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Abstract 
Diagnosis algorithms for integrated circuits (ICs) are 
typically developed and evaluated using a limited number 
of logic-level models of defect behaviors. However, it is 
well-known that real IC defects exhibit behavior well 
outside these models. Consequently, the utility of IC 
diagnosis methodologies may be uncertain. In this paper, a 
simulation-based benchmarking strategy is developed that 
uses circuit-level models to describe the complex nature of 
real defects.  Specifically, we have proposed a simple yet 
powerful strategy using a small circuit and a set of 
bounded deformations (i.e., defects) for measuring the 
effectiveness of diagnosis techniques. Evaluation of 
several simple and commercial diagnosis algorithms 
indicates that this form of diagnosis benchmarking is 
viable.  

 

1. Introduction 
In this first section, we motivate the need for 
benchmarking to improve the increasing need for effective 
diagnosis.  

1.1. Motivation 
Among the many consequences of rapidly introducing new 
IC technologies [1] is the increased emphasis on achieving 
high levels of manufacturability (e.g., [2]). This necessity, 
combined with the significant complexity of advanced IC 
products, elevates the task of yield learning to the top of 
the IC industry agenda. As a result, the test domain is not 
only asked:  “Does the device under test (DUT) meet the 
required specs?” but also: “Why does the DUT fail the 
given test set?” Of course, both questions are not new to 
the test community. What seems to be new, however, is 
the emerging importance of the second question. 

So far, reasons for yield loss have been investigated 
with minimal involvement from the test domain. 
Utilization of test results has been limited to flagging 
defective parts and, in some cases, to indicate possible 
locations of the defect. Defect scanners and physical 

failure analysis (PFA) labs have carried out the bulk of the 
yield learning effort. 

In the era of a billion transistors on a single chip, 
multi-layer interconnect obstructing visual inspection, and 
many other PFA obstacles, it is virtually impossible to 
approach yield learning without better utilizing 
information available from test. Hence, the question: 
“Why does the DUT fail the given test set?” implies the 
growing importance of diagnosis in the deep sub-micron 
era testing. 

1.2. Traditional IC diagnosis 
The majority of traditional test-based diagnosis tasks, also 
referred to as fault diagnosis or logic-level diagnosis in the 
literature, have focused on identifying the location of the 
defect causing the detected IC malfunction. A large 
number of theoretical and practical approaches dealing 
with the localization of defects in a faulty IC have been 
published in the literature. Almost all of these approaches 
can be very broadly classified into two categories  
cause-effect diagnosis [3]-[15] and effect-cause diagnosis 
[16]-[30]. Both approaches to localization essentially 
involve finding the best match between the defective 
behavior of a malfunctioning IC to the faulty behavior 
predicted by a logic-level fault model. Cause-effect 
diagnoses pre-compute fault-model behaviors, while 
effect-cause approaches compute the fault-model 
behaviors dynamically. 

It is important to stress here that all of the cited 
diagnosis approaches have adopted defect localization as 
an end objective that PFA takes as an input for subsequent 
analysis. It is also worth noting that, according to PFA 
experts, for up to 50% of the investigated cases, the defect 
could not be found regardless of the localization method 
utilized. This important observation (unsupported by 
rigorously collected evidence) is alarming from a yield-
learning perspective. 

1.3. IC failure characterization 
Co-ordinates of the defect location are useful if one can 
use them to navigate PFA equipment to the IC’s defective 



 

regions and also when some repair technique can be 
applied to enhance yield. However, in the case when 
neither repair nor PFA is feasible, the defect location 
becomes irrelevant. What would be more useful in such a 
case would be the physical characteristics of the defect 
(e.g., information about which IC layers are involved, or 
its size, shape, and conductivity). If such characteristics 
were to be collected for a sufficiently large number of 
samples, they would enhance yield learning. 

