
JavaD: Bringing Ownership Domains to

Mainstream Java

Marwan Abi-Antoun Jonathan Aldrich

May 2006
CMU-ISRI-06-110

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This work was supported in part by NASA cooperative agreements NCC-2-1298 and NNA05CS30A,
NSF grant CCR-0204047, a 2004 IBM Eclipse Innovation Grant, the Army Research Office grant number
DAAD19-02-1-0389 entitled “Perpetually Available and Secure Information Systems”.

Abstract

Ownership types have been receiving much attention from the research community. However,
few of the proposed designs have been implemented or evaluated on real object-oriented
implementations. AliasJava has been available for a few years and has been applied on
several case studies.
Currently, AliasJava is implemented as a non-backwards compatible extension of the Java
programming language. As a result, none of the tool support for Java (from debugging
and refactoring to syntax highlighting) is available for AliasJava programs, making it harder
to justify the case that Java programs are easier to evolve with AliasJava annotations than
without. Furthermore, this makes it harder to specify the ownership and aliasing annotations
for a large legacy system since the program cannot be annotated partially and incrementally
with AliasJava.
We present JavaD, a re-implementation of the AliasJava language and analysis as a set of
Java 1.5 annotations, using the Eclipse Java Development Tooling (JDT) infrastructure and
the Crystal Data Flow Analysis framework. We conclude with some lessons learned and
future plans.

Keywords: ownership domains, AliasJava, type annotation

1 Introduction

“The big lie of object-oriented programming is that objects provide encapsulation” [13].
In particular, aliasing can cause a failure of encapsulation and can be the source of many
unintended side effects in object-oriented programs (See Figure 1).

Aliasing cannot be eliminated entirely from useful object-oriented program; in fact, many
object-oriented design patterns rely on it. However, the research community has recognized
that aliasing must be controlled using language support (see [8] for a good survey) and
proposed several solutions, e.g., Islands [13] and Universes [15] to name only a few.

We look in particular at one proposal, Ownership Domains [2], and its implementation
in a concrete language, AliasJava [5]. Unlike some of the other approaches which are only
paper designs, AliasJava has had a publicly available open-source compiler for a few years
[4]. In addition, it has been evaluated on actual object-oriented programs (see case studies
in [5] and [1]). The Universes system is another ownership-based system we are aware of
that has been applied in a case study involving a non-trivial system [12].

2 AliasJava

AliasJava [5] is a concrete implementation of the Ownership Domains system proposed by
Aldrich et al [2]. AliasJava extends Java to express how data is confined within, passed
among, or shared between components and objects in a software system: developers can ex-
press controlled aliasing through ownership domains and the lack of aliasing through unique-
ness using annotations on reference types.

Ownership Domains. AliasJava controls aliasing relationships in object-oriented pro-
grams by dividing objects into conceptual groups called ownership domains and allowing
architects to specify high-level policies that govern references between ownership domains.
AliasJava supports abstract reasoning about data sharing by assigning each object in the
system to a single ownership domain. There is a top-level ownership domain denoted by
the keyword shared. In addition, each object can declare one or more domains to hold its
internal objects, thus supporting hierarchical specifications. AliasJava has a keyword domain

to define ownership domains. The first two lines of code within the class declare the owned

domain and a reference to the head of the list (by default, each object has a private domain
called owned, so the domain declaration can be omitted). Figure 2 uses a Sequence abstract
data type to illustrate the ownership model used in AliasJava. The Sequence object is part
of a top-level owner ownership domain. Within a Sequence object, the iters ownership
domain is used to hold iterator objects that clients use to traverse the sequence, and the
owned ownership domain is used to hold the Cons cells in the linked list that is used to
represent the sequence.

Domain Permissions. Objects within a single ownership domain can refer to one
another, but references can only cross domain boundaries if the programmer specifies an
architectural link between the two domains when they are created. Each object can declare
a policy describing the permitted aliasing among objects in its internal domains, and be-

1

class JavaClass {

private List signers;

public List getSigners() {

return this.signers;

}

}

// (Malicious) clients can mutate signers field!

class MaliciousClient extends ... {

public void addTrojanHorse(JavaClass c)

{

List signers = c.getSigners();

signers.add(this);

}

}

Figure 1: In an early version of the JDK, the Class.getSigners method returned the
internal list of signers rather than a copy, allowing untrusted clients to pose as trusted code
by modifying the signers object through its alias.

tween its internal domains and external domains. AliasJava supports two kinds of policy
specifications:

• A link from one domain to another, denoted with a dashed arrow in the diagram,
allows objects in the first domain to access objects in the second domain;

• A domain can be declared public. Permission to access an object automatically implies
permission to access its public domains.

