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Abstract
For many object-oriented systems, it is often useful to have a run-
time architecture that shows networks of communicating objects.
But it is hard to statically extract runtime object graphs that provide
architectural abstraction from existing programs written in general
purpose languages, and that follow common design idioms.

Previous approaches extract low-level non-hierarchical object
graphs that do not provide architectural abstraction, change the lan-
guage too radically for many existing implementations, or use a dy-
namic analysis. Static analysis, which takes all possible executions
into account, is essential to extract a sound architecture, one that re-
veals all objects and relations that could possibly exist at runtime.

Ownership domain type annotations specify in code architec-
tural intent related to object encapsulation and communication. We
propose a static analysis that leverages such types and extracts a hi-
erarchical approximation of all possible runtime object graphs. The
representation provides architectural abstraction, first by ownership
hierarchy, and then by types. We proved core soundness results for
the technique and evaluated it on 68 KLOC of real code.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Classes and objects

General Terms Experimentation, Languages, Theory

1. Introduction
Architects use different architectural views to describe a system.
A code architecture organizes code entities in terms of classes,
packages, layers and modules. A runtime architecture of a system
models runtime entities and their potential interactions [9]. For an
object-oriented system, a runtime architecture shows networks of
communicating components that are aggregates of objects.

Intuitively, many have preferred dynamic analyses to extract
runtime architectures [10]. But, a dynamic analysis extracts, from
a few program runs, partial descriptions that cover interactions be-
tween objects. Ideally, an architecture must capture a complete de-
scription of a system’s runtime structure. This requires a static anal-
ysis that is sound, one that reveals all objects and relations that
may exist at runtime. Several static analyses have been proposed,
some sound with respect to aliasing [18, 14], others not [12, 26].
But previous static approaches, whether sound or unsound, extract
low-level non-hierarchical object graphs that do not provide archi-
tectural abstraction and do not scale to large programs.
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To simplify the problem, some approaches radically change a
language’s type system to include architectural constructs [5, 24]
or mandate specific implementation frameworks. An approach that
handles existing systems must support existing languages, common
design idioms and existing frameworks and libraries.

The key insight of our work is to leverage ownership types for
architectural extraction. Ownership types were originally proposed
to control aliasing [8, 4]. But the ideas and techniques of ownership
seem crucial for extracting sound runtime architectures at compile-
time. Ownership types track instances instead of classes, and a
runtime architecture shows objects.

Our principled architectural recovery combines type annota-
tions and a type-based static analysis. A developer guides the ar-
chitectural abstraction by adding annotations to the source code
to clarify the architectural intent. The annotations specify in code
object encapsulation, logical containment and architectural tiers,
which are not explicit constructs in general purpose programming
languages. A static analysis then extracts sound hierarchical object
graphs that provide architectural abstraction, first by ownership hi-
erarchy, and then by types.

Lam and Rinard previously proposed using annotations to re-
cover object models from code [14], but their system did not sup-
port hierarchy, and thus cannot scale to large systems at multiple
levels of abstraction, nor did their paper discuss critical language
constructs like inheritance.

Our approach does have the overhead of adding the annotations
to a program, which we currently do mostly manually. Precise and
scalable ownership inference is a separate problem and an active
topic of ongoing research [15, 16]. Our contribution in this paper
is a static analysis for extracting sound hierarchical runtime object
graphs based on well-understood ownership type annotations. We
proved soundness results for the core of the technique and evaluated
it on 68 KLOC of real object-oriented code.

This paper is organized as follows. We define runtime architec-
tures (Section 2) and motivate the use of annotations. In Section 3,
we describe the core analysis informally. In Section 4, we describe
the analysis formally and prove key soundness theorems. In Sec-
tion 5, we discuss additional architectural abstraction by types. We
conclude with a discussion and related work (Section 6).

2. Motivation
A Runtime Object Graph (ROG) represents the runtime structure of
an object-oriented program. Nodes correspond to runtime objects.
Edges correspond to relations between objects, such as field points-
to reference relations, or usage relations such as method invoca-
tions. Our static analysis constructs a representation that soundly
approximates any ROG that any program run may generate.