1.4. IC diagnosis quality 
For the reasons described above, we have focused upon 
“defect characterization oriented diagnosis”, i.e., IC test-
based diagnosis whose objective is to determine a defect’s 
physical characteristics, not just its location.  This research 
led to the results published in [31]-[38]. Most relevant for 
the subject of this paper is the diagnostic method proposed 
and evaluated in the traditional way [34]. Specifically, the 
evaluation involves checking which of the assumed set of 
defects, inserted into a circuit under test, could be detected 
(and identified) by the proposed algorithm1 through 
simulation. 

The shortcoming of [34] and similar work is that we  
“declare victory” optimistically, when we understand that 
50% of the time PFA cannot locate the defect. One 
significant source of this undeserved optimism stems from 
the widely-accepted practice of using unrealistic models of 
the defective circuit in the assessment of the effectiveness 
of the proposed diagnostic algorithms. “Unrealistic” refers 
to the limited spectrum of misbehaviors taken into account 
during the assessment. In other words, “Mother Nature” 
produces a much larger variety of circuit misbehaviors 
than current diagnosis simulations are able to mimic. 
Consequently, some new diagnostic algorithms that have 
demonstrated good performance in assessment 
experiments may be useless when confronted with the 
physics of the real world. The objective of this paper is to 
take the first step towards more realistic measurements of 
the diagnostic accuracy of IC diagnosis methodologies 
with special attention paid to defect characterization. 

1.5. Benchmarking diagnostic algorithms 
The key idea investigated in this paper is the concept of an 
IC diagnosis benchmark. To be useful, such a benchmark 
should have a simulation environment capable of 
mimicking portions of real sub-micron ICs affected by a 
large variety of circuit misbehavior. 

We have identified the need for a benchmarking 
activity by asking two simple questions. First, how can our 
results, described in [34], be compared to other diagnosis 
ideas without having a common and consistent basis?  
Second, how will this or any other diagnosis cope with 
unanticipated tester results? 
                                                           

1 Similar approaches have been applied in almost all of the 
diagnosis-oriented papers cited.  

To address these questions, we developed the concept 
of a “benchmarking experiment” that could generate 
“tester results” for a variety of defects, test sets, and test-
application approaches. We have also realized that other 
developers of diagnosis software could use our benchmark 
to evaluate their approach by checking whether or not their 
diagnosis methodology delivers expected results. 

A trivial but key component of this idea is the 
generation of “tester responses” (through simulation) that 
are “contaminated” by realistic and complex IC 
misbehaviors. Here, we use the term “contaminated” to 
stress that the proposed benchmarking methodology, like a 
real tester, should produce unanticipated circuit 
misbehaviors.  Moreover, it should allow for more realistic 
assessments as well as an “apples-to-apples” comparison 
of diagnosis methodologies. 

Most of the questions raised in the first section are 
addressed in the remaining parts of this paper. Specifically, 
we provide an overview of the method used to create the 
benchmark data in section 2. We then describe the details 
of the defects utilized and other characteristics of the 
benchmark data (sections 3 and 4), which is followed by 
diagnosis results of various algorithms (section 5).  In 
section 6, we end the paper with our vision for future use 
and extensions of the diagnosis benchmarking effort along 
with conclusions. 

2. Benchmarking Framework 
The best-possible diagnostic benchmark is a large 
collection of defective ICs, each having well-understood, 
completely-characterized, and fully-documented 
deformations2, which could then be tested with a given test 
set.  However, for many reasons, such a benchmark does 
not exist. Second-best is an experiment in which a 
substantial number of diagnosed ICs would be subjected to 
successful PFA.  The results of PFA, in turn, would be 
used to either confirm or reject the results of diagnosis. 
But this is not a very realistic option either. (The 
SEMATECH experiment [39], comes closest to these 
options.) The third option is to build a simulation 
environment in which a collection of well-understood and 
efficient models of defective ICs is used to mimic the 
testing procedure to generate the desired tester responses. 
This third option is the framework that we utilize. Similar 
approaches, albeit with different objectives, have been 
previously presented, e.g. in [40] and [41]. 