For example, in Figure 2 the Sequence object declares a link from its iters domain to
its owned domain, allowing the iterators to refer to objects in the linked list. The iters

domain is public, allowing clients to access the iterators, but the owned domain is private
so clients must access the elements of Sequence through its iterator interface rather than
traversing the linked list directly. In addition to the explicit policy specifications mentioned
above, AliasJava includes the following implicit policy specifications:

1. An object has permission to access other objects in the same domain;

2. An object has permission to access objects in the domains that it declares.

The first rule allows the different Cons cells in the linked list to access each other, while
the second rule allows the sequence to access its iterators and linked list. Any reference
not explicitly permitted by one of these rules is prohibited, according to the principle of
least privilege. It is crucial that there is no transitive access rule: for example, even though

2

Figure 2: A conceptual view of the ownership and aliasing model in AliasJava. The rounded,
dashed rectangles represent ownership domains, with a gray fill for private domains, and no
fill for public domains. Solid rectangles represent objects. The top-level shared domain
contains the highest-level objects in the program. Each object may define one or more do-
mains that in turn contain other objects. Dashed arrows represent link permissions between
domains.

clients can refer to iterators and iterators can refer to the linked list, clients cannot access
the linked list directly because the sequence has not given them permission to access the
owned domain. Thus, the policy specifications allow developers to specify that some objects
are an internal part of an abstract data type’s representation, and the compiler enforces the
policy, ensuring that this representation is not exposed.

Domain Parameters. Figure 3 shows how the Sequence Java code can be annotated
with aliasing information to model the constraints expressed in Figure 2. AliasJava uses
the Java 1.5 type parameters syntax to define domain parameters (e.g., class Sequence<
Towner >) as well as binding actuals to formals (e.g., Sequence< owned > seq = new

Sequence<owned>();). The head field is of type owned Cons<Towner>, denoting a Cons

linked list cell that resides in the owned domain and holds an object that resides in the
Towner domain. The add member function constructs a new Cons cell for the object passed
as argument and adds it to the head of the list. Skipping ahead to the definition of the
Cons cell class, we see that it is also parameterized by the domain parameter Towner. The
class contains a field obj holding an element in the list, along with a next field referring
to the next Cons cell (or null, if this is the end of the list). The next field has type owner

Cons<Towner>, indicating that the next cell in the list has the same owning domain as the
current cell (i.e., all the cells are part of the Sequence’s owned domain).

Domain Hierarchy. The set of named ownership domains each object declares are
nested within the domain that owns the object, so ownership defines a forest of trees where
each parent owns its children and the roots of the tree are unique. Unique objects may be
assigned to an ownership domain, attaching one ownership tree as a subtree of another. All
connected components must be part of an ownership domain declared by the component
making the connection.

3

class Sequence<Towner> assumes owner -> Towner {

domain owned;

public domain iters;

link owned -> Towner;

link iters -> Towner, iters -> owned;

owned Cons<Towner> head;

void add(Towner Object o) { head = new Cons<Towner>(o,head); }

iters Iterator<Towner> getIter() {

return new SequenceIterator<Towner, owned>(head); }

}

class Cons<Towner> assumes owner -> Towner {

Cons(Towner Object obj, owner Cons<Towner> next)

{ this.obj=obj; this.next=next; }

Towner Object obj;

owner Cons<Towner> next;

}

interface Iterator<Towner> {

Towner Object next();

boolean hasNext();

}

class SequenceIterator<Towner, list> implements Iterator<Towner>

assumes list -> Towner {

private list Cons<Towner> current;

public SequenceIterator(list Cons<Towner> head) {current = head; }

public boolean hasNext() { return current != null; }

public Towner Object next() {

Towner Object obj = current.obj; current = current.next; return obj; }

}

public class SequenceClient {

domain state;

final state Sequence<state> seq = new Sequence<state>();

void doSomething(state Object o) { System.out.println("Iterated on " + o); }

public void run() {

state Object obj = new Integer(5);

seq.add(obj);

seq.add(new Integer(7));

seq.iters Iterator<state> i = this.seq.getIter();

while (i.hasNext()) {

state Object cur = i.next();

doSomething(cur);

}

}

}

Figure 3: Sequence example in AliasJava. Adapted from the AliasJava distribution [4].

4

class JavaClass {

private owned List signers;

private owned List getSigners() {

return this.signers; }

public void foo() {

lent List x = this.getSigners();

// do stuff using x

}

}

Figure 4: AliasJava re-implementation of the JavaClass: the list is declared owned; the type
checker now requires getSigners() to be marked private, since a public method may not
have owned in its signature. Clients can only call the public method foo().

