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Abstract

Using a saliency measure based on the global prop-
erty of contour closure, we have developed a method
that reliably segments out salient contours bounding
unknown objects from real edge images. The measure
also incorporates the Gestalt principles of proximity
and smooth continuity that previous methods have ezx-
ploited. Unlike previous measures, we incorporate con-
tour closure by finding the eigen-solution associated
with a stochastic process that models the distribution
of contours passing through edges in the scene. The
segmentation algorithm utilizes the saliency measure
to identify multiple closed contours by finding strongly-
connected components on an induced graph. The de-
termination of strongly-connected components is a di-
rect consequence of the property of closure. We re-
port for the first time, results on large real images for
which segmentation takes an average of about 10 secs
per object on a general-purpose workstation. The seg-
mentation is made efficient for such large images by
exploiting the inherent symmetry in the task.

1 Introduction

Visual perception evolved in a world of objects
many of which are bounded by smooth closed con-
tours. We hypothesize that these contours obey a
stochastic distribution which is utilized by percep-
tual processes in finding contours bounding objects.
In prior work [10, 12, 13] this distribution has been
modeled and used to derive a saliency measure that
exploits the closure of contours bounding objects. It
was found that this measure provides a significant
improvement over previous approaches in highlight-
ing edges lying on contours bounding objects in small
synthetic scenes created from contours of real objects
and natural background texture [13]. However, no
method was presented for actually segmenting out the
salient object contours. Despite the effectiveness of
the saliency measure, it will be shown later that a
simple threshold on the saliency measure is not suffi-
cient for segmentation, escpecially in cases where two
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or more object contours have similar saliencies. In
this paper, we present a method for segmenting out
multiple contours bounding salient objects. Moreover,
previously [13] the determination of the saliencies was
computationally infeasible for large real images. We
have developed an efficient technique that exploits the
symmetry inherent in the task, using which, we report
for the first time, results on large real images.

Given an edge image as in Fig. 1 (a), we would
like to extract out separately the individual contours
bounding the two pears. We wish to achieve such a
segmentation with no a-priori knowledge of the spe-
cific objects that generate these contours. Such a task
is one of the goals of perceptual grouping. In lieu of
any specific knowledge about the objects generating
the contours, we impose a subset of the Gestalt prin-
ciples for perceptual organization. Most previous ap-
proaches to perceptual grouping of edges have incor-
porated the local principles of proximity of edges and
smooth-continuation of contours in some form or other
(e.g., [4, 8]). These methods assume that successive
edges are in close proximity and that contours bound-
ing objects are smooth. In addition to these two local
properties, we exploit the global property that con-
tours bounding objects must be closed. Unlike prox-
imity and smooth-continuation, closure cannot be re-
duced to any local property of the contour.

Previous approaches [2, 3] have used graph based
search techniques to find closed contours. A graph of
affinities between edges is constructed where the affini-
ties model proximity and smooth-continuation. The
affinity between two edges is a purely local measure
that is proportional to the likelihood that a smooth
contour (open or closed) passes through the given
edges. Closure is imposed by searching the graph for
closed contours while minimizing a global cost func-
tion that is related to how salient the closed contours
are. Our approach differs from these previous ap-
proaches because we first use the local affinity mea-
sure (which as noted above does not differentiate be-
tween open and closed contours) to compute a global



saliency measure, which is proportional to the rela-
tive number of closed contours which join a pair of
edges. Such a measure for closed contours was first
proposed and compared extensively with previous ap-
proaches (including [7, 8, 12]) that do not incorporate
closure in [13]. It is only after the computation of
this global saliency that we employ a graph search
to identify individual closed contours. We will show
that in our case, the incorporation of closure in the
saliency measure leads naturally to a specific type of
graph search, namely, the determination of strongly
connected components. This dependency of the spe-
cific graph search used on the saliency measure is a
distinguishing feature of our work as compared with
previous approaches where generic search techniques
have been employed that are not dependent on the
properties of the specific saliency measures that were
used. To illustrate the crucial role played by the global
property of closure, we show that a method based on
a purely local affinity measure produces poor segmen-
tations.