2.1. Structure of the framework 
Figure 1 depicts the structure of the simulation framework. 
It is composed of the Test Set Definition Unit (TSDU), the 
Collection of Defective Circuit Models (CDCM), the 

                                                           
2 Deformation is defined as any deviation from the nominal IC [32]. 

Deformations can be bounded or boundless, the former is typically 
referred to as a “defect”. In this paper, deformation and defect will be 
used interchangeably. 



 

Simulation Engine (SE), and the Parser of Simulation 
Results (PSR).  

It is envisioned that the user of the framework would 
be able to design a test set and then generate “tester 
responses” for all or a subset of the available models of 
defective circuits. It is also assumed that the user is not 
able to modify the circuit models or test-application 
conditions. The only “knob” available to the user in a 
benchmarking experiment would be the test set. 

2.2. Simulation of circuit misbehavior 
Simulation fidelity of a circuit malfunction is the key to 
successful implementation of our benchmarking strategy. 
There are, however, two fundamental obstacles severely 
limiting achievable fidelity of defective circuit 
simulations. The first obstacle involves modeling sub-
micron size deformations that cause circuit malfunction. 
This challenge must be traded off with the size of 
simulated circuit, that is, the circuit should be large enough 
to realistically mimic the interaction between the defective 
portion of the circuit and the rest of the IC. The second 
obstacle is that accurate simulation techniques, on all 
levels of design abstraction, have been developed for 
defect-free ICs. Thus, existing simulators become 
inefficient, if not useless, if applied outside of the domain 
of operation for which they have been developed. Also, the 
limited portfolio of software developed for simulation of 
defective circuits, such as CARAFE [42][43], VLASIC 
[44] or CODEF [45][46] does not provide the necessary 
accuracy or required speed of computation. 

Taking into account the above tradeoffs and the utility 
of the available software, it was decided that the 
simulation of defective circuits should be conducted in the 
following way: 
1. It should rely on a single and widely-available circuit-

level simulator such as SPICE. 
2. Each deformation should be encapsulated in the form 

of a separate SPICE input file.  
3. The spectrum of simulated deformations should be as 

large as possible. 
4. The mapping between deformation geometry and its 

circuit-level implementation should be accomplished 
in any conceivable way including automatic and 
manual generation of models. 

2.3.  Benchmark circuit 
The right choice for the benchmark circuit size is not a 
trivial task because of the already mentioned tradeoff of 

computational complexity versus simulation fidelity. 
Equally important are the circuit’s structure, style of 
layout, input/output count, etc. Analysis of various options 
quickly led to the conclusion that there is no single ideal 
solution that would satisfy a majority of the objectives and 
constraints. Therefore, the first circuit utilized for our 
benchmark experiment was selected to represent a typical 

portion of an IC design that enabled, as much as possible, 
a comprehensive characterization.  

Hence, we have chosen a 4-bit ALU similar to the 
‘181 [47] defined for TTL. The ALU was synthesized 
from a Verilog description using Synopsys Design 
Compiler [48] with a small library of 0.18µm CMOS 
standard cells that only includes an inverter and 2- and 3-
input NAND and NOR gates. Table 1 and Figure 2 
summarize key characteristics of the benchmark circuit. 

Placement and routing were performed using Silicon 
Ensemble from Cadence [49], assuming the availability of 
a 0.18 µm, 5-metal-layer CMOS process. (The design, 
however, only required 4 metal layers.) In addition to the 
logic gates, a number of “filler gates” were placed to 
assure uniform pattern density, a requirement for most 
modern IC processes. Key characteristics of the resulting 
layout are shown in Table 2 and Figure 3. The netlist in 
SPICE format was extracted using a simple approach 
based on the public domain layout tool Magic [50]. 
Transistor device models for circuit simulation were 
obtained for TSMC’s 0.18µm CMOS process from the 
publicly accessible MOSIS webpage [51]. 