Unique Data. While ownership is useful for representing persistent aliasing relation-
ships, it cannot capture the common scenario of an object that is passed between objects
without creating persistent aliases. Objects to which there is only one reference (including
newly-created objects) are annotated unique in AliasJava. Unique objects can be passed
from one ownership domain to another, as long as the reference to the object in the old
ownership domain is destroyed when the new reference is created.

Lent Data. We also allow one ownership domain to temporarily lend an object to
another ownership domain, with the constraint that the second ownership domain will not
create any persistent references to the object. For example, we annotate a method parameter
as lent to indicate that it is a temporary alias. A unique object can be passed to a method
as a lent argument even without destroying the original unique reference. The method can
pass on the object as a lent argument to other methods, but cannot return it or store it in
a field. Using lent, we can also temporarily pass an owned object to an external method
for the duration of a method call, without any risk that the outside component might keep
a reference to that object. Thus, the lent annotation preserves all of the reasoning about
the unique object, but adds a large amount of practical expressiveness.

Shared Data. Objects marked with the shared annotation may be aliased globally.
Unfortunately, little reasoning can be done about shared references, except that they may
not alias non-shared references. However, shared references are essential for interoperating
with existing runtime libraries, legacy code, and static fields, all of which may refer to aliases
that are not confined to the scope of any object instance.

AliasJava Example. Figure 4 shows one possible fix for the aliasing bug identified
earlier using the owned annotation. Figure 5 shows another possible fix for the aliasing bug
identified earlier, using domain parameters.

5

class JavaClass<data> {

private owned List signers;

public data List getSigners() {

data List copy = new List();

for(int i = 0; I < this.signers.size();i++)

copy.add(this.signers.get(i));

return copy;

}

}

Figure 5: AliasJava re-implementation of the JavaClass, returning a copy of the list of signers
in the domain identified by the domain parameter data. Alternatively, the copy could have
been returned in the global shared domain to avoid the need for a parameter.

3 JavaD: AliasJava with annotations

JavaD re-implements the AliasJava language and analysis as annotations using the annota-
tion facility in Java 1.5 [17]. In particular, Java programs with JavaD annotations are legal
Java 1.5 programs unlike AliasJava programs which are no longer legal Java programs.

3.1 Motivation

AliasJava is currently implemented using a modified version of the Barat infrastructure [6]1.
JavaD re-implements the AliasJava language and analysis using the Eclipse Java Develop-
ment Tooling (JDT) [20] infrastructure and the Crystal data flow analysis framework [3].

Since it is a non-backwards compatible extension to the Java programming language,
AliasJava programs have only basic tool support available to them. Re-implementing the
language and the analysis as annotations improves the adoptability of the ownership domains
technique by mainstream Java developers as follows:

• Improved tool support: all the capabilities of the Eclipse integrated development
environment become available to AliasJava programs, from advanced debugging capa-
bilities to refactoring to syntax highlighting;

• Ease of extensibility: using annotations would make it easier to extend the AliasJava
language in a non-breaking way. Some of the candidate annotations include ones for
external uniqueness [10] and read-only references [15], among others;

1Although open-sourced, the Barat infrastructure [6] is not maintained at the same level as the Eclipse
open source project which is much larger. In particular, the Barat infrastructure still does not support Java
1.5.

6

• Support for incrementality: using annotations gives the ability to incrementally
and partially specify annotations. This is necessary for dealing with large code bases
and would enable us in turn to conduct case studies to evaluate ownership domains on
large real-world object-oriented programs.

Since the main purpose of this project is to address the adoptability of AliasJava, usability
is a primary consideration. Although annotations may be more verbose than an elegantly
designed language, we tried to make JavaD annotations as usable as possible, using the
following strategies:

• Only warnings: the analysis only generates warnings and does not generate errors
about inconsistent annotations;

• Reasonable defaults: we supply reasonable defaults to reduce the annotation burden.
We reuse the same defaults as AliasJava;

• Consistency: only using annotation imposes several restrictions on a language de-
signer. For instance, Java 1.5 allows annotations only on variable declarations. In
particular, there may be some cases where an extra temporary variable may need to be
declared, just for the purpose of adding annotations to it. This point will be revisited
when we talk about new expressions, cast expressions (both implicit and explicit), and
arguments for method/constructor invocation.

• Non-executable annotations: finally, we use entirely non-executable annotations,
i.e., the behavior of the code is not unaffected by the annotations. Our approach
involves purely a static analysis and does not interfere with the running of the program:
in particular, unlike AliasJava, where there may be some runtime exceptions2related
to bad casts, programs annotated with JavaD behave in exactly the same way as they
did before since the annotations have no effect whatsoever at runtime. As a result, the
system is unsound at casts.