Different executions generate a different number of objects.
Furthermore, the number of objects in a ROG is unbounded. An
architecture must be a finite representation of a ROG, whereby one
architectural component represents multiple objects at runtime.
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Existing static analyses that extract a system’s runtime struc-
ture produce low-level non-hierarchical object graphs that explain
runtime interactions in detail [18, 12, 26], but convey little archi-
tectural abstraction (see examples in the companion report [3]). In
particular, low-level objects appear at the same level as the archi-
tecturally relevant objects, and there is no way to distinguish them.

A static analysis must also handle possible aliasing. Ignoring
aliasing may produce a misleading object graph. If two object ref-
erences could alias, a sound analysis must map them to the same ar-
chitectural component. If an architecture showed two components
for one runtime entity, an analysis at the architectural-level may as-
sign these two components different values for a key architectural
property, which could invalidate the results of the analysis.

We listed earlier several requirements on a solution, namely
that it be a static analysis and not require language extensions. We
define the following key properties of a runtime architecture.

In a runtime architecture, a component is an object or a group
of objects [9]. An architecture also represents the relations between
an object in one component and some other object in another
component. An architecture is often hierarchical and decomposes
each component into a nested sub-architecture.

An architecture often organizes components into runtime tiers,
where a tier is a conceptual partitioning of functionality, for exam-
ple, to distinguish presentation from computational elements.

An architecture scales if the top-level architecture stays mostly
the same as the program size increases arbitrarily. An architecture
is sound if it represents all objects and relations between objects
that may exist at runtime. Finally, an architecture is precise if two
runtime entities that represent different conceptual design elements
appear as different architectural entities.

2.1 Mapping from Source to High-Level Models
One way to view architectural extraction is that it maps code el-
ements to elements in a high-level architectural model. Consider
a two-tiered Document-View architecture where BarChart and
PieChart components are in a VIEW tier, and render a Model com-
ponent in a DOCUMENT tier. The code for this example is in Fig. 1,
where the annotations are shown as underlined. We will explain the
annotations in Section 2.2.

We indicate that tier D contains component C using the notation
D::C. Let us hypothetically map the BarChart class from the
code (on the left) to the barChart element in a VIEW tier in the
architecture (on the right), as follows:
class BarChart to VIEW::barChart
class Model to DOCUMENT::model

A class is not a runtime entity. So the above map does not produce
a runtime architecture. The above could indicate that all instances
of the BarChart class map to a barChart component. But in an
object-oriented system, there is usually more than one instance of
any given class, and each instance can map to a different component
in a runtime architecture. Instead of mapping a class or all of its
instances, we need to map runtime objects. A static analysis knows
only about field or variable declarations in the program, which
denote references to runtime objects. In the line below, we use
System.barChart to denote a barChart field declared in class
System, which points to an instance of the BarChart class at
runtime. So we map:
object System.barChart to VIEW::barChart
object System.model to DOCUMENT::model

In Fig. 2(a), dashed boxes represent runtime tiers, solid-filled boxes
represent objects and edges represent field references. At runtime,
instances of BarChart and Model each contain an List object that
holds listener objects. So, similarly, we map:
object BarChart.listeners to VIEW::listeners
object Model.listeners to DOCUMENT::listeners

1 interface Listener {
2 }
3 class BaseChart<M> // Declare domain parameter M
4 implements Listener {
5 domain OWNED; // Declare protected domain OWNED
6 // Declare reference to List object in OWNED
7 // Inner annotation M is for the list elements
8 OWNED List<M Listener> listeners;
9 }

10 class BarChart<M> extends BaseChart<M> {
11 }
12 class PieChart<M> extends BaseChart<M> {
13 }
14 class Model<V> implements Listener {
15 domain OWNED;
16 // Inner annotation V is for the list elements
17 OWNED List<V Listener> listeners;
18 }
19 class Main {
20 domain DOCUMENT, VIEW; // Top-level domains
21 // Bind domain parameter V to actual domain VIEW
22 DOCUMENT Model<VIEW> model;
23 VIEW BarChart<DOCUMENT> barChart;
24 VIEW PieChart<DOCUMENT> pieChart;
25 }
26 class List<ELTS T> { // ELTS is domain for the List elements
27 // T is a generic type parameter
28 ELTS T obj; // "Virtual field" to summarize implementation
29 } Figure 1. Document-View system with annotations.