The circuit characteristics of the ALU implementation 
indicate it is far from its optimal version. It is not very 

 
Figure 1: Structure of the simulation framework. 
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Figure 2: Histogram of logic depth for 615 paths. 

Gate Type # of Gates Net Type # of Nets 
Inverter 27 Primary input 14
Nand2 47 Primary output 8
Nor2 10 Power 2
Nand3 8 Inter-gate signals 109
Nor3 3 Intra-gate signals 85
Total 95 Total 196

Table 1: Key characteristics of the chosen benchmark circuit. 
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dense and its timing characteristics are sub par. But this 
implementation choice was purposeful in that it represents 
the typical design style utilized by industry to meet time-
to-market constraints. 

3. Spectrum of deformations 
One of the critical elements of the benchmark is the choice 
of IC structure deformations that should (and can) be 
accurately modeled on the circuit level of design 
abstraction.  

In the following description, we categorize all our 
bounded deformations (i.e., defects) as either simple single 
spots of extra metal (all of them are of “6 PM” shape 
according to the classification proposed in [32] and [33]) 
or as defects having complex geometry. 

3.1. Simple metal spot defects 
Even in today’s very complex integrated circuits, simple 
metal spot defects that cause shorts between two or more 
metal lines can be considered the dominant source of IC 
failures. Therefore, roughly 90% (1000 spot defects) of the 
deformations included in our benchmark consist of this 
type. A complete probability (yield impact) analysis for 
metal shorts was conducted for our benchmark circuit to 
obtain a realistic set of shorts from the large pool of 
potential metal shorts. 

The probability of a metal short depends on two 
factors: (1) the critical area [52][53] of the short and (2) 
the size distribution of the bounded deformation. First, the 
critical area for all metal shorts (using micro-event 

analysis [54]) was extracted using SiCat3. A total of 3,878 
metal shorts were obtained from spot defects with a 
circular shape and radius ranging between 0.15µm and 
2µm. Then, a “reasonable” defect size density distribution 
D(r) for spot defects was modeled using the common 
power-law theory for spot defect radius r [53][55]: 
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where p (power parameter), D0 (defect density), and X0 are 
each experimentally determined. The distribution 
parameters for our benchmark experiment are chosen as 
follows: p=3, D0=0.1 cm-2 and X0 much smaller than the 
minimum feature size of the layout. This set of parameters 
describes defect size distribution of an average, but stable 
IC manufacturing line [56]. 

Finally, the shorts were ranked according to their 
probability of occurrence using the simple critical area-
based yield model. The 1000 most-likely shorts were 
included in our diagnosis benchmark experiment. All 1000 
shorts were modeled as 10 Ω resistors in the SPICE netlist. 

To gauge the variety of the metal shorts, we extracted 
several characteristics and listed the results in Table 3 and 
Table 4. The data in Table 3 is based on the number of 
signal lines involved in a given short and the logic-level 
relation among the shorted lines (if any). Table 3 reveals 
that almost 50% of the chosen shorts involve only two 
signal lines. However, 3-line and 4-line shorts also 
contribute a significant number to the total. Please note 
that the probability numbers in the rightmost column sum 
to 100% within each set of shorts considered. 

                                                           
3 PDF Solutions, Inc., San Jose, CA. 

Poly Metal 1 Metal 2 Metal 3 Metal 4 
8.27% 29.63% 11.07% 8.7% 2.12% 

Table 2: Metal layer coverage of benchmark layout. 

3 3
5

34

17

2
5 4

1

7

1 1
3

0
2 2

0 0

4

0 0 0 0 0 0 1
0

5

10

15

20

25

30

35

40

0

0.
5 1

1.
5 2

2.
5 3

3.
5 4

4.
5 5

5.
5 6

Cap Ratio (Cout/Cin)

N
um

be
r o

f S
ig

na
l N

et
s

 
Figure 3: Histogram of signal load capacitance Cout to driving gate 
input capacitance Cin. 