3.2 Annotation Design

We have defined the following Java 1.5 annotations. For maximum flexibility, all annota-
tion values are strings. Annotations that are plural take values that are arrays of strings3.
We describe the annotations and illustrate each one with code snippets from the Sequence
example (the full example is shown in Figure 6).

@Domain: Specify the actual annotation, the actual parameters and the actual array pa-
rameters on a variable, field, method return type, method parameter.

2AliasJava has the option of generating .java files from annotated .archj files; in that case, the generated
.java files will have additional runtime checks inserted by the code generator.

3Java 1.5 allows the following syntactic sugar: single-element array-valued single-member annotation can
be written without the curly braces { . . . }, e.g., @Domains("iters") or @Domain({"iters"}). The array
syntax requires curly braces, e.g., @Domain({"iters", "owned"}).

7

• Format: parameter < parameter, . . . > [parameter, . . .] where

– parameter can be any alias annotation or refer to a public domain of an
object, e.g., seq.iters;

– < parameter, . . . > (angle brackets) optional annotation for the ordered list
of actual domain parameters;

– [parameter, . . .] (square brackets) optional annotation for the ordered list of
actual array parameters, by order of array dimension.

• Applies to: parameter, field, local variable, method, constructor4

• Examples:

@Domain("unique<Towner, owned>")

SequenceIterator sequenceIterator = new SequenceIterator(head);

...

public static void main(@Domain("lent[shared]")String args[]) {

...

}

@Domains: declare domains on a type (class or interface).

• Format: name

• Applies to: type (class or interface)

• Examples:

@Domains({"iters"})

class Sequence

@DomainParams: declare domain parameters on a type (class or interface)

• Format: name

• Applies to: type (class or interface)

• Examples:

@DomainParams({"Towner"})

class Sequence

@DomainInherits: pass parameters to superclass or implemented interfaces

• Format: typename < parameter, . . . >

• Applies to: type (class or interface)

• Examples:

8

@DomainParams({"Towner", "list"})

@DomainInherits({"Iterator <Towner>"})

class SequenceIterator implements Iterator {

...

}

@DomainParams({"Towner"}) {

interface Iterator {

...

}

@DomainReceiver: declare annotation on the receiver.

• Format: name

• Applies to: constructor or method

• Examples:

3.3 Examples

In this section, we illustrate how to annotate an abstract data type with an interator, an
interesting benchmark for ownership systems. Figure 3 shows the original AliasJava program.
Figure 6 shows snippets from the equivalent JavaD program.

4 Tool Design and Implementation

The tool design and implementation has been heavily inspired from the original AliasJava
compiler [4]. The analysis consists of:

• Annotation management: associate with each AST node an annotation value;

• First-Pass (visitor-based) Analysis: retrieve the explicit annotations from the
AST nodes (for types, variables, and methods) and propagate them to expressions;

• Second-Pass (visitor-based) Analysis: check the annotations on each expressions
using the AliasJava rules.

We discuss each one in turn.

4We use the @Target feature, e.g., @Target(ElementType.PARAMETER, ...) to specify where a specific
annotation is allowed (in this case, on constructor or method parameters).

9

@Domains({"iters"}) @DomainParams({"Mowner", "Towner"})

class Sequence {

@Domain("owned<owned,Towner>") Cons head;

void add(@Domain("Towner")Object o) {

head = new Cons(o,head); }

@Domain("iters<Towner>") Iterator getIter() {

@Domain("unique<owned, Towner, owned>")

SequenceIterator sequenceIterator = new SequenceIterator(head);

return sequenceIterator;

}

}

@DomainParams({"Mowner", "Towner"}) class Cons {

Cons(@Domain("Towner")Object obj,@Domain("Mowner <Mowner, Towner>")Cons next) {

this.obj=obj; this.next=next; }

@Domain("Towner") Object obj;

@Domain("Mowner<Mowner, Towner>") Cons next;

}

@DomainParams({"Towner"}) interface Iterator {

@Domain("Towner") Object next();

boolean hasNext();

}

@DomainParams({"Mowner", "Towner", "list"}) @DomainInherits({"Iterator<Towner>"})

class SequenceIterator implements Iterator {

@Domain("unique")SequenceIterator(@Domain("list<Mowner, Towner>") Cons head) {

current = head; }

@Domain("list <Mowner, Towner>")

private Cons current;

public boolean hasNext() { return current != null; }

public @Domain("Towner") Object next() {

@Domain("Towner")Object obj = current.obj;

current = current.next;

return obj;

}

@Domains({"state"})

public class SequenceClient {

final @Domain("state<owned, state>") Sequence seq = new Sequence();

void doSomething(@Domain("state")Object o) { ... }

public void run() {

@Domain("state")Object obj = new Integer(5);

seq.add(obj);

@Domain("unique")Integer int7 = new Integer(7);

seq.add(int7);

@Domain("seq.iters<state>") Iterator i = this.seq.getIter();

while (i.hasNext()) {

@Domain("state") Object cur = i.next();

doSomething(cur);

}

}

}

Figure 6: Sequence example in with JavaD annotations (with explicit “owner”).

