shape
according to the classification proposed in [32] and [33])
or as defects having complex geometry.

3.1. Simple metal spot defects
Even in today’s very complex integrated circuits, simple
metal spot defects that cause shorts between two or more
metal lines can be considered the dominant source of IC
failures. Therefore, roughly 90% (1000 spot defects) of the
deformations included in our benchmark consist of this
type. A complete probability (yield impact) analysis for
metal shorts was conducted for our benchmark circuit to
obtain a realistic set of shorts from the large pool of
potential metal shorts.

The probability of a metal short depends on two
factors: (1) the critical area [52][53] of the short and (2)
the size distribution of the bounded deformation. First, the
critical area for all metal shorts (using micro-event

analysis [54]) was extracted using SiCat3. A total of 3,878
metal shorts were obtained from spot defects with a
circular shape and radius ranging between 0.15µm and
2µm. Then, a “reasonable” defect size density distribution
D(r) for spot defects was modeled using the common
power-law theory for spot defect radius r [53][55]:

0

)1(
00 1

1
)1(2

)(Xr
rp

XDp
rD p

p

≥
+

−
=

−

where p (power parameter), D0 (defect density), and X0 are
each experimentally determined. The distribution
parameters for our benchmark experiment are chosen as
follows: p=3, D0=0.1 cm-2 and X0 much smaller than the
minimum feature size of the layout. This set of parameters
describes defect size distribution of an average, but stable
IC manufacturing line [56].

Finally, the shorts were ranked according to their
probability of occurrence using the simple critical area-
based yield model. The 1000 most-likely shorts were
included in our diagnosis benchmark experiment. All 1000
shorts were modeled as 10 Ω resistors in the SPICE netlist.

To gauge the variety of the metal shorts, we extracted
several characteristics and listed the results in Table 3 and
Table 4. The data in Table 3 is based on the number of
signal lines involved in a given short and the logic-level
relation among the shorted lines (if any). Table 3 reveals
that almost 50% of the chosen shorts involve only two
signal lines. However, 3-line and 4-line shorts also
contribute a significant number to the total. Please note
that the probability numbers in the rightmost column sum
to 100% within each set of shorts considered.

3 PDF Solutions, Inc., San Jose, CA.

Poly Metal 1 Metal 2 Metal 3 Metal 4
8.27% 29.63% 11.07% 8.7% 2.12%

Table 2: Metal layer coverage of benchmark layout.

3 3
5

34

17

2
5 4

1

7

1 1
3

0
2 2

0 0

4

0 0 0 0 0 0 1
0

5

10

15

20

25

30

35

40

0

0.
5 1

1.
5 2

2.
5 3

3.
5 4

4.
5 5

5.
5 6

Cap Ratio (Cout/Cin)

N
um

be
r o

f S
ig

na
l N

et
s

Figure 3: Histogram of signal load capacitance Cout to driving gate
input capacitance Cin.

Type

Number
of

Shorts

Normalized
Probability of
Occurrence

2-line 507 86.28%
3-line 377 11.63%
4-line 105 1.90%
≥5-line 11 0.19%
Single stuck-at-1 56 3.31%
 Single stuck-at-0 87 5.73%
 Multiple stuck-at-1 15 0.23%
 Multiple stuck-at-0 154 3.41%
Short between VDD & GND 12 10.47%
Signal line shorts 676 76.85%
Non-feedback 381 55.38%
Feedback 619 44.62%

Inter-gate feedback 48 3.11%
Intra-gate feedback 275 33.29%
Both 296 8.22%

Table 3: Characteristics of the 1000 selected metal-line shorts
caused by spot defects.

The second set of data given in Table 3 is based on the
involvement of a power line in an instance of a short. A
short is classified as stuck-at-0(1) if it involves
GND(VDD) and one other signal line. A short is labeled a
multiple stuck-at-0(1) if more than one signal line and
GND(VDD) are shorted by the defect. A short that does
not include either VDD or GND is referred to as a signal-
line short.