 
Type 

Number 
of 

Shorts 

Normalized 
Probability of 
Occurrence 

2-line 507 86.28% 
3-line 377 11.63% 
4-line 105 1.90% 
≥5-line 11 0.19% 
Single stuck-at-1 56 3.31% 
 Single stuck-at-0 87 5.73% 
 Multiple stuck-at-1 15 0.23% 
 Multiple stuck-at-0 154 3.41% 
Short between VDD & GND 12 10.47% 
Signal line shorts 676 76.85% 
Non-feedback 381 55.38% 
Feedback 619 44.62% 

Inter-gate feedback 48 3.11% 
Intra-gate feedback 275 33.29%  
Both 296 8.22% 

Table 3: Characteristics of the 1000 selected metal-line shorts 
caused by spot defects. 



 

The second set of data given in Table 3 is based on the 
involvement of a power line in an instance of a short. A 
short is classified as stuck-at-0(1) if it involves 
GND(VDD) and one other signal line. A short is labeled a 
multiple stuck-at-0(1) if more than one signal line and 
GND(VDD) are shorted by the defect. A short that does 
not include either VDD or GND is referred to as a signal-
line short. 

We also determined if shorted signal lines cause 
structural feedback that can lead to oscillations or 
unwanted sequential behavior [57]. The large number of 
feedback shorts (619 compared to 381 non-feedback 
shorts) is expected due to the nature of spot defects and the 
close proximity of gate I/O. The last row in Table 3 
labeled “Both” gives the number of shorts with more than 
two signal lines, where both inter- and intra-gate feedback 
exist within the multi-line short.  

The numbers in Table 4 represent the probabilities of 
a metal short affecting a specific metal layer in our design. 

3.2. Defects with complex geometry 
We added another 108 defects of complex geometry to the 
1000 shorts. The added categories of defects are as 
follows. 
Metal Clusters. Clusters of unwanted, extra metal are 
found in all metal layers of even advanced IC technologies 
[36]. Metal clusters can be large and small, sparse and 
dense, and may have boundaries of various shapes. In our 
experiment, we included ten metal clusters with three in 
Metal 1, two in Metal 2, and four in Metal 3. For each 
metal layer, we placed the same small rounded cluster of 

20 components 
(nc=20) in three 
random locations as 
shown in Figure 4. 
In addition, we 
placed a large 
elongated cluster in 
Metal 3 as shown 
in Figure 5. In 
SPICE, all multi-

line shorts caused by clusters of metal defects were 
modeled as a set of 10Ω resistors.  
Metal Stringers. Metal stringers, i.e., very narrow 
connections of metal and/or other material (e.g., titanium 
nitride) located in tiny grooves in between metal lines may 

occur in the development phase of a new process. They 
appear in pattern-specific locations in the metal layer [58] 
or in places caused by random imperfections due to CMP. 
In order to model these metal stringers, a layout 
manipulation algorithm, similar to the algorithm proposed 
in [58], was written using SiCat. This algorithm was used 
to determine locations of stringers in Metal layers 2 and 3. 
For example, Figure 6 shows the affected nets in metal 3 
of our benchmark. In SPICE, they were modeled as 
complex multi-line bridges with values of resistance 
ranging between 100Ω-10kΩ. 

Poly Stringers. “Poly” (polysilicon) stringers, like metal 
stringers, should not occur in a well-developed process. 
But they can occur in products fabricated with immature 
technologies. Poly stringers can cause resistive shorts 
between the inputs of one or more gates. For our 
experiment, we assume that a poly stringer deformation 
affects each defective gate at the same time. Each resulting 
resistive bridge among the gate inputs were modeled using 
resistors ranging from 100Ω-10MΩ in SPICE. A total of 
seven poly stringers were added to our set defects.  

Layer Normalized Probability of Occurrence 
Metal-1 43.99% 
Metal-2 29.01% 
Metal-3 22.63% 
Metal-4 4.37% 

Table 4: Probability of shorts in metal layers. 

 
Figure 4: Cluster of metal defects. 