10

4.1 Annotation Information

For each AST node, the tool maintains the following information:

• Annotation: represents the ownership domain (e.g., owned or seq.iters) or the alias
annotation on a reference type (e.g., lent);

• Parameters: represent the formal or actual domain parameters on a reference type;

• ArrayParameters: represent the annotations on each array dimension for array
types;

• Mapping from formals to actuals.

4.2 First-Pass Analysis

The first pass is visitor-based5analysis to perform the following:
Identify Problematic Patterns. During this pass, we identify problematic code pat-

terns that will need to be replaced with equivalent constructs, namely by declaring a local
variable and adding the appropriate annotations to it6.

Read Annotations from AST. The Java 1.5 annotations that are added to a program
become part of the AST. The visitor locates these nodes in the AST and parses their con-
tents7. In addition, the visitor infers default annotations for some program constants that
cannot be annotated: e.g., it infers unique on NullLiteral AST nodes and StringLiteral AST
nodes. The annotations that are read are stored in a hash table mapping each AST node
to an annotation structure. This mapping is used by the second pass analysis to check the
correctness of the annotations.

Propagate Local Annotations. The AST visitor also propagates annotations to all
the expression nodes in the AST, by translating formals to actuals. This visitor vists AST
nodes corresponding to:

• ArrayAccess: handle array access expressions

• ArrayCreation: mark array creation expressions as unique

• ArrayInitializer: mark array initialize expressions as unique

• Assignment

5This visitor must be a post-order visitor, in order to correctly check expressions such as Iterator i
= this.seq.getIter(). A post-order visitor will ensure that the correct annotation for the FieldAccess
(this.seq) is generated before that of the MethodInvocation (getIter()).

6Using the Eclipse built-in refactoring (“Extract Local Variable”), this operation can be performed with
very little effort.

7We used JavaCC [14] to generate a small parser for the annotation string when it can get complex (e.g.,
as in the @Domain case). In most other cases, we used simple string manipulation in Java.

11

• CastExpression: check for unsupported constructs

• ClassInstanceCreation: check for unsupported constructs

• FieldAccess

• ConditionalExpression: propagate annotations for conditional expressions, i.e., expression
? thenExpression : elseExpression;

• InfixExpression: mark string concatenations (using infix + operator) as unique

• MethodDeclaration: retrieve annotation from node

• MethodInvocation: translate formals to actuals, and store for expression

• NullLiteral: mark array initialize expressions as unique

• QualifiedName: propagate annotation, translate formals to actuals, and store for ex-
pression

• ReturnStatement: check for unsupported constructs

• SingleVariableDeclaration: retrieve annotation from node

• StringLiteral: mark string constants as unique

• ThisExpression

• TypeDeclaration: retrieve annotation from node

• VariableDeclarationFragment: retrieve annotation from node

4.3 Second-Pass Analysis

Check Rules. The second pass consists also of an AST Visitor to check the AliasJava rules.
This visitor visits the following nodes and checks the corresponding rules:

• TypeDeclaration: inheritance rules

• FieldDeclaration: declaration rules

• SingleVariableDeclaration: declaration rules

• VariableDeclarationFragment: declaration rules

• MethodDeclaration: check method rules

• Assignment: check assignment, initializers

12

Figure 7: Arrow means data can flow between variables with two annotations.

• ClassInstanceCreation: constructor rules

• MethodInvocation: method call rules

• ReturnStatement: check assignment rules (of return value)

• FieldAccess: assignment

Value flow analysis Checking the assignment rule requires a value flow analysis, based
on the following rules in AliasJava:

• A variable with any type annotation can be assigned a unique value;

• lent variables can be assigned a value with any type annotation;

• Values with type annotations owned and shared, as well as declared domains kept
separate from each other.

The value flow analysis cannot be implemented as a regular dataflow analysis because
it does not correspond to a lattice (See Figure 7). We reused the Live Variables Analysis
(LVA) from the Crystal Data Flow analysis framework. LVA is invoked intra-procedurally
at each method boundary using a separate visitor that looks for a variable with a specific
binding information.

5 Evaluation

We tested and evaluated the JavaD tool on the following examples.

5.1 AliasJava Examples

We tested the JavaD tool by taking some of the examples provided with the ArchJava distri-
bution and converting them from AliasJava syntax to Java syntax with JavaD annotations.

13

Figure 8: The Eclipse Problems window showing the JavaD warnings on the raw Courses
example.