We also determined if shorted signal lines cause
structural feedback that can lead to oscillations or
unwanted sequential behavior [57]. The large number of
feedback shorts (619 compared to 381 non-feedback
shorts) is expected due to the nature of spot defects and the
close proximity of gate I/O. The last row in Table 3
labeled “Both” gives the number of shorts with more than
two signal lines, where both inter- and intra-gate feedback
exist within the multi-line short.

The numbers in Table 4 represent the probabilities of
a metal short affecting a specific metal layer in our design.

3.2. Defects with complex geometry
We added another 108 defects of complex geometry to the
1000 shorts. The added categories of defects are as
follows.
Metal Clusters. Clusters of unwanted, extra metal are
found in all metal layers of even advanced IC technologies
[36]. Metal clusters can be large and small, sparse and
dense, and may have boundaries of various shapes. In our
experiment, we included ten metal clusters with three in
Metal 1, two in Metal 2, and four in Metal 3. For each
metal layer, we placed the same small rounded cluster of

20 components
(nc=20) in three
random locations as
shown in Figure 4.
In addition, we
placed a large
elongated cluster in
Metal 3 as shown
in Figure 5. In
SPICE, all multi-

line shorts caused by clusters of metal defects were
modeled as a set of 10Ω resistors.
Metal Stringers. Metal stringers, i.e., very narrow
connections of metal and/or other material (e.g., titanium
nitride) located in tiny grooves in between metal lines may

occur in the development phase of a new process. They
appear in pattern-specific locations in the metal layer [58]
or in places caused by random imperfections due to CMP.
In order to model these metal stringers, a layout
manipulation algorithm, similar to the algorithm proposed
in [58], was written using SiCat. This algorithm was used
to determine locations of stringers in Metal layers 2 and 3.
For example, Figure 6 shows the affected nets in metal 3
of our benchmark. In SPICE, they were modeled as
complex multi-line bridges with values of resistance
ranging between 100Ω-10kΩ.

Poly Stringers. “Poly” (polysilicon) stringers, like metal
stringers, should not occur in a well-developed process.
But they can occur in products fabricated with immature
technologies. Poly stringers can cause resistive shorts
between the inputs of one or more gates. For our
experiment, we assume that a poly stringer deformation
affects each defective gate at the same time. Each resulting
resistive bridge among the gate inputs were modeled using
resistors ranging from 100Ω-10MΩ in SPICE. A total of
seven poly stringers were added to our set defects.

Layer Normalized Probability of Occurrence
Metal-1 43.99%
Metal-2 29.01%
Metal-3 22.63%
Metal-4 4.37%

Table 4: Probability of shorts in metal layers.

Figure 4: Cluster of metal defects.

Figure 5: A cluster defect shorts metal lines in Metal 3.

Figure 6: Circuit nets (highlighted in bold) affected by stringers in
Metal 3.

 “Monster” Poly Defect. Even modern processes can
generate large deformations of a complex geometry [36]
albeit very infrequently. This type of defect is represented
in our benchmark by a single region of extra poly material
as shown in Figure 7. This “monster” defect causes shorts,
opens, and missing transistors. It is modeled in SPICE as a
manually-generated network of resistors and transistors.
“Nasty Poly-Spot Defect (NPSD)”. Spots of extra poly in
modern processes, especially processes that use local
interconnect, may result in a complex deformation of the
circuit’s network. For example, a spot of extra poly can

