Generalizing Dependency Features for Opinion Mining

Mahesh Joshi¹ and Carolyn Rosé^{1,2}

¹ Language Technologies Institute
 ² Human-Computer Interaction Institute
 Carnegie Mellon University

ACL-IJCNLP 2009 Short Papers Track

Carnegie Mellon

One Slide Summary

- Goal: utilize structure in language to improve "opinion vs. not-opinion" classification in product reviews
- Key idea: "Back off" the head word in a dependency relation to it's part-of-speech tag, use these "back-off" features
 - amod(camera,great) => amod(NN,great)
- Result: It works!
 - Improvement in accuracy from 0.652 to 0.679
 - · yes, it's significant!

One Slide Summary

Goal: utilize structure in language to improve "opinion vs. not-opinion" classification in product reviews

- Key idea: "Back off" the head word in a dependency relation to it's part-of-speech tag, use these "back-off" features
 - amod(camera,great) => amod(NN,great)
- Result: It works!
 - Improvement in accuracy from 0.652 to 0.679
 - · yes, it's significant!

Task Description

- Opinion mining in product reviews
- Given a sentence from a product review
 - Predict whether or not it is an opinion sentence
- Opinion Sentence: "If a sentence contains one or more product features and one or more opinion words, then the sentence is called an opinion sentence." [Hu and Liu; SIGKDD 2004]

Examples

- Opinion sentences
 - It is very light weight and has good signal strength.
 - Player works and <u>look</u>s **great** if you can get the dvd's to play.
- Non-opinion sentences
 - Had it for a week.
 - If this doesnt bring back the picture, try pressing this button without playing a dvd.

Research Question

How can we better utilize structure in language for opinion classification?

it is a fantastic camera and well worth the price.

it is a fantastic camera and well worth the price.

(Stanford parser output)

nsubj(camera-5,it-1)

cop(camera-5,is-2)

det(camera-5,a-3)

amod(camera-5,fantastic-4)

advmod(worth-8,well-7)

det(price-10,the-9)

amod(price-10,worth-8)

conj_and(camera-5,price-10

it is a fantastic camera and well worth the price.

(Stanford parser output)

Relation

nsubj(camera-5,it-1) cop(camera-5,is-2) det(camera-5,a-3)amod(camera-5,fantastic-4) advmod(worth-8,well-7) det(price-10,the-9) amod(price-10,worth-8) conj and(camera-5,price-10

it is a fantastic camera and well worth the price.

(Stanford parser output)

```
nsubj(camera-5,it-1)
cop(camera-5,is-2)
det(camera-5,a-3)
amod(camera-5,fantastic-4)
advmod(worth-8,well-7)
det(price-10,the-9)
amod(price-10,worth-8)
conj and(camera-5,price-10
```


it is a fantastic camera and well worth the price.

(Stanford parser output)

Head Word

nsubj(camera-5,it-1) cop(camera-5,is-2) det(camera-5,a-3)amod(camera-5,fantastic-4) advmod(worth-8,well-7) det(price-10,the-9) amod(price-10,worth-8) conj and(camera-5,price-10

it is a fantastic camera and well worth the price.

(Stanford parser output)

```
nsubj(camera-5,it-1)
cop(camera-5,is-2)
det(camera-5,a-3)
amod(camera-5,fantastic-4)
advmod(worth-8,well-7)
det(price-10,the-9)
amod(price-10,worth-8)
conj and(camera-5,price-10
```


it is a fantastic camera and well worth the price.

(Stanford parser output)

Modifier Word

nsubj(camera-5,it-1) cop(camera-5,is-2) det(camera-5,a-3)amod(camera-5,fantastic-4) advmod(worth-8,well-7) det(price-10,the-9) amod(price-10,worth-8) conj and(camera-5,price-10

- amod(camera-5,fantastic-4)
 - adjectival modifier relationship between camera (head, noun) and fantastic (modifier, adjective)

- amod(camera-5,fantastic-4)
 - adjectival modifier relationship between camera (head, noun) and fantastic (modifier, adjective)
- advmod(worth-8,well-7)
 - adverbial modifier relationship between worth (head, adjective) and well (modifier, adverb)

- Success in using dependency relations:
 - [Gamon; COLING 2004], [Matsumoto et al.; PAKDD 2005]
 - Different task: predicting customer satisfaction ratings, and polarity (positive / negative) for movie reviews respectively
 - [Wilson et al.; AAAI 2004]
 - Different task: predicting strength of subjective language
 - Use full set of dependency relations

- Success in using dependency relations:
 - [Gamon; COLING 2004], [Matsumoto et al.; PAKDD 2005]
 - Different task: predicting customer satisfaction ratings, and polarity (positive / negative) for movie reviews respectively
 - [Wilson et al.; AAAI 2004]
 - Different task: predicting strength of subjective language
 - Use full set of dependency relations
- We propose multiple generalization approaches
 - one of our approaches was used by Gamon as well as Wilson et al.