5.2 Courses Example

We also annotated a small Java program that corresponds to a three-tier course registration
system. The tool identified several instances of unsupported coding patterns discussed later,
for which we used the Eclipse refactoring (“Extract Local Variable”) to replace them with
supported coding patterns. We also used the Eclipse Find/Replace feature to replace all
instances of java.lang.String with @Domain("shared")String.

In addition, we replaced all uses of java.util.ArrayList with the annotated Sequence

Abstract Data Type, and used the Iterator construct to iterate over the elements of the
collection.

During the annotation process, we frequently invoked the JavaD analysis. We initially
started out with several hundreds of warnings(See Figure 8), but that number was brought
down very quickly. The tool was helpful in pinpointing incorrect annotations. The most
common annotation warnings were missing alias annotations, not passing the appropriate
domain parameters and forgetting to mark variables (used in annotations) as final. In the
final program, there are some remaining expected8warnings regarding missing annotations
on return types of various library functions on java.lang.String.

Annotating the courses example took a couple of hours, not including several interrup-
tions to fix various problems in the implementation of the tool.

6 Limitations and Future Work

6.1 Missing Features

Due to time constraints, the following AliasJava language features were not implemented:

8Currently, the tool does not support annotating library code, namely java.lang.String. This is de-
ferred for future work.

14

• Support for the owner annotation (the current support in the AliasJava compiler is
broken); the original Sequence example shown earlier did make good use of it (See Fig-
ure 3). However, we rewrote it by passing the Mowner as an explicit domain parameter
(by convention, we use the first one), as in Figure 6);

• Different checks for public and private domains;

• Support for method domain parameters (currently supported in AliasJava);

• Sanity checks for the annotations; e.g., checks that the @DomainInherits does not
reference a nonexistent superclass or an interface that is not implemented; other needed
checks include disallowing the standard alias types (owned, lent or unique) as private
domains in the @Domains annotation;

• Domain link specifications (@DomainLinks and @DomainAssumes) and the associated
checks.

Some tool-specific future work might include:

• Creating an Eclipse builder so the analysis is invoked automatically as the program is
modified;

• Adding the ability to suppress certain warnings; and in turn, add the ability to re-run
the analysis without any suppressions to make sure that developers are not simply
suppressing warnings instead of fixing the bugs;

• Improving cryptic error messages: e.g., a message such as “Alias parameters [] of new
Course(objCourseFile.readLine()) instance don’t match [objectsDom] alias parameters
of receiver at call . . . ” (for the “Before” construct in Figure 9) is a roundabout way
of telling the developer that she must simply declare two local variables and add an-
notations to them;

• Adding the ability to turn off defaults: for program comprehension, we think that
having all annotations spelled out is preferable since a developer does not have to
understand both the significance of the presence of an annotation, as well as the absence
thereof9.

6.2 Limitations of Java 1.5 annotations

We ran into several of the limitations of Java 1.5 annotations. Some of the limitations
include:

1. A declaration cannot have multiple annotations of the same annotation type;

9There was a time when, in some unsafe languages, it was possible to have variables without type anno-
tations, and the type was assumed to be some default; thankfully, this is now a passing trend.

15

2. Annotation types cannot have members of the their own type;

3. It is only legal to use single-member annotations for annotation types with multiple
members, as long as one member is named value, and all other members have default
values. Otherwise, the more verbose syntax is required, e.g., @Name(first = "Joe",

last = "Hacker");

4. Annotation types cannot extend any entity (class, interface or annotation).

The fist restriction prevented us from using the @Domain annotation to specify both the
annotation on the receiver and on the return type of a method.

The second restriction prevented us from having shorthand constant annotations for
some of the frequently used ones, e.g., @owned instead of @Domain("owned"). However,
such constants cannot be used in annotations such as @Domain(annotation = @owned,

parameters = {@owned}). To avoid having multiple ways of performing the same thing,
in the end, we resorted to using strings and doing our own parsing, as in annotations of
the form @Domain("owned <owned>"). This means that developers may be more likely
to introduce minor mistakes by misspelling standard annotations since the auto-complete
feature is not available for free-form strings. However, the analysis will catch such problems
early enough.

The third restriction, i.e., the lack of positional arguments, prevented us from expressing
constructs of the form @Domains({"public1", "public2"}, {"private1", "private2"}).
Instead, we have to use the more verbose syntax of @Domains(publicDomains = {"public1",
"public2"}, privateDomains = {"private1", "private2"}) or @Domains({"public1",
"public2"}, privateDomains = {"private1", "private2"}).