cause a short between one or two poly regions and a
contact, while at the same time obstruct the contact
between the source (or drain) and the Metal-1 interconnect
layer [31]. In our benchmark, we included 50 such
defects. They were automatically generated from the
circuit layout using a custom algorithm that utilizes SiCat.
In SPICE, these deformations were modeled as low-
resistance shorts between poly and a contact. In addition,
all the transistors with an obstructed source or drain
contact were removed from the circuit netlist.
Resistive Contacts. Contacts to either the drain or source
(due to lithography imperfections or other reasons) may
become highly resistive. We arbitrarily selected a small
region containing sources and drains of five transistors in
the layout for introducing resistive contacts. For SPICE
simulations, each contact was modeled as a 100kΩ
resistor.
Resistive Vias. Vias, like contacts, despite their
geometrical simplicity, are very prone to process
deviations and defects. We selected 3 via sites, all on the
critical path. Each via was made highly resistive using
resistances from 200Ω to 5kΩ. The electrical model
utilized for resistive vias is identical to the one chosen for
resistive contacts except for the decreased resistor values.

4. Test
In this section, we describe the test sets utilized and the
generation of the “tester response” using SPICE.

4.1. Selected test sets
To test the benchmark, we used several N-detect test sets
with N=1, 2, 3, 4, and 5 [59][60]. We generated the N-
detect tests using the ATPG tool Atalanta [61] in
conjunction with our in-house fault simulator [37]. We
used five different test sets to understand the test-related
characteristics of the defects in our benchmark. We
evaluated the quality of each test set against the single-
stuck line (SSL) fault model, various two-line bridging
fault models, and the transition fault model. For bridges,
we used all the two-line bridges that resulted from our
critical area analysis of the layout.

4.2. Test set characteristics
All five test sets achieve 100% SSL fault coverage since
there are no redundant faults. While the 1-detect test set
achieves 97.18% coverage of transition faults, all test sets
2-detect and higher achieve 100% transition fault
coverage. For calculating coverage of two-line bridges, we
used all the wired bridge models (wired-AND, wired-OR,
and wire-dominant where one signal line A dominates the
other line B and vice-versa). The bridge fault coverages
are shown in Figure 8. For each test set, the last column
“ALL” represents the intersection of the first four
columns. In other words, we only consider a bridge
between a pair of lines to be detected when each of the
four bridge types are detected by the respective test set.
Although the coverages reported in Figure 8 do not account
for resistive or feedback bridges that can cause oscillation
or sequential behavior, they do provide an estimate of the
quality of the test sets with respect to two-line bridges.

Figure 7: Complex poly defect causing shorts, opens, and missing
transistors.

0

10

20

30

40

50

60

70

80

90

100

1 detect 2 detect 3 detect 4 detect 5 detect
Test set

Fa
ul

t c
ov

er
ag

e

AND OR A-DOM B-DOM ALL

Figure 8: Fault coverage for two-line bridges.

4.3. Test simulation
The circuit simulator SPICE was used to predict the
behavior of defective circuits. For each defect instance, we
generated a “tester response” for every test set for three
different voltages: nominal (1.8V), low (0.9V), and high
(2.4V).

For each test set, we performed three types of
measurements: slow voltage (structural) test, IDDq test,
and “delay” (at-speed) test. In our SPICE setup, results of
voltage test are determined from the voltage levels of
SPICE waveforms of ALU outputs after all outputs have
settled. Delay test samples output voltage waveforms
2.55ns after test application. An IDDq test fails if the
measured current exceeds a threshold of 0.7µA. Similar to
the style of [39], Figure 9 shows the number of defects that
fail each type of test for a 1-detect set and a 5-detect set for
each value of supply voltage. For example, for a nominal
supply voltage of 1.8V, we have 1049 and 1051 defects
that fail slow, IDDq and at-speed test for 1- and 5-detect
test sets, respectively. However, 13 defects pass all tests
for VDD=1.8V. Only a low-voltage test (VDD=0.9V) is able

to detect all defects.

5. Diagnosis
Our objective is to provide a framework for assessing
different diagnosis algorithms. To determine whether or
not the proposed benchmark delivers the desired
characteristics, we conducted the following diagnosis
experiment. We implemented and compared results of five
different diagnosis algorithms. In the following
subsections, we describe the diagnosis algorithms
considered for this experiment, their diagnosis results for

our benchmark, and our observations derived from these
results.