- [Dave et al.; WWW 2003], [Ng et al.; ACL 2006]
 - Different task: polarity prediction in product reviews and movie reviews respectively
- Both use a subset of dependency relations
 - manually chosen grammatical relations

- [Dave et al.; WWW 2003], [Ng et al.; ACL 2006]
 - Different task: polarity prediction in product reviews and movie reviews respectively
- Both use a subset of dependency relations
 - manually chosen grammatical relations
- We use the full set of dependency relations

- Transformation of dependency relations
 - [Greene and Resnik; NAACL 2009]
 - Given dependency relations of form: relation(head_word,modifier_word)
 - Create features of form: head_word-relation & relation-modifier word

- Transformation of dependency relations
 - [Greene and Resnik; NAACL 2009]
 - Given dependency relations of form: relation(head_word,modifier_word)
 - Create features of form: head_word-relation & relation-modifier word

- Transformation of dependency relations
 - [Greene and Resnik; NAACL 2009]
 - Given dependency relations of form: relation(head_word,modifier_word)
 - Create features of form: head_word-relation & relation-modifier_word
- Dependency relations chosen if they contain "domain relevant" verbs and/or nouns
- Most closely related to our approach

Lesson from Past Work

Lesson from Past Work

Using full set of dependency relations works better

Lesson from Past Work

- Using full set of dependency relations works better
- However, there might be overfitting in scarce data scenarios
 - common to NLP where annotated data is expensive!
- Need features that can generalize well

Motivating Our Approach

Consider two opinion sentences:

This is a great camera!

Despite its few negligible flaws, this great mp3 player won my vote.

Motivating Our Approach

 Both have the dependency relation amod with different pair of words participating:

amod(camera,great)
amod(player,great)

- · We can see the structural similarity of these features
- A machine learning algorithm can't!

Motivating Our Approach

 Both have the dependency relation amod with different pair of words participating:

amod (camera great) amod (player, great)

- We can see the structural similarity of these features
- A machine learning algorithm can't!

So Lets "Back Off!"

- "Back off" the head word to its part-of-speech tag
 amod (camera great) => amod (NN great)
 amod (player, great) => amod (NN, great)
- Now the algorithm can see that these are similar features (we made them identical)

Advantages of Backing Off

Advantages of Backing Off

 Stronger evidence of association of a generalized feature with the opinion category

Advantages of Backing Off

- Stronger evidence of association of a generalized feature with the opinion category
- New test sentence: "this is a great phone"
 - amod(phone,great): may not be useful because we might have never seen it!
 - amod(NN,great): still valid

B

- Composite Back-off Features
 - Head word => its part-of-speech tag
 - amod(camera,great) => amod(NN great)

- Composite Back-off Features
 - Head word => its part-of-speech tag
 - amod(camera,great) => amod(NN,great)

- Composite Back-off Features
 - Head word => its part-of-speech tag
 - amod(camera,great) => amod(NN,great)
 - Modifier word => its part-of-speech tag
 - amod(camera,great) => amod(camera,JJ)

- Composite Back-off Features
 - Head word => its part-of-speech tag
 - amod(camera,great) => amod(NN,great)
 - Modifier word => its part-of-speech tag
 - amod(camera,great) => amod(camera,JJ)

- Composite Back-off Features
 - Head word => its part-of-speech tag
 - amod(camera,great) => amod(NN,great)
 - Modifier word => its part-of-speech tag
 - amod(camera,great) => amod(camera,JJ)
- Full Back-off Features
 - Head word => its part-of-speech tag; Also modifier wordits part-of-speech tag
 - amod(camera,great) => amod(NN,JJ)
 - used by [Gamon; COLING 2004] and [Wilson et al.; AAAI 2004]

- Composite Back-off Features
 - Head word => its part-of-speech tag
 - amod(camera,great) => amod(NN,great)
 - Modifier word => its part-of-speech tag
 - amod(camera,great) => amod(camera,JJ)
- Full Back-off Features
 - Head word => its part-of-speech tag; Also modifier wordits part-of-speech tag
 - amod(camera,great) => amod(NN,JJ)
 - used by [Gamon; COLING 2004] and [Wilson et al.; AAAI 2004]

- Composite Back-off Features
 - Head word => its part-of-speech tag
 - amod(camera,great) => amod(NN,great)
 - Modifier word => its part-of-speech tag
 - amod(camera,great) => amod(camera,JJ)
- Full Back-off Features
 - Head word => its part-of-speech tag; Also modifier wordits part-of-speech tag
 - amod(camera,great) => amod(NN,JJ)
 - used by [Gamon; COLING 2004] and [Wilson et al.; AAAI 2004]