 
Figure 5: A cluster defect shorts metal lines in Metal 3. 

 
Figure 6: Circuit nets (highlighted in bold) affected by stringers in 
Metal 3. 



 

 “Monster” Poly Defect. Even modern processes can 
generate large deformations of a complex geometry [36] 
albeit very infrequently. This type of defect is represented 
in our benchmark by a single region of extra poly material 
as shown in Figure 7. This “monster” defect causes shorts, 
opens, and missing transistors. It is modeled in SPICE as a 
manually-generated network of resistors and transistors. 
“Nasty Poly-Spot Defect (NPSD)”. Spots of extra poly in 
modern processes, especially processes that use local 
interconnect, may result in a complex deformation of the 
circuit’s network. For example, a spot of extra poly can 

cause a short between one or two poly regions and a 
contact, while at the same time obstruct the contact 
between the source (or drain) and the Metal-1 interconnect 
layer [31].  In our benchmark, we included 50 such 
defects. They were automatically generated from the 
circuit layout using a custom algorithm that utilizes SiCat. 
In SPICE, these deformations were modeled as low-
resistance shorts between poly and a contact. In addition, 
all the transistors with an obstructed source or drain 
contact were removed from the circuit netlist. 
Resistive Contacts. Contacts to either the drain or source 
(due to lithography imperfections or other reasons) may 
become highly resistive. We arbitrarily selected a small 
region containing sources and drains of five transistors in 
the layout for introducing resistive contacts. For SPICE 
simulations, each contact was modeled as a 100kΩ 
resistor. 
Resistive Vias. Vias, like contacts, despite their 
geometrical simplicity, are very prone to process 
deviations and defects. We selected 3 via sites, all on the 
critical path. Each via was made highly resistive using 
resistances from 200Ω to 5kΩ. The electrical model 
utilized for resistive vias is identical to the one chosen for 
resistive contacts except for the decreased resistor values. 

4. Test 
In this section, we describe the test sets utilized and the 
generation of the “tester response” using SPICE. 

4.1. Selected test sets 
To test the benchmark, we used several N-detect test sets 
with N=1, 2, 3, 4, and 5 [59][60]. We generated the N-
detect tests using the ATPG tool Atalanta [61] in 
conjunction with our in-house fault simulator [37]. We 
used five different test sets to understand the test-related 
characteristics of the defects in our benchmark. We 
evaluated the quality of each test set against the single-
stuck line (SSL) fault model, various two-line bridging 
fault models, and the transition fault model. For bridges, 
we used all the two-line bridges that resulted from our 
critical area analysis of the layout. 

4.2. Test set characteristics 
All five test sets achieve 100% SSL fault coverage since 
there are no redundant faults. While the 1-detect test set 
achieves 97.18% coverage of transition faults, all test sets 
2-detect and higher achieve 100% transition fault 
coverage. For calculating coverage of two-line bridges, we 
used all the wired bridge models (wired-AND, wired-OR, 
and wire-dominant where one signal line A dominates the 
other line B and vice-versa). The bridge fault coverages 
are shown in Figure 8. For each test set, the last column 
“ALL” represents the intersection of the first four 
columns. In other words, we only consider a bridge 
between a pair of lines to be detected when each of the 
four bridge types are detected by the respective test set. 
Although the coverages reported in Figure 8 do not account 
for resistive or feedback bridges that can cause oscillation 
or sequential behavior, they do provide an estimate of the 
quality of the test sets with respect to two-line bridges.  

 
Figure 7: Complex poly defect causing shorts, opens, and missing 
transistors. 
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Figure 8: Fault coverage for two-line bridges. 



 

4.3. Test simulation 
The circuit simulator SPICE was used to predict the 
behavior of defective circuits. For each defect instance, we 
generated a “tester response” for every test set for three 
different voltages: nominal (1.8V), low (0.9V), and high 
(2.4V). 