5.1. Diagnosis algorithms
Two of the five selected diagnosis algorithms are
commercial tools and are referred to as “Tool A” and
“Tool B”. Without going into the details of these two tools,
it suffices to say that they both focus upon defect
localization, that is, identification of potentially faulty
signal lines. We implemented two diagnosis algorithms
based on classical stuck-at diagnosis. While the first of
these two algorithms, called “SSL/failing”, uses only
failing (voltage) test patterns, the second (“SSL/all”) uses
both failing and passing test patterns. These two
algorithms are used to represent classical localization-
based diagnosis. The rationale behind using “SSL/all” in
addition to “SSL/failing” is to see the effect of using
passing patterns on the overall quality of diagnosis. The
quality of diagnosis is ambiguous and depends really upon
the intended objective. We will define diagnosis quality, as
used in the context of this paper, later in Section 5.2. The
fifth diagnosis algorithm, labeled “PBI”, is described in
[34]. PBI (Progressive Bridge Identification) was
developed to diagnose two-line bridging defects only. PBI
was selected as an example of a defect-specific diagnosis
algorithm. We used it to measure its performance and
selectivity for tester responses generated by non-bridge
defects.

5.2. Diagnosis results
The five diagnosis algorithms were used to diagnose the
tester responses for all the simulated defects. We will
henceforth refer to the result of diagnosis as diagnosis
callout. In order to compare the callouts of different
diagnosis algorithms, we will next define Diagnosis
Quality.

As mentioned earlier, diagnosis quality depends upon
the intended objective, which can either be localization or
defect characterization. Here, we will define diagnosis
quality in terms of localization alone.

Assuming that the set of signal lines affected by a
defect is represented by {Real_lines} and the set of signal
lines in a diagnosis callout is represented by
{Reported_lines}, the Quality of Diagnosis can be
quantified using the following four categories:
• Exact diagnosis: {Real_lines} exactly matches

{Reported_lines}.
• Contained: {Real_lines} is a proper subset of

{Reported_lines}.
• Partial: The intersection between {Real_lines} and

{Reported_lines} is non-empty and the diagnosis is
neither exact nor contained.

• Empty: {Reported_lines} is empty.

Figure 9: Number of defects detected by each test type for 1- and 5-
detect test sets.

• Misleading: {Reported_lines} is non-empty and the
intersection between {Real_lines} and
{Reported_lines} is empty.

Based on the above, callouts of the five diagnosis
algorithms are categorized in Figure 10(a). The results
shown in Figure 10(a) are for tester responses generated at
the nominal voltage (1.8V) for a slow-speed, 5-detect test
set. The results for other voltages are quite similar and are
therefore omitted.

5.3. Observations
As can be seen from Figure 10(a) both “SSL/failing”

and “SSL/all” perform poorly for most of the defects, with
the callout being empty in a majority of cases. This is an
expected and good result – expected because very few of
the considered defects mimic stuck-at behavior, and good
because this result indicates that our benchmark does in
fact represent a real-life situation where most defects do
not behave as stuck-at faults. The importance of passing
patterns is indicated by the increase in the number of exact
diagnoses and the corresponding decrease in the contained
cases for “SSL/all” over “SSL/failing”. Passing patterns
assist in removing spurious lines in the diagnosis callout.

The bridge-selective algorithm PBI fares better than
the first two diagnosis algorithms simply because of the
significant number of signal line shorts in the database of
defects (Section 3.1). The large number of empty
diagnoses in the first three algorithms is a good indicator
of how defect-specific diagnosis algorithms completely
ignore defect behaviors outside their range of assumed
misbehaviors.