- 2,200 sentences (Randomly sampled from Amazon.com and Cnet.com reviews for 11 products, 200 per product)
 - Subset of dataset released by [Hu and Liu; SIGKDD 2004]

- 2,200 sentences (Randomly sampled from Amazon.com and Cnet.com reviews for 11 products, 200 per product)
 - Subset of dataset released by [Hu and Liu; SIGKDD 2004]
- Support Vector Machine classifier, linear kernel

- 2,200 sentences (Randomly sampled from Amazon.com and Cnet.com reviews for 11 products, 200 per product)
 - Subset of dataset released by [Hu and Liu; SIGKDD 2004]
- Support Vector Machine classifier, linear kernel
- Chi-squared feature selection
 - used significant features at $\alpha = 0.05$

Evaluation

 11-fold cross-validation, sentences for each product used in test fold once

Reporting average accuracy, Cohen's kappa

Baselines

Baselines

- Several standard feature sets
 - ngrams (n = 1, 2, 3)
 - Part-of-Speech ngrams (n = 2, 3)
 - Dependency relations (no back-off)

Baselines

- Several standard feature sets
 - ngrams (n = 1, 2, 3)
 - Part-of-Speech ngrams (n = 2, 3)
 - Dependency relations (no back-off)
- Back-off ngrams (n = 2, 3) similar to [McDonald et al.; ACL 2007]
 - back off words in an ngram to POS tags
 - create features using all possible (2ⁿ-1) back-off combinations

Feature Set	Accuracy	Карра
Unigrams	0.652 (±0.048)	0.295 (±0.049)
Uni.+Bigrams	0.657 (±0.066)	0.304 (±0.089)
Uni.+Trigrams	0.655 (±0.062)	0.306 (±0.077)
Uni.+Back-off Bigrams	0.650 (±0.056)	0.299 (±0.079)
Uni.+Back-off Trigrams	0.647 (±0.051)	0.287 (±0.075)
Uni.+POS Bigrams	0.676 (±0.057)	0.349 (±0.083)
Uni.+POS Trigrams	0.661 (±0.050)	0.317 (±0.064)
Uni.+Dep. Lex	0.639 (±0.055)	0.268 (±0.079)
Uni.+Dep. Head-Back-off	0.679 (±0.063)	0.351 (±0.097)
Uni.+Dep. Mod-Back-off	0.657 (±0.056)	0.308 (±0.063)
Uni.+Dep. Head-Mod-Back-off	0.670 (±0.046)	0.336 (±0.065)

Feature Set	Accuracy	Карра
Unigrams	0.652 (±0.048)	0.295 (±0.049)
Uni.+Bigrams	0.657 (±0.066)	0.304 (±0.089)
Uni.+Trigrams	0.655 (±0.062)	0.306 (±0.077)
Uni.+Back-off Bigrams	0.650 (±0.056)	0.299 (±0.079)
Uni.+Back-off Trigrams	0.647 (±0.051)	0.287 (±0.075)
Uni.+POS Bigrams	0.676 (±0.057)	0.349 (±0.083)
Uni.+POS Trigrams	0.661 (±0.050)	0.317 (±0.064)
Uni.+Dep. Lex	0.639 (±0.055)	0.268 (±0.079)
Uni.+Dep. Head-Back-off	0.679 (±0.063)	0.351 (±0.097)
Uni.+Dep. Mod-Back-off	0.657 (±0.056)	0.308 (±0.063)
Uni.+Dep. Head-Mod-Back-off	0.670 (±0.046)	0.336 (±0.065)

Feature Set	Accuracy	Карра
Unigrams	0.652 (±0.048)	0.295 (±0.049)
Uni.+Bigrams	0.657 (±0.066)	0.304 (±0.089)
Uni.+Trigrams	0.655 (±0.062)	0.306 (±0.077)
Uni.+Back-off Bigrams	0.650 (±0.056)	0.299 (±0.079)
Uni.+Back-off Trigrams	0.647 (±0.051)	0.287 (±0.075)
Uni.+POS Bigrams	0.676 (±0.057)	0.349 (±0.083)
Uni.+POS Trigrams	0.661 (±0.050)	0.317 (±0.064)
Uni.+Dep. Lex	0.639 (±0.055)	0.268 (±0.079)
Uni.+Dep. Head-Back-off	0.679 (±0.063)	0.351 (±0.097)
Uni.+Dep. Mod-Back-off	0.657 (±0.056)	0.308 (±0.063)
Uni.+Dep. Head-Mod-Back-off	0.670 (±0.046)	0.336 (±0.065)