The determination of the saliency measure requires
the solution of an eigen-problem of a matrix that ex-
hibits a special kind of symmetry. Ordinary tech-
niques for the solution of the eigen-problem are in-
feasible for large real images. We have developed efli-
cient techniques that exploit the special symmetry of
the matrix to significantly reduce the time required to
compute the eigen-solution. In this paper, we report
the first results on real images with a large number of
edges. Our technique reduces the time taken to com-
pute the segmentation for each object contour from an
average of around 2 1/2 hrs. to around 10 seconds.

2 Problem Formulation

Since the Gestalt principles of proximity and
smooth-continuation arise from local properties of the
positions and orientations of two edges, we can model
them using only local information. Following [10, 12],
both of these local properties can be modeled by
the distribution of smooth curves that join two given
edges. The distribution of curves is modeled by a par-
ticle with motion determined by a stochastic process
favoring short, smooth, trajectories. Given two di-
rected edges ¢ and j, they determine the probability
that a particle starts with the position and direction
of edge ¢ and ends with the position and direction of
edge j. The particles leave or arrive at an edge at a
constant speed v independent of the edge. The “affin-
ity” from edge ¢ to edge j is denoted by P;; and is the
sum of the probabilities of all paths that a particle
can take between the two edges (see [10] for details).
Essentially, two parameters control the motion of the

particle and embody the principles of proximity and
smooth-continuation. Each particle has a half-life (1)
which models the principle of proximity. The variance
(T) of the directional change of the particle model the
principle of smooth-continuation. The speed v deter-
mines the effective scale at which the scene is ana-
lyzed, since the affinity between a pair of edges varies
with the speed of the particle. At larger speeds, a pair
of edges are effectively closer to each other, whereas
at slower speeds the same pair are effectively farther
apart. In our application we choose a fixed speed that
we judge to give a good effective scale for all images.

Because particles need not reach any another edge
due to the half-life, in general Zj Pj; < 1. Hence P is
not a stochastic (Markov) matrix, and methods based
on Markov chains are not applicable. While closed
contours do form a Markov chain, the corresponding
Markov matrix for the edge saliencies is not known un-
til the edge and link saliencies have been determined.

Smooth-continuity of a curve between two edges im-
plies that the tangent at any point along the curve is
continuous. Such tangent-continuity for curves pass-
ing between a pair of edges is modeled by the smooth
stochastic motion of the particle going from one edge
to the other. If we wish to extend the curves to in-
clude additional edges then tangent continuity must
be enforced at the edges themselves. A contour com-
ing in along a given direction must continue along that
direction to satisfy tangent-continuity. This require-
ment can be ensured by replacing each edge of a given
orientation with two oppositely directed edges. A con-
tour can come into and leave a directed edge only
along a single direction. If we do not impose tangent-
continuity at the edges, we could get contours with
cusps (i.e., reversals in direction) at the edges, which
are not judged to be salient in practice. For more de-
tails see [13]. Since every directed edge 7 has a sibling
edge at the same position but pointing in the opposite
direction, it will be convenient to denote the sibling
edge by .

Imposing tangent-continuity through directed
edges has an important implication for the structure
of the matrix of affinities P. From symmetry, the
probability that any particle travels along a curve
starting from edge ¢ and ending in edge j is the
same as the probability of a particle traveling the
same curve along the reverse direction from edge j
to edge 7. Hence P;; = F;;. We call this special
symmetry of the affinity matrix reversal-symmetry
which is distinct from the usual symmetry Pj; = Fj;
which need not hold in general. Reversal-symmetry
has important implications for both the form of



the expressions which define the saliencies and for
efficiently computing them.

In the rest of the paper we will have occasion to
associate a vector s with the set of directed edges (e.g.
the vector of saliencies for each directed edge), one
component for each directed edge. Analogous with
the case for edges, a component of such a vector s;
associated with edge ¢ will have a sibling component
denoted by s; = s; associated with edge 7.