Both “Tool A” and “Tool B” are commercial tools and
are much more conservative in terms of identifying
potentially faulty signal lines. They are conservative
because they identify a large portion of the IC as
potentially defective if an explanation for a defect’s
misbehavior cannot be precisely found. As a result, they
have a larger number of partial and contained diagnoses
and a smaller number of exact diagnoses as compared to
PBI.

To more precisely measure the performance of these
diagnosis algorithms, we partitioned our list of defects into
two categories, namely, classical and non-classical defects.
All non-feedback two-line shorts (including shorts to
either supply) are categorized as classical. We refer to
these shorts as classical because of the ubiquity of test and
diagnosis algorithms related to this class of defects. The
remaining defects are categorized as non-classical. The
diagnosis experiment for these two defect categories was
repeated. The results are shown in Figure 10(b) and Figure
10(c), respectively.

The chart in Figure 10(b) indicates that both “Tool A”
and “Tool B” perform much better than others in terms of
having fewer empty diagnoses for non-classical defects.
As shown in Figure 10(c), PBI performs the best among all
five algorithms for classical defects – it has the most
number of exact and contained diagnoses and zero cases of
empty diagnosis. As was mentioned earlier, this is because
PBI was intended for the diagnosis of these classical
defects.

6. Conclusions
Since test will become a significant source of valuable
information in yield learning activities, the importance of
test-based diagnosis is growing rapidly. In this paper, we

0

100

200

300

400

500

600

700

800

900

SSL/Failing SSL/All PBI Tool A Tool B

Exact Contains Partial Empty Misleading

(a)

0

100

200

300

400

500

600

700

SSL/Failing SSL/All PBI Tool A Tool B

(b)

0

50

100

150

200

SSL/Failing SSL/All PBI Tool A Tool B

(c)
Figure 10: Results of diagnosis for different diagnosis algorithms
for VDD=1.8V: (a) all benchmark defects, (b) non-classical defects
only, and (c) classical defects only.

have proposed a simple, yet powerful strategy using a
small circuit and a set of bounded deformations (i.e.,
defects) to measure the effectiveness of diagnosis
techniques.

We have generated more than 1000 instances of
possible malfunctions of the benchmark. We demonstrated
that complex relationships between defects and test results
can occur in even a small circuit. Simulation results seem
to mimic many symptoms observable on a real tester. In
addition, we have shown that there exists a diverse
spectrum of circuit misbehaviors for simple spots of extra
metal.

We also demonstrated that even a relatively simple
benchmark can discriminate between various diagnosis
methodologies. Hence, we claim that benchmarking of
diagnosis methodologies against more realistic models is
feasible, and should be mandated in the R&D of IC
diagnosis assessments. We also observed that the
relationships between layout, defect geometry, and test
results can be a very powerful tool in building an
understanding of defect-yield loss relationships. Therefore,
we plan to use this benchmarking approach in our research
and we are prepared to distribute our benchmarking
framework freely to assist anyone willing to confront new
and existing diagnosis challenges with a portion of
physical reality.

Acknowledgements
The authors acknowledge the many contributions of the
students of the fall 2003 offering of 18-764 at Carnegie
Mellon, the members of the CSSI test group for their
valuable contributions, and the ITC reviewers of this
manuscript for their valuable and constructive feedback.

This work was supported by the SRC and the PDG.

References
[1] Semiconductor Industry Association, “International

Technology Roadmap for Semiconductors”, 2003 Edition.
http://public.itrs.net/Files/2003ITRS/Home2003.htm.

[2] W. Maly, “High Levels of IC Manufacturability: One of
the Necessary Prerequisites of the 1997 SIA Roadmap,”
Proc. of IEDM, San Francisco, CA, pp. 759- 762, Dec.
1998.

[3] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital
Systems Testing and Testable Design, IEEE Press,
Piscataway, NJ, 1990.

[4] J. M. Galey et al., “Techniques for the Diagnosis of
Switching Circuit Failures,” IEEE Trans.. on
Communications and Electronics, vol. 83, pp. 509-514,
Sept. 1964.