Feature Set	Accuracy	Kappa
Unigrams	0.652 (±0.048)	0.295 (±0.049)
Uni.+Bigrams	0.657 (±0.066)	0.304 (±0.089)
Uni.+Trigrams	0.655 (±0.062)	0.306 (±0.077)
Uni.+Back-off Bigrams	0.650 (±0.056)	0.299 (±0.079)
Uni.+Back-off Trigrams	0.647 (±0.051)	0.287 (±0.075)
Uni.+POS Bigrams	0.676 (±0.057)	0.349 (±0.083)
Uni.+POS Trigrams	0.661 (±0.050)	0.317 (±0.064)
Uni.+Dep. Lex	0.639 (±0.055)	0.268 (±0.079)
Uni.+Dep. Head-Back-off	0.679 (±0.063)	0.351 (±0.097)
Uni.+Dep. Mod-Back-off	0.657 (±0.056)	0.308 (±0.063)
Uni.+Dep. Head-Mod-Back-off	0.670 (±0.046)	0.336 (±0.065)

Feature Set	Accuracy	Карра
Unigrams	0.652 (±0.048)	0.295 (±0.049)
Uni.+Bigrams	0.657 (±0.066)	0.304 (±0.089)
Uni.+Trigrams	0.655 (±0.062)	0.306 (±0.077)
Uni.+Back-off Bigrams	0.650 (±0.056)	0.299 (±0.079)
Uni.+Back-off Trigrams	0.647 (±0.051)	0.287 (±0.075)
Uni.+POS Bigrams	0.676 (±0.057)	0.349 (±0.083)
Uni.+POS Trigrams	0.661 (±0.050)	0.317 (±0.064)
Uni.+Dep. Lex	0.639 (±0.055)	0.268 (±0.079)
Uni.+Dep. Head-Back-off	0.679 (±0.063)	0.351 (±0.097)
Uni.+Dep. Mod-Back-off	0.657 (±0.056)	0.308 (±0.063)
Uni.+Dep. Head-Mod-Back-off	0.670 (±0.046)	0.336 (±0.065)

Feature Set	Accuracy	Kappa
Unigrams	0.652 (±0.048)	0.295 (±0.049)
Uni.+Bigrams	0.657 (±0.066)	0.304 (±0.089)
Uni.+Trigrams	0.655 (±0.062)	0.306 (±0.077)
Uni.+Back-off Bigrams	0.650 (±0.056)	0.299 (±0.079)
Uni.+Back-off Trigrams	0.647 (±0.051)	0.287 (±0.075)
Uni.+POS Bigrams	0.676 (±0.057)	0.349 (±0.083)
Uni.+POS Trigrams	0.661 (±0.050)	0.317 (±0.064)
Uni.+Dep. Lex	0.639 (±0.055)	0.268 (±0.079)
Uni.+Dep. Head-Back-off	0.679 (±0.063)	0.351 (±0.097)
Uni.+Dep. Mod-Back-off	0.657 (±0.056)	0.308 (±0.063)
Uni.+Dep. Head-Mod-Back-off	0.670 (±0.046)	0.336 (±0.065)

Discussion

- "Head-Back-off" features
 - significantly better than unigrams-only baseline
 - represent a better way to use dependency relations

 Generalizing them further (full back-off features) worsens performance

Head-Back-off Successes

- It is perhaps too small.
 - cop(JJ,is)
- The lens retracts and has its own metal cover so you don't need to fuss with a lens cap.
 - det(NN,the), poss(NN,its), neg(VB,n't)
- The panorama setting is unbelievable!
 - cop(JJ,is), det(NN,the)

Head-Back-off Successes

- Even with the waterproof housing it is small.
 - cop(JJ,is), nsubj(JJ,it), det(NN,the)
- The auto color balance is often fooled by the clouds.
 - det(NN,the)
- First, I have to say that I have NEVER had the slightest problem with this camera or the software.
 - det(NN,this)

Error Analysis

- Sentences that are opinions, but not about the product's features
 - Really like them, they work well and the macro function of the 2500 really helps my Ebay biz.
 - "Really like them" is about two other cameras the reviewer owns, not the camera being reviewed.
 - I have had this little gem for four months now.
 - About the product as a whole (not any particular explicitly mentioned feature)

Error Analysis

- Few misclassifications due to Head-Back-off features "misfiring"
 - Some people, in their reviews, complain about its small size, and how it doesn't compare with larger cameras.
 - Misclassified as "opinion sentence"
 - poss(NN,its), neg(VB,n't)
 - The closest competitor is the SONY DSC-P1 (3.3mp).
 - Misclassified as "opinion sentence"
 - cop(NN,is), det(NN,the)

Conclusions

- "Head-Back-off" features are a sweet spot
 - not too specific, not too general
- Future work:
 - Explore relation to supervised domain adaptation

Questions?