 DOCUMENT  VIEW

model:
Model

listeners:
List<Listener>

barChart:
BarChart

pieChart:
PieChart

listeners:
List<Listener>

(a) Flat runtime architecture.
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 OWNED

listeners:
List<Listener>
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BarChart

pieChart:
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model:
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listeners:
List<Listener>

listeners:
List<Listener>

(b) Hierarchical runtime architecture using nested boxes.

 DOCUMENT
 VIEW

model(+):
Model

barChart(+):
BarChart

pieChart(+):
PieChart

(c) Eliding the sub-structures.

Figure 2. Runtime architecture of Document-View system.
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1 class DataAccess<PENV> { // Declare domain parameter PENV
2 public domain STATE; // Declare public domain STATE
3 STATE Integer int1; // Declare Integer reference in STATE
4 STATE Number num1;
5

6 // Outer PENV annotation is for the ArrayList reference (Line 9)
7 // ArrayList has domain parameter ELTS for its elements
8 // Nested PENV annotation is bound to ArrayList ELTS (Line 9)
9 PENV ArrayList<PENV Integer> v2;

10 }
11 class UnitTest {
12 domain DATA, ENV; // Declare top-level domains
13

14 // Bind domain parameter PENV to actual domain ENV
15 DATA DataAccess<ENV> dataAccess;
16

17 static void main(lent String[shared] args) {
18 lent UnitTest test = new UnitTest();
19 }
20 } Figure 3. DataAccess code with annotations.

In a runtime architecture, we model these listeners as part of
BarChart, PieChart and Model objects, instead of showing them
at the top level. Conceptually, each view has a separate listeners
object, and the listeners object of a pieChart is distinct from
that of a barChart, and that of a model. So we map:
object BarChart.listeners to VIEW::barChart.OWNED::listeners
object PieChart.listeners to VIEW::pieChart.OWNED::listeners

Fig. 2(b) uses the nesting of boxes to indicate hierarchical contain-
ment. The thick dashed borders indicate that these listeners are
owned or strictly encapsulated by their outer components.

A key difference between the code and the runtime architecture
is that a single code element, e.g., the Listener element of a
List<Listener>, could map to multiple design elements, based
on the context. Indeed, model registers itself as a Listener for a
barChart, and vice versa. So we map:
object Listener in BarChart.listeners to DOCUMENT::model
object Listener in Model.listeners to VIEW::barChart

To get this mapping, one solution is to annotate the Listener
reference inside a List<Listener> by some parameter ELTS:
object Listener in List<Listener> to ELTS::obj

and to bind the ELTS parameter once to the DOCUMENT context, and
once to the VIEW context [14]. Our system uses a similar solution.
In addition to being able to bind a context parameter to one of
the top-level contexts, it can bind a context parameter to a local
nested context, such as barChart.OWNED or model.OWNED. This
expressiveness is crucial to extract a hierarchical representation.

Of course, multiple code elements could map to the same el-
ement in a runtime architecture. A reference of type Model and
one of type Listener, an interface that Model implements, could
alias and refer to the same object. So, they must map to the same
component in the runtime architecture. Moreover, an analysis for
object-oriented code must handle inheritance. In the above ex-
ample, PieChart and BarChart extend a BaseChart class, and
BaseChart declares the listeners object.

Finally, hierarchy enables displaying or eliding information at
any level to show overviews of the runtime architecture at the
desired level of abstraction. The (+) symbol indicates that the sub-
structure of an object is elided (Fig. 2(c)).