[5] J. P. Roth, “Diagnosis of Automata Failures: A Calculus
and a Method,” IBM Journal of Research and
Development, vol. 10, no. 4, pp. 278-291, July 1966.

[6] J. Richman and K. R. Bowden, “The Modern Fault
Dictionary,” Proc. of International Test Conference, pp.
696-702, Sept. 1985.

[7] P. G. Ryan, S. Rawat and W. K. Fuchs, “Automated

Diagnosis of VLSI Failures,” Proc. of VLSI Test
Symposium, pp. 187-192, April 1991.

[8] I. Pomeranz and S. M. Reddy, “On the Generation of Small
Dictionaries for Fault Location,” Proc. of International
Conference on Computer-Aided Design, pp. 272-279, Nov.
1992.

[9] S. D. Millman, E. J. McCluskey and J. M. Acken,
“Diagnosing CMOS Bridging Faults with Stuck-At Fault
Dictionaries,” Proc. of International Test Conference, pp.
860-870, Oct. 1990.

[10] P. G. Ryan, W. K. Fuchs and I. Pomeranz, “Fault
Dictionary Compression and Equivalence Class
Computation for Sequential Circuits,” Proc. of
International Conference on Computer-Aided Design, pp.
508-511, Nov. 1993.

[11] V. Boppana, I. Hartanto and W. K. Fuchs, “Full Fault
Dictionary Storage Based on Labeled Tree Encoding,”
Proc. of VLSI Test Symposium, pp. 174-179, April 1996.

[12] V. Boppana and W. K. Fuchs, “Fault Dictionary
Compaction by the Elimination of Output Sequences,”
Proc. of International Conference on Computer Aided
Design, pp. 576-579, Nov. 1994.

[13] B. Chess and T. Larrabee, “Creating Small Fault
Dictionaries,“ IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 18, no. 3, pp. 346-
356, March 1999.

[14] D. B. Lavo and T. Larrabee, “Making Cause-Effect Cost-
Effective: Low Resolution Fault Dictionaries,” Proc. of
International Test Conference, pp. 278-286, Oct. 2001.

[15] S. D. Millman and J. M. Acken, “Diagnosing CMOS
Bridging Faults with Stuck-At, IDDq, and Voting Model
Fault Dictionaries,” Proc. of IEEE Custom Integrated
Circuits Conference, pp. 409-412, May 1994.

[16] S. Venkataraman and S. B. Drummonds, “POIROT: A
Logic Fault Diagnosis Tool and Its Applications,” Proc. of
International Test Conference, pp. 253-262, Oct. 2000.

[17] M. Abramovici and M. A. Breuer, “Multiple Fault
Diagnosis in Combinational Circuits Based on Effect-
Cause Analysis,” IEEE Trans. on Computers, vol. C-29,
no. 6, pp. 451-460, June 1980.

[18] J. A. Waicukauski and E. Lindbloom, “Logic Diagnosis of
Structured VLSI,” IEEE Design and Test of Computers,
pp. 49-60, Aug. 1989.

[19] H. Cox and J. Rajski, “A Method of Fault Analysis for Test
Generation and Fault Diagnosis,” IEEE Trans. on
Computer-Aided Design, vol. 7, no. 7, pp. 813-833, July
1988.

[20] M. Marzouki, J. Laurent and B. Courtois, “Coupling
Electron-Beam Probing with Knowledge Based Fault
Localization,” Proc. of International Test Conference, pp.
238-247, Oct. 1991.

[21] J. Savir and J. P. Roth, “Testing for, and Distinguishing
Between Failures,” Proc. of 12th Fault Tolerant
Computing Symposium, pp. 165-172, June 1982.

[22] S. Venkataraman, I. Hartanto and W. K. Fuchs, “Dynamic
Diagnosis of Sequential Circuits,” Proc. of VLSI Test
Symposium, pp. 198-203, April 1996.