For each test set, we performed three types of 
measurements: slow voltage (structural) test, IDDq test, 
and “delay” (at-speed) test. In our SPICE setup, results of 
voltage test are determined from the voltage levels of 
SPICE waveforms of ALU outputs after all outputs have 
settled. Delay test samples output voltage waveforms 
2.55ns after test application. An IDDq test fails if the 
measured current exceeds a threshold of 0.7µA. Similar to 
the style of [39], Figure 9 shows the number of defects that 
fail each type of test for a 1-detect set and a 5-detect set for 
each value of supply voltage. For example, for a nominal 
supply voltage of  1.8V, we have 1049 and 1051 defects 
that fail slow, IDDq and at-speed test for 1- and 5-detect 
test sets, respectively. However, 13 defects pass all tests 
for VDD=1.8V. Only a low-voltage test (VDD=0.9V) is able 

to detect all defects. 

5. Diagnosis 
Our objective is to provide a framework for assessing 
different diagnosis algorithms. To determine whether or 
not the proposed benchmark delivers the desired 
characteristics, we conducted the following diagnosis 
experiment. We implemented and compared results of five 
different diagnosis algorithms. In the following 
subsections, we describe the diagnosis algorithms 
considered for this experiment, their diagnosis results for 

our benchmark, and our observations derived from these 
results. 

5.1. Diagnosis algorithms 
Two of the five selected diagnosis algorithms are 
commercial tools and are referred to as “Tool A” and 
“Tool B”. Without going into the details of these two tools, 
it suffices to say that they both focus upon defect 
localization, that is, identification of potentially faulty 
signal lines. We implemented two diagnosis algorithms 
based on classical stuck-at diagnosis. While the first of 
these two algorithms, called “SSL/failing”, uses only 
failing (voltage) test patterns, the second (“SSL/all”) uses 
both failing and passing test patterns. These two 
algorithms are used to represent classical localization-
based diagnosis. The rationale behind using “SSL/all” in 
addition to “SSL/failing” is to see the effect of using 
passing patterns on the overall quality of diagnosis. The 
quality of diagnosis is ambiguous and depends really upon 
the intended objective. We will define diagnosis quality, as 
used in the context of this paper, later in Section 5.2. The 
fifth diagnosis algorithm, labeled “PBI”, is described in 
[34]. PBI (Progressive Bridge Identification) was 
developed to diagnose two-line bridging defects only.  PBI 
was selected as an example of a defect-specific diagnosis 
algorithm. We used it to measure its performance and 
selectivity for tester responses generated by non-bridge 
defects. 

5.2. Diagnosis results 
The five diagnosis algorithms were used to diagnose the 
tester responses for all the simulated defects. We will 
henceforth refer to the result of diagnosis as diagnosis 
callout. In order to compare the callouts of different 
diagnosis algorithms, we will next define Diagnosis 
Quality.  

As mentioned earlier, diagnosis quality depends upon 
the intended objective, which can either be localization or 
defect characterization. Here, we will define diagnosis 
quality in terms of localization alone.  

Assuming that the set of signal lines affected by a 
defect is represented by {Real_lines} and the set of signal 
lines in a diagnosis callout is represented by 
{Reported_lines}, the Quality of Diagnosis can be 
quantified using the following four categories: 
• Exact diagnosis: {Real_lines} exactly matches 

{Reported_lines}. 
• Contained: {Real_lines} is a proper subset of 

{Reported_lines}. 
• Partial: The intersection between {Real_lines} and 

{Reported_lines} is non-empty and the diagnosis is 
neither exact nor contained. 

• Empty: {Reported_lines} is empty. 

 
Figure 9: Number of defects detected by each test type for 1- and 5-
detect test sets. 



 

• Misleading: {Reported_lines} is non-empty and the 
intersection between {Real_lines} and 
{Reported_lines} is empty. 

Based on the above, callouts of the five diagnosis 
algorithms are categorized in Figure 10(a). The results 
shown in Figure 10(a) are for tester responses generated at 
the nominal voltage (1.8V) for a slow-speed, 5-detect test 
set. The results for other voltages are quite similar and are 
therefore omitted. 