Finally, Java 1.5 annotations can only be added to declaration points. In particular, we
found two kinds of expressions to be problematic, namely new expressions (See Figure 9)
and cast expressions (See Figure 10). As a result, some legal Java constructs will need to be
replaced with equivalent, but more verbose, constructs that involve declaring local variables
and adding the appropriate annotations to them.

As an an alternative, we could have used stylized comments, but we think that comments
would have been even less structured and easier to overlook by developers than annotations.
Most code editors, including the Eclipse Java editor, highlight annotations differently than
comments10. Furthermore, the stylized comments are bound to look like commented out
code which goes against many coding guidelines.

6.3 Future Work

There are several directions that we can pursue next.

10We are not aware of empirical evaluations that evaluated whether comments or annotations help or
hinder program comprehension.

16

Before:

while (objCourseFile.ready()) {

this.vCourse.add(new Course(objCourseFile.readLine()));

}

After:

while (objCourseFile.ready()) {

@Domain("shared")String line = objCourseFile.readLine();

@Domain("objectsDom <objectsDom>")Course course = new Course(line);

this.vCourse.add(course);

}

Figure 9: Re-writing a new expression by declaring a few local variables with the appropriate
annotations.

Before:

ArrayList vCourse = objStudent.getRegisteredCourses();

for (int i=0; i<vCourse.size(); i++) {

if (((Course) vCourse.get(i)).conflicts(objCourse)) {

lock.releaseLock();

return "Registration conflicts";

}

}

After:

@Domain("lent")ArrayList vCourse = objStudent.getRegisteredCourses();

for (int i=0; i<vCourse.size(); i++) {

@Domain("lent<objectsDom>")Course course = (Course) vCourse.get(i);

if (course.conflicts(objCourse)) {

lock.releaseLock();

return "Registration conflicts";

}

}

Figure 10: Re-writing a cast expression by declaring a local variable.

17

6.3.1 Standard and Third-Party Libraries

We would like to support adding annotations to the standard JDK libraries and other third-
party libraries. There are two approaches: one that involves annotating the library and one
that involves placing annotations in separate files. The latter is the preferred approach since
it does not require making changes to library or third-party code which may not be available,
and when it is, tends to evolve separately.

Even when storing annotations in separate files, there should be a way to also reduce
the annotation burden, e.g., by using pattern matching to annotate all parameters or return
types of type java.lang.String with @Domain("shared").

6.3.2 Additional Alias Types

As discussed earlier, an important goal of this project is to support extensibility. In par-
ticular, we hope to develop new kinds of annotations to support “external uniqueness” [10],
“readonly” references [15], among many possible ones.

6.3.3 Interactive Annotation Inference

Annotating existing code is difficult and time-consuming, since one has to first determine the
appropriate ownership parameters, and annotate almost every line of code with a reference
type (assuming the default is not suitable). We hope this tool will serve as a good starting
point to infer annotations interactively. In particular, Eclipse provides the functionality to
graphically preview refactorings (in this case, the addition of annotations) before they are
actually applied to the program.

One interactive annotation inference tool based purely on a static analysis that we are
aware of [11] makes use of additional annotations to guide the inference algorithm: for in-
stance, the user can supply an @Complete annotation as a hint to the inference algorithm
to indicate that the list of ownership parameters may not be extended. We are also think-
ing about using @Suggest(...) annotations to let the user provide various hints to the
inference algorithm or to have the algorithm generate its suggestions as @Suggested(...)

annotations. One of the benefits of using annotations is that an inference algorithm can in
no way break an existing program by inserting incorrect annotations.

6.3.4 Warning Suppression

Cooper mentions how “certain references are not used in ways that could cause aliasing bugs
and could therefore be considered harmless aliases. It may be possible to extend AliasJava
to incorporate an annotation for such references” [11]. Based on our own experience [1], we
agree that it might be useful to have escape mechanisms to tolerate small local inconsistencies
and to suppress warnings on innocuous code.

18

6.3.5 Flexibility with Substitutability

AliasJava does not allow implementations of interface methods or overrides of abstract meth-
ods to change the ownership annotation. Allowing subtypes to be annotated in ways that
are incompatible with their supertypes breaks substitutability and is unsound. However,
two applications instantiating a framework, library or third-party component, may need to
annotate the same methods in incompatible ways, depending on their usage. For instance,
AliasJava annotates the this receiver by default with lent. However, application code im-
plementing abstract methods or interface methods (e.g., from a user interface framework)
can do arbitrary things with the this pointer, such as storing it, or passing it to other com-
ponents. So when annotating legacy GUI code, the lent default may not be appropriate.
We think this problem can be solved by adding some kind of parameter to the superclass,
e.g., by making each method parametric in the ownership type of its receiver.