[23] S. Venkataraman et al., “Rapid Diagnostic Fault
Simulation of Stuck-At Faults in Sequential Circuits using
Compact Lists,” Proc. of Design Automation Conference,
pp. 133-138, June 1995.

[24] P. G. Ryan, S. Rawat and W. K. Fuchs, “Two-Stage Fault

Location,” Proc. of International Test Conference, pp. 963-
968, Oct. 1991.

[25] S. B. Drummonds et al., “Bridging the Gap Between
Logical Diagnosis and Physical Analysis,” IEEE
International Workshop on Defect Based Testing, April
2002.

[26] S. Chakravarty and Y. Gong, “An Algorithm for
Diagnosing Two-Line Bridging Faults in Combinational
Circuits,” Proc. of Design Automation Conference, pp.
520-524, June 1993.

[27] J. Wu, G. S. Greenstein and E. M. Rudnick, “A Fault List
Reduction Approach for Efficient Bridge Fault Diagnosis,”
Proc. of Design, Automation and Test in Europe
Conference, pp. 780-781, March 1999.

[28] Y. Sato et al., “A Persistent Diagnostic Technique for
Unstable Defects,” Proc. of International Test Conference,
pp. 242-249, Oct. 2002.

[29] T. Bartenstein et al., “Diagnosing Combinational Logic
Designs Using the Single Location At-a-Time (SLAT)
Paradigm,” Proc. of International Test Conference, pp.
287-296, Oct. 2001.

[30] D. B. Lavo, I. Hartanto and T. Larrabee, “Multiplets,
Models, and the Search for Meaning: Improving Per-Test
Fault Diagnosis,” Proc. of International Test Conference,
pp. 250-259, Oct. 2002.

[31] R. D. Blanton et al., “Fault Tuples in Diagnosis of Deep-
Submicron Defects,” Proc. of International Test
Conference, pp. 233-241, Oct. 2002.

[32] W. Maly et al., “Deformations of IC Structure in Test and
Yield Learning,” Proc. of International Test Conference,
pp. 856-865, Oct. 2003.

[33] W. Maly et al., “A Yield Modeling and Test Oriented
Taxonomy of Deep Submicron Technology Induced IC
Structure Deformations,” Proc. of International
Symposium for Testing and Failure Analysis, Nov. 2003.

[34] T. Vogels et al., “Progressive Bridge Identification,” Proc.
of International Test Conference, pp. 309-318, Oct. 2003.

[35] R. Desineni et al., “A Multi-Stage Approach to Fault
Identification Using Fault Tuples,” Proc. of International
Symposium for Test and Failure Analysis, pp. 496-505,
Nov. 2003.

[36] T. Zanon et al., “Analysis of IC Manufacturing Process
Deformations: An Automated Approach Using SRAM Bit
Fail Maps,” Proc. of International Symposium for Test and
Failure Analysis, pp. 232-241, Nov. 2003.

[37] K. N. Dwarakanath and R. D. Blanton, “Universal Fault
Simulation Using Fault Tuples,” Proc. of Design
Automation Conference, pp. 786-789, June 2000.

[38] R. Desineni, K. N. Dwarakanath, and R. D. Blanton,
“Universal Test Generation Using Fault Tuples,” Proc. of
International Test Conference, pp. 812-819, Oct. 2000.

[39] P. Nigh et al., “An Experimental Study Comparing the
Relative Effectiveness of Functional, Scan, IDDq, and
Delay-Fault Testing,” Proc. of VLSI Test Symposium, pp.
459-463, April-May 1997.

[40] Y. Kwon and D. M. H. Walker, “Yield Learning via
Functional Test Data”, Proc. of International Test
Conference, pp. 626-635, Oct. 1995.

[41] Z. Stanojevic et al., “Computer-Aided Fault to Defect
Mapping (CAFDM) for Defect Diagnosis”, Proc. of
International Test Conference, pp. 729-738, Oct. 2000.