2.2 Ownership Domains
In our approach, a developer guides the architectural abstraction by
adding annotations to clarify the architectural intent in the code.
The annotations make the extracted architecture reflect a devel-
oper’s architectural intent rather than a tool’s heuristic.

The annotations assign each object to a single ownership do-
main that does not change at runtime. An ownership domain is a

abstract graph

type

domain

has-a

object

has-a

  is-a

(a)

runtime graph

object : Type

domain

 has-a  

(b)
Ownership Object Graph (OOG)

object

domain1 domain2

object11

points-to

object22

points-to

object21

domain111

object1111 object1112

(c)

Figure 4. Transformation between abstract graph, runtime graph
and Ownership Object Graph (OOG). The OOG is for illustration
purposes and is not produced from a particular runtime graph.

conceptual group of objects with an explicit name and explicit poli-
cies that govern how it can reference objects in other domains [4].

Each class can declare one or more public or private domains to
hold its internal objects, thus supporting hierarchy. Although a do-
main is declared at the level of a class in a program, each instance
of that class has its own runtime domain. In particular, an annota-
tion can refer to the public domain D of an object o, similarly to
a field access, as obj.D. Whenever our analysis distinguishes two
objects obj1 and obj2, it also distinguishes the domains that these
objects contain in turn, such as obj1.D and obj2.D.

An object x of type X can access objects in a domain D of
object y of type Y by declaring a formal domain parameter F on
X and binding F to domain D. Objects inside a private domain are
encapsulated. Permission to access an object implies permission to
access its public domains. Domain links describe allowed object
communication [4], but do not introduce new difficulties compared
to computing object relations, so we do not discuss them further.

Example. Fig. 3 shows two classes with ownership domain
annotations. In this paper, we use a simplified syntax similar to Java
generics, but the concrete syntax uses existing language support for
annotations. Domain names are arbitrary, except for a few special
annotations [4]. We often use capital letters to distinguish them
from other program identifiers.

Class DataAccess declares a public domain STATE (Line 2),
and Integer and Number objects in STATE (Lines 3,4). Any ob-
ject that has a reference to a DataAccess object can access the ob-
jects in its public domain. In addition, DataAccess requires some
environment’s state that it does not own, so it declares a domain
parameter PENV (Line 1). An object of type UnitTest declares an
ENV domain (Line 12), and binds it to DataAccess’s PENV (Line
15), so that DataAccess can refer to UnitTest’s state. Similarly,
ArrayList has a domain parameter ELTS for the list elements (not
shown). The outer PENV annotation is for the ArrayList object
itself. The inner PENV annotation binds ELTS to PENV (Line 9), to
make the ArrayList’s Integer objects accessible in PENV.

3. Analysis
The analysis builds an abstract graph, converts it into a runtime
graph, which is a sound representation of any runtime object graph
(ROG) (See Fig. 4). We often do not display a runtime graph
directly, as we discuss later, but instead display its projection,
which we call an Ownership Object Graph (OOG).

3.1 Abstract Graph
An abstract graph represents the type structure of the objects that
the code manipulates. A visitor builds an abstract graph from the
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 DATA

 ENV

 ELTS

 STATE  PENV

dataAccess:
DataAccess

DataAccess

testUnitTest

integer:
Integer

ArrayList<Integer>

num1:
Number

int1:
Integer

v2:
ArrayList<Integer>

Figure 5. The abstract graph for DataAccess.

Abstract Syntax Tree (AST) of an annotated program and accounts
for inheritance (Fig. 4(a)). An abstract graph has abstract types,
and an abstract type has abstract domains, as declared in the pro-
gram. An abstract domain has abstract objects corresponding to the
fields and variables that the program declares in the domain.

Fig. 5 shows the abstract graph for the DataAccess system. A
white-filled solid-border box represents an abstract type. A white-
filled dotted-border box represents a formal domain parameter,
e.g., PENV, declared inside a type. A white-filled dashed-border
box represents an actual domain, e.g., STATE. A grey-filled box
represents an abstract object declared inside a domain. A thick
dotted edge represents a type relationship. A solid edge represents
a field reference.