6.3.6 Generic Ownership

We have ported the AliasJava language and analysis to the Eclipse infrastructure and made
use of a Java 1.5 language feature, which makes it possible, at least in principle, to also
handle generics. However, due to time constraints, we did not study the implications of
using Java 1.5 generics with JavaD annotations, although the Sequence example would be
a prime candidate.

It may very well be the case that adding ownership annotations to Java 1.5 with generics
will be too verbose. A promising alternative approach is to combine ownership and generic
types, as is being proposed by Potanin et al [16]. This is an area that we will be watching
closely.

7 Conclusion

We presented a re-implementation of the AliasJava language and analysis as a set of Java
1.5 annotations, using the Eclipse Java Development Tooling (JDT) infrastructure and the
Crystal Data Flow Analysis framework.

We think this tool can encourage additional case studies to first annotate and then main-
tain real object-oriented implementations to evaluate the true benefits of using ownership
domains for program understanding and evolution. This tool could also spur future activ-
ity, notably in the areas of extending the language with richer annotations and building
interactive annotation inference tools.

References

[1] Marwan Abi-Antoun, Jonathan Aldrich and Wesley Coelho. A Case Study in Re-
engineering a Legacy Application to Enforce Architectural Control Flow and Data Shar-
ing. In Journal of Systems and Software (To Appear). 2006.

19

[2] Jonathan Aldrich and Craig Chambers. Ownership Domains: Separating Aliasing Policy
from Mechanism. Proc. European Conference on Object-Oriented Programming, Oslo,
Norway, June 2004.

[3] Jonathan Aldrich and David Dickey. The Crystal Data Flow Analysis Framework. http:
//www.cs.cmu.edu/∼aldrich/courses/654/

[4] Jonathan Aldrich. ArchJava Downloads. http://www.archjava.org/

[5] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias Annotations for
Program Understanding. Proc. Object Oriented Programming Systems, Languages and
Applications, Seattle, Washington, November 2002.

[6] Boris Bokowski and Andr Spiegel. BaratA Front-End for Java. Freie Universitat Berlin
Technical Report B-98-09, December 1998.

[7] David Clarke and Sophia Drossopoulou. Ownership, Encapsulation, and the Disjoint-
ness of Type and Effect. Proc. Object-Oriented Programming Systems, Languages and
Applications, Seattle, Washington, November 2002.

[8] David Clarke. Object Ownership & Containment. Ph.D. Thesis, University of New
South Wales, Australia, July 2001.

[9] David Clarke, James Noble, and John M. Potter. Simple Ownership Types for Object
Containment. Proc. European Conference on Object-Oriented Programming, Budapest,
Hungary, June 2001.

[10] David Clarke and Tobias Wrigstad. External Uniqueness is Unique Enough. Proc. Eu-
ropean Conference on Object-Oriented Programming, Darmstadt, Germany, July 2003.

[11] Will Cooper. Interactive Ownership Type Inference. School of Computer Science Senior
Thesis, Carnegie Mellon University. 2005.

[12] Thomas Hächler. Applying the Universe type system to an industrial application: case
study. Master Project Report, Departement of Computer Science, Swiss Federal Insti-
tute of Technology, 2005.

[13] John Hogg. Islands: Aliasing Protection in Object-Oriented Languages. Proc. Object-
Oriented Programming: Systems, Languages and Applications, Phoenix, Arizona, Oc-
tober 1991.

[14] JavaCC. Available at https://javacc.dev.java.net/

[15] Peter Müller and Arnd Poetzsch-Heffter. Universes: A Type System for Controlling
Representation Exposure. In A. Poetzsch-Heffter and J. Meyer (Hrsg.): Programmier-
sprachen und Grundlagen der Programmierung, 10. Kolloquium, Informatik Berichte
263, 1999/2000.

20

[16] Alex Potanin, James Noble, David Clarke and Robert Biddle. Featherweight Generic
Ownership. In 7th Workshop on Formal Techniques for Java-like Programs - FT-
fJP’2005.

[17] Sun Microsystems, Inc. Java Specification Requests JSR 175: A Metadata Facility for
the JavaTM Programming Language.

[18] Eclipse Java Development Tooling (JDT) core. http://dev.eclipse.org/viewcvs/

index.cgi/jdt-core-home/main.html?rev=1.97

[19] Object Technology International, Inc. Eclipse Platform Technical Overview, 2003. http:
//www.eclipse.org/whitepapers/eclipse-overview.pdf

[20] Eclipse Java Development Tooling (JDT) core. http://dev.eclipse.org/viewcvs/

index.cgi/jdt-core-home/main.html?rev=1.97

[21] Werner Dietl and Peter Muller. Exceptions in Ownership Type Systems. In E. Poll,
editor, Formal Techniques for Java-like Programs, pp. 4954, 2004.

21