[42] A. L. Jee and F. J. Ferguson, “Carafe: An Inductive Fault
Analysis Tool for CMOS VLSI Circuits,” Proc. of VLSI
Test Symposium, pp. 92-98, April 1993.

[43] A. L. Jee, “Carafe: An Inductive Fault Analysis Tool for
CMOS VLSI Circuits,” M.Sc. Thesis, Dept. of Computer
Engineering, UC Santa Cruz, June 1991.

[44] D. M. Walker and S. Director, “VLASIC: A Catastrophic
Fault Yield Simulator for Integrated Circuits,” IEEE Trans.
On Computer-Aided Design of Integrated Circuits and
Systems, vol. 5, no. 4, pp. 541-556, Oct. 1986.

[45] J. Khare and W. Maly, “From Contamination to Defect
Fault and Yield Loss,” Kluwer Academic Publisher, 1996.

[46] J. Khare, C. Kellen, and W. Maly, “CODEF: A
Contamination-Defect-Fault Mapper,” SRC-CMU Center
for Computer-Aided Design Technical Report, Carnegie
Mellon University, May 1995.

[47] TTL Databook, Texas Instruments, Dallas, TX,
http://www.ti.com.

[48] The Design Compiler Reference Manual, Synopsys,
Mountain View, CA, http://www.synopsys.com.

[49] The Silicon Ensemble Reference Manual, Cadence Design
Systems, Inc., San Jose, CA, http://www.cadence.com

[50] Magic VLSI Layout Tool 7.1, http://vlsi.cornell.edu/magic.
[51] The MOSIS Service, Marina del Rey, CA,

http://www.mosis.org
[52] W. Maly and J. Deszczka, “Yield Estimation Model for

VLSI Artwork Evaluation,” Electronics Letters, Vol. 19,
No. 6, pp. 226-227, 17th March 1983.

[53] C. H. Stapper, “Modeling of defects in integrated circuit
photolithography patterns,” IBM J. Res. Develop., vol. 28,
no. 4, pp. 461-474, July 1984.

[54] J. Khare, D. Feltham and W. Maly, “Accurate Estimation
of Defect-Related Yield Loss in Reconfigurable VLSI
Circuits,” IEEE Journal of Solid State Circuits, No. 2, pp.
146-156, Feb. 1993.

[55] A. V. Ferris Prabhu, “Role of Defect Size Distribution in
Yield Modeling,” IEEE Trans. on Electron Devices, vol.
32., no. 9, pp. 1727-1736, Sept. 1985.

[56] J. Khare et al., “Yield-Oriented Computer-Aided Defect
Diagnosis,” IEEE Trans. on Semiconductor
Manufacturing, vol. 8, no. 2, pp. 195-206, Aug. 1995.

[57] Y. Miura and S. Seno, “Behavior Analysis of Internal
Feedback Bridging Faults in CMOS Circuits,” Journal of
Electronic Testing (JETTA), vol. 18, no. 2, April 2002.

[58] P. Simon, W. Maly, D. K. de Vris Brules, “Design
Dependency of Yield Loss Due to Tungsten Residues in
Spin on Glass Based Planarization Process,” Proc. of
ISSM, pp. 87-88, Oct. 1997.

[59] S. C. Ma, P. Franco, and E. J. McCluskey, “An
Experimental Chip to Evaluate Test Techniques
Experiments Results,” Proc. of International Test
Conference, pp. 663-672, Oct. 1995.

[60] E. J. McCluskey and C. Teng, “Stuck-at Fault Tests vs.
Actual Defects,” Proc. of International Test Conference,
pp. 336-342, Oct. 2000.

[61] H. K. Lee and D. S. Ha, “On the Generation of Test
Patterns for Combinational Circuits,” Technical Report no.
12-93, Virginia Polytechnic Institute and State University.