5.3. Observations  
As can be seen from Figure 10(a) both “SSL/failing” 

and “SSL/all” perform poorly for most of the defects, with 
the callout being empty in a majority of cases. This is an 
expected and good result – expected because very few of 
the considered defects mimic stuck-at behavior, and good 
because this result indicates that our benchmark does in 
fact represent a real-life situation where most defects do 
not behave as stuck-at faults. The importance of passing 
patterns is indicated by the increase in the number of exact 
diagnoses and the corresponding decrease in the contained 
cases for “SSL/all” over “SSL/failing”.  Passing patterns 
assist in removing spurious lines in the diagnosis callout. 

The bridge-selective algorithm PBI fares better than 
the first two diagnosis algorithms simply because of the 
significant number of signal line shorts in the database of 
defects (Section 3.1). The large number of empty 
diagnoses in the first three algorithms is a good indicator 
of how defect-specific diagnosis algorithms completely 
ignore defect behaviors outside their range of assumed 
misbehaviors. 

Both “Tool A” and “Tool B” are commercial tools and 
are much more conservative in terms of identifying 
potentially faulty signal lines. They are conservative 
because they identify a large portion of the IC as 
potentially defective if an explanation for a defect’s 
misbehavior cannot be precisely found. As a result, they 
have a larger number of partial and contained diagnoses 
and a smaller number of exact diagnoses as compared to 
PBI. 

To more precisely measure the performance of these 
diagnosis algorithms, we partitioned our list of defects into 
two categories, namely, classical and non-classical defects. 
All non-feedback two-line shorts (including shorts to 
either supply) are categorized as classical. We refer to 
these shorts as classical because of the ubiquity of test and 
diagnosis algorithms related to this class of defects. The 
remaining defects are categorized as non-classical. The 
diagnosis experiment for these two defect categories was 
repeated. The results are shown in Figure 10(b) and Figure 
10(c), respectively. 

The chart in Figure 10(b) indicates that both “Tool A” 
and “Tool B” perform much better than others in terms of 
having fewer empty diagnoses for non-classical defects. 
As shown in Figure 10(c), PBI performs the best among all 
five algorithms for classical defects – it has the most 
number of exact and contained diagnoses and zero cases of 
empty diagnosis. As was mentioned earlier, this is because 
PBI was intended for the diagnosis of these classical 
defects. 

6. Conclusions 
Since test will become a significant source of valuable 
information in yield learning activities, the importance of 
test-based diagnosis is growing rapidly. In this paper, we 
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Figure 10: Results of diagnosis for different diagnosis algorithms 
for VDD=1.8V: (a) all benchmark defects, (b) non-classical defects 
only, and (c) classical defects only. 



 

have proposed a simple, yet powerful strategy using a 
small circuit and a set of bounded deformations (i.e., 
defects) to measure the effectiveness of diagnosis 
techniques.  

We have generated more than 1000 instances of 
possible malfunctions of the benchmark. We demonstrated 
that complex relationships between defects and test results 
can occur in even a small circuit. Simulation results seem 
to mimic many symptoms observable on a real tester. In 
addition, we have shown that there exists a diverse 
spectrum of circuit misbehaviors for simple spots of extra 
metal. 

We also demonstrated that even a relatively simple 
benchmark can discriminate between various diagnosis 
methodologies. Hence, we claim that benchmarking of 
diagnosis methodologies against more realistic models is 
feasible, and should be mandated in the R&D of IC 
diagnosis assessments. We also observed that the 
relationships between layout, defect geometry, and test 
results can be a very powerful tool in building an 
understanding of defect-yield loss relationships. Therefore, 
we plan to use this benchmarking approach in our research 
and we are prepared to distribute our benchmarking 
framework freely to assist anyone willing to confront new 
and existing diagnosis challenges with a portion of 
physical reality.  
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