3 Saliency measure

In this section, we first motivate the expression for
the saliency measure [13]. We then show that the
saliency measure can be determined by the solution to
an eigen-problem associated with the affinity matrix
P. Given an edge image, we define a closed contour
as a finite closed sequence of edges. By a closed se-
quence we mean that if we start from any edge in the
sequence and trace out the contour we will return to
the same edge. Each closed contour « has a likelihood
(or probability) associated with it, which we denote by
p(e) and is the product of the transition probabilities
(given by the affinity matrix P) between successive
edges in the contour.
3.1 Edge Saliency

We would like to define our saliency measure for
an edge to be related to the likelihoods of the var-
ious closed contours that thread through that edge.
Rather than derive the contribution of each individ-
ual closed contour to the saliency for an edge, it is
simpler to consider the contribution of the ensemble
of all closed contours through that edge by considering
the set of infinite closed contours passing through that
edge. Each infinite closed contour can be decomposed
into a sequence of finite closed contours, and hence the
relative likelihood of different infinite closed contours
passing through an edge depends on the relative likeli-
hood of the individual finite closed contours that they
are composed of. In order to calculate the relative
saliencies of infinite contours, we start by considering
the relative saliencies of closed contours of finite but
large length and take the limit as the length goes to in-
finity. Restricting ourselves to finite contours for now,
the saliency of an edge should be proportional to the
expected number of closed contours that pass through
that edge. The expected number of closed contours of
length n that thread through edge 7 is simply the sum
of the probabilities of all such closed contours :

Ef =) pla]i€a,lal=n) (1)

Since we are interested in the relative saliencies of the
various infinite contours that thread through different

edges, we take the limit n — oo for the expected num-
ber of closed contours through a given edge ¢ relative
to the expected number through all edges and obtain
the formal definition for the saliency of edge ¢ :

n

E!
C; = lim s
n— 00 E ].E].

With this definition, it turns out that there is a sim-
ple relationship between edge saliencies and the eigen-

vector corresponding to the largest eigenvalue of the
affinity matrix P.

Theorem 1 (First Saliency Theorem) The
saliency for edge i is given by :

C; = s5; 5; (2)

where the s;’s are the components of the eigenvector
(normalized such that ), s;5; = 1) corresponding to
the largest eigenvalue A in magnitude of the affinity
matriz P, i.e. Ps = As.

Proof. See [5] and also [13] for an earlier proof.

Note that due to reversal-symmetry, we would expect
C; = C; as can be verified from the expression above.
3.2 Link Saliency

For the purpose of segmentation, in addition to
the edge saliencies, we will also need information that
will help us trace out contours given a starting edge.
Specifically, given two edges j and 7 we would like to
know the relative likelihood that closed contours pass
through edges j and 7 successively. We define the link
saliency Cj; to be the relative saliencies of the closed
contours that pass through edges j and ¢ successively.
Analogous to the definition for the edge saliencies, we
have :

n
o i
G = NS

where E7; is the expected number of closed contours
of length n that go through edges j and i successively,
and E] is as defined before in (1). The link salien-
cies also turn out to have a simple relationship with
the eigenvector corresponding to the largest eigenvalue

of P.

Theorem 2 (Second Saliency Theorem) The
link-saliencies between any two edges j and i are
given by :

§Z'Pij8j

Cij = — (3)



@ )

Figure 1: (a) An example edge image created from
two copies of a real pear contour superimposed on a
background texture (b) Saliency plot.

where the s;’s are the components of the eigenvector
(normalized such that ), s;5; = 1) corresponding to
the largest eigenvalue A of the affinity matriz P.

Proof. See [5]. It should be noted that the notion of
the edge saliencies Cj’s was first introduced in [13].
However, the notion of link saliencies and the above
theorem is new and has not been presented before.

Again, as in the case of the edge saliencies, due to
reversal-symmetry we would expect Cj; = Cj as can
be verified from the expression above (recall, P;; = Pj
and s; = ;).

Since we are concerned with closed contours, an
important conservation property holds for all edges.
Any closed contour that goes from some edge k into
a second edge ¢ must continue onto some third edge
j. This is not necessarily true in the case of open
contours. We confirm this conservation property and
at the same time use it as a consistency check on the
expressions for the Cj;’s and Cj’s :

ZCik = E Si(P;ksk) = Si(isi) = 5;8; = C}
k k

Doing a similar calculation for Zj Cj;, we find
Seu=a=yo
k J

We conclude this section by demonstrating how well
our saliency measure performs for the two-pear exam-
ple of Fig. 1. The saliency measure for each edge in the
figure was determined through the expressions for Cj
in equation (2) after solving for the largest eigenvalue
of P and its corresponding eigenvector. The saliency
plot is shown in Fig. 1 (b). The length of an edge in
the plot is proportional to its saliency. As can be seen,

the edges bounding both pears have high (and compa-
rable) saliencies. The saliencies of all other edges have
been suppressed (numerically, their saliencies are 20
orders of magnitude smaller than those of the pears).

In order to separately identify the two contours
bounding the pears, we might think of simply thresh-
olding the saliencies. However, as illustrated in this
example (and in general), it is possible for such a
simple thresholding scheme to group together edges
bounding distinct objects. In the next section, we de-
velop a more robust approach that uses the link salien-
cies Cj;’s to group together the set of edges that belong
to distinct objects.

4 Segmentation

The goal of segmentation is to group together in
distinct sets, edges bounding distinct objects in the
scene. To motivate our segmentation algorithm, con-
sider the hypothetical case where some oracle provided
us with a set S of closed contours in the scene whose
saliencies are above some threshold. We can construct
a graph whose vertices correspond to the edges in our
scene. We create a directed link in this graph from
edge ¢ to edge j if 7 and j are successive edges in
some salient contour in S. It is proved in [5] that
such a construction induces a partition of the graph
into a set of isolated strongly-connected components.
A strongly-connected component [1] is a set of edges
in which any pair of edges ¢ and j have a path from
one to the other, i.e., ¢ ~ j as well as j ~ i. In gen-
eral each strongly-connected component will contain
multiple salient contours that share common edges. It
is shown in [5] that the partition into a set of strongly-
connected components is a direct consequence of the
property of closure of the contours in §. As noted
in the introduction, the strong dependence between
the nature of the partition and the property of clo-
sure is a distinguishing feature of our approach, as
compared with other approaches [2, 3] that employ
generic graph search techniques that are not depen-
dent on any specific property of the saliency measures
used. More precisely, in our approach, the determi-
nation of strongly-connected components makes sense
only in the context of using a saliency measure that
incorporates closure.

In practice, of course, we do not know the salient
contours beforehand. Nevertheless, since the links in
the salient contours become the links in the graph,
all we need to know is which of the links are salient,
i.e. the likelihood that some salient contour passes
through a given link. The link-saliencies (Ci;’s) pro-
vide precisely an encoding of such information.

Ideally, the set of edges will be partitioned into



isolated components. However, in practice not all of
the components provide reliable segmentations. The
dominant contours tend to suppress the saliencies of
all other contours to such an extent that the salien-
cies of these non-dominant contours are not sufficient
to induce components that can be isolated reliably.
Hence in practice, we begin by extracting the most
salient contours. Since such contours will normally
pass through the most salient edge, we first identify
the contours corresponding to the strongly-connected
component containing the most salient edge. Having
identified the most salient contours, we suppress their
link saliencies in order to reveal the next set of dom-
inant contours. We suppress the current set of dom-
inant contours by deflating the affinities of all links
among the edges in the strongly-connected compo-
nent. Specifically, if ¢ and j are edges in the com-
ponent, then the link ¢ — j is deflated by setting
P;; = 0 (as well as setting the reversal-symmetric “sib-
ling” P;; = 0). We then iterate this process to reveal
multiple salient contours.

Again considering the ideal case, the strongly-
connected component containing the most salient edge
will be isolated from the other components. In prac-
tice, due to noise, some of the Cj;’s might wrongly
indicate that the strongly-connected component con-
taining the most salient edge is connected to one
or more of the other strongly-connected components.
Nevertheless, we can extract the component of inter-
est by utilizing an important property of strongly-
connected components—the set of edges in a strongly-
connected component containing a given edge is the
intersection of the set of edges reachable from the
given edge and the set of edges reachable from the
same edge when all the links have their directions re-
versed [1]. In our case, due to reversal-symmetry, the
above property reduces to a particularly simple form.
In order to identify the strongly-connected component
containing the most salient edge ¢, we find the inter-
section of the set of undirected edges reachable from
edge ¢ and the set of undirected edges reachable from
7 (note that both ¢ and 7 have the same saliency as
discussed in section 3).

5 Results

We show results of our segmentation algorithm on
a few real images. All the images were taken using
a Kodak DC5H0 480x480 pixel digital color camera.
The Canny edge detector was run on the images af-
ter converting them to greyscale, with the parameters
o = 3.0, low hysteresis threshold = 0.2 and high hys-
teresis threshold = 0.8. The set of edges returned by
the Canny edge detector were found to be quite re-
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Figure 2: Fruits on concrete. (a) Greyscale image
with the segmented contours numbered in the order
they are extracted (b) Canny edge output.

dundant. The edges are sampled to improve running
times with almost no sacrifice in performance. In our
experiments we sample the edges such that no two
edges are closer than 5 pixels apart.

The entries of the affinity matrix P were calculated
with parameter settings (see § 2 for their descriptions
and also [10]) v = 0.15, 7' = 0.004 and 7 = 5.0. All
edge images are remapped to a 64 x 64 image size.
Since the affinity matrix P has a special symmetry
(the reversal symmetry), we had previously developed
an algorithm that finds the eigenvector corresponding
to the largest eigenvalue of P (required for the com-
putation of our saliency measures) by exploiting the
reversal symmetry. See [11] for details. In our first
example we chose a simple scene where non-occluding
objects (fruits) were placed on a textured background



Figure 3: Fruits on concrete. When the Cj;’s have
been replaced by F;;’s the segmentation during the
second iteration breaks down (see text)

(concrete). Fig. 2 shows four fruits on a concrete back-
ground in greyscale (a) and the corresponding edge
image (b) (with 2800 directed edges after the sam-
pling process described above). Notice that the con-
trast between the texture of the fruit on the top-left
(a cantelope) and that of the background is quite low.
As a result, few edges are detected along some parts
of the boundary of the cantelope. Superimposed on
Fig. 2 (a) are the contours which are identified dur-
ing the successive iterations of the segmentation algo-
rithm. It is interesting to note that the contour bound-
ing the cantelope has been extracted despite the fact
that there are large gaps in some parts of the contour.
We next show the importance of the global informa-
tion encoded by our link saliencies Cj;’s for segmenta-
tion by replacing them with the F;;’s that encode only
local information. The edge saliencies C;’s are left
unchanged. With this replacement, the segmentation
algorithm extracts out the same contour in the first it-
eration as the original algorithm with the Cj;’s. Note
that this contour is easy to trace out since there are no
large gaps present between successive edges of the con-
tour. However, the hard part is to get a starting edge
(i.e., the most salient edge in the current iteration)
which (for this demonstration) is still being provided
by the C;’s. Fig. 3 shows the segmentation after the
second iteration. As can be seen, the segmentation
completely breaks down. The F;;’s are sufficient as
long as we start off from the most salient edge in each
iteration and there are no large gaps in the contours
being traced. The breakdown in the second iteration
shows the need for the more global information en-
coded in the Cj;’s in cases where there are large gaps

Figure 4: Fruits on grass. Greyscale image with seg-
mentations superimposed.

in the contours being traced.

The eigen-solver for the matrix P described above
(see [11] for details) is adaptive, the time roughly vary-
ing according to the complexity of the contours ex-
tracted and the number of edges in it. As expected
the first iteration took the least time of 3 sec since
the contour extracted is relatively simple. The third
iteration took the longest time of 20 sec possibly be-
cause of the large gaps in the contour being extracted
(bounding the cantelope). The average time for the 4
iterations is 9.9 sec. Fig. 4 shows the same four fruits
with grass as the background and with one of the fruits
occluding another. Due to poor contrast between the
two dark fruits and the background the Canny edge
detector does not reliably detect the edges bounding
the two fruits. The fruits are hardly salient in the edge
image (not shown) even for human observers. Our al-
gorithm can be expected to extract out contours only
when provided with reliable edge information. In this
case the algorithm picks out only the other two fruits
in the image. Of the two fruits that it does pick out,
one partly occludes the other. Due to the poor con-
trast between the two fruits, the edge information (es-
pecially the orientation) is quite poor in the region
around the occlusion. However, despite this fact, and
the fact that the contour bounding the occluded fruit
contains a large gap at the occlusion, the algorithm
segments out both fruits individually. Finally, Fig. 5
shows an example where there are significant shad-
ows (around the stones) which produce strong smooth
contours. However, since they are open contours, they
are not as salient as the closed contours bounding the
stones and hence do not confuse the algorithm.



Figure 5: Stones on pavement. Greyscale image with
segmentations superimposed.

6 Conclusion

We have demonstrated the usefulness of a saliency
measure based on the global property of contour clo-
sure in segmenting out multiple closed contours from
real images. We have shown the importance of the
global information encoded by our link saliencies Cj;’s
for segmentation as opposed to using just the F;;’s
that encode only local information.

Our approach to grouping edges into salient con-
tours involves the solution of an eigen-problem. Re-
cently, other approaches [6, 9, 7] have also proposed
grouping image features by solving a corresponding
eigen-problem. The normalized minimum-cut ap-
proach proposed in [9] can group more general image
features than our approach can. However, since we
restrict ourselves to grouping edges into salient closed
contours, we are able to impose the important con-
straint of edge-directionality that is not applicable for
other features like pixel intensities. Also, imposing
edge-directionality results in a non-symmetric affinity
matrix P for which the min-cut approach proposed
in [9] does not apply. As noted in § 2, we can get a
symmetric affinity matrix if we do not impose edge-
directionality, in which case the min-cut approach
would apply. However, the symmetric affinity matrix
permits contours with cusps at the edges to be salient
(see the discussion in § 2). Hence, we would expect
poor performance with a min-cut approach when edge-
directionality is not imposed. The dominant eigenvec-
tor approach that was proposed in [6, 7], while appli-
cable to more general features than edges, also applies
only to symmetric matrices and hence cannot exploit
edge-directionality. Summarizing, since in this paper,
we are interested in finding out how much can be ac-

complished using only edge information, methods that
exploit constraints from the specific domain, such as
ours, are expected to give better results compared with
more general-purpose methods.

The segmentation algorithm assumes a fixed value
for the speed = of the particle modeling the distribu-
tion of curves between two given edges. Equivalently,
this fixes the effective scale or size for the input image
(see § 2). A more principled approach would be able to
extract out a contour regardless of the rate at which its
edges are sampled. A straightforward approach would
be to sweep the scale (by varying the speed ¥) in each
iteration and find the most salient contour across all
scales (see [11]). Contours with different samplings
would become dominant at different scales. We are
currently investigating this approach and expect it to
result in improved, scale-invariant segmentations.

References
[1] Cormen, T.H., Leiserson, C.E. and Rivest, R.L. 1989.
Introduction to Algorithms, Chapter 23, MIT Press.

[2] Elder, J.H. and Zucker, S.W. 1996. Computing contour
closure. In ECCV ’96, Cambridge, UK. Vol. 1:14-18.

[3] Jacobs, D. 1993. Robust and Efficient Detection of
Convex Groups. In CVPR, 770-771.

[4] Lowe, D.G. 1985. Perceptual Organization and Visual
Recognition, Kluwer, Boston.

[5] Mahamud, S., Thornber, K.K. and Williams, L.R.
1998. Extracting Multiple Salient Closed Contours from
Real Images. NEC Tech. Report 98-120

[6] Perona, P. and Freeman, W. 1998. A Factorization Ap-
proach to Grouping. In FCCV | Freiburg, Germany.

[7] Sarkar, S. and Boyer, K. 1996. Quantitative Measures
for Change based on Feature Organization: Eigenvalues
and Eigenvectors, In CVPR ’96, San Fransisco, CA.

[8] Shashua, A. and Ullman, S. 1988. “Structural
Saliency : The Detection of Globally Salient Structures
Using a Locally Connected Network”, In ICCV | FL.

[9] Shi, J. and Malik, J. 1997. Normalized Cuts and Image
Segmentation. In CVPR °97, Puerto Rico, USA.

[10] Thornber, K.K. and Williams, L.R. 1996. Analytic
Solution of Stochastic Completion Fields. Biol. Cybern.
75:141-151.

[11] Thornber, K.K., Mahamud, S. and Williams, L.R.
1998. The Eigenvalue Problem for Reversal Matrices.
NEC Tech. Report 97-162

[12] Williams, L.R. and Jacobs, D.W. 1997. Local Parallel
Computation of Stochastic Completion Fields. Neural
Computation 9:859-881.

[13] Williams, L.R. and Thornber, K.K. 1998. A Compar-
ison of Measures for Detecting Natural Shapes in Clut-
tered Backgrounds. In FCCV, Freiburg, Germany.