An abstract graph is inadequate as an architecture. An abstract
graph is not hierarchical in the sense of an object having children.
Rather, an abstract object has an abstract type, an abstract type has
abstract domains, and an abstract domain has abstract objects. For
example, abstract object dataAccess has type DataAccess, and
abstract type DataAccess has domains STATE and PENV, and ab-
stract domain STATE contains the abstract object int1:Integer.

An abstract graph does not reflect possible aliasing. The owner-
ship domains type system guarantees that two objects in different
domains can never alias. But two objects of compatible types, in
the same domain, may alias. E.g., int1 and num1 in STATE may
refer to the same object because Integer is a subtype of Number.

If two objects may alias, a runtime architecture must show them
as one. In general, merging objects based on only the aliasing
precision that the ownership domains type system provides could
yield imprecise results. For example, one could use an intra-domain
alias analysis to better approximate the set of objects that may
alias at runtime. But our experience in applying the analysis on
68 KLOC of real code confirms that the annotations give more than
enough precision about aliasing, as long as most object references
are declared — or instantiated — with precise types, instead of
java.lang.Object (See Section 5.1). In fact, we often need ad-
ditional abstraction by types in a domain, as we discuss in Sec-
tions 5.2–5.3. In practice, to avoid merging all objects in a domain
that have a raw type, e.g., Vector, we suggest but do not require
refactoring the code to use a generic type, e.g., Vector<T>.

 DATA

 STATE  PENV

 ENV

num1:
Number

v2(+):
ArrayList<Integer>

dataAccess:
DataAccess

test:
UnitTest

(a) Runtime graph before pulling.

 DATA

 STATE  ENV

num1:
Number

dataAccess:
DataAccess

v2:
ArrayList<Integer>

test:
UnitTest

(b) Runtime graph after pulling.

Figure 6. Partial DataAccess runtime graphs.

An abstract domain in an abstract graph does not directly show
all the objects that are in a given domain. It contains abstract objects
only for the locally declared fields. E.g., DataAccess declares its
v2:ArrayList field in its domain parameter PENV. Such fields
do not appear where the actual domain is declared. Hence, in the
abstract graph, domain ENV inside UnitTest is empty (Fig. 5).

The analysis converts an abstract graph into a runtime graph,
which soundly approximates any true runtime object graph (ROG).

We adopt the following graphical conventions (Fig. 7). A dashed
(dotted) border white-filled rectangle represents an actual (formal)
ownership domain, respectively. A solid border grey-filled rectan-
gle with a bold label represents an object. A dashed edge represents
a link permission between two ownership domains. A solid edge
represents a creation, usage, or reference relation between two ob-
jects. An object labeled “obj : T” indicates an object of type T as
in UML object diagrams. The symbol (+) on an object’s label in-
dicates that its substructure is elided.

3.2 Runtime Graph
A runtime graph instantiates the types in an abstract graph, as pos-
sibly different runtime objects in different domains, and shows only
runtime objects and domains. Each runtime object contains runtime
domains and each runtime domain contains runtime objects. Thus,
in a runtime graph, one can view the children of an object without
going through its declared type.

At a high level, the analysis distinguishes between objects in dif-
ferent domains, and abstracts runtime objects to pairs of domains
and types. The analysis adopts the following approach to possi-
ble aliasing: in a given domain, two abstract objects with compat-
ible types are merged. The analysis also eliminates formal domain
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 LEGEND

 formal_domain

 domain1

 domain2

Object:
DeclaredType

Object1_with_Substructure (+):
DeclaredType1

Object2:
DeclaredType2

  domain link

RootObject:
Type

  field reference

Figure 7. Legend.

parameters by substituting them with actual domains. Finally, the
analysis adds edges between objects. We now discuss each in turn.

Object Merging. Different executions may generate a different
number of objects, but an architecture must represent all possible
executions. To address this, a runtime graph summarizes multiple
runtime objects with a canonical object. Further, exactly one canon-
ical object in a runtime graph represents each object in a ROG.

For instance, a dynamic analysis might show individual cells in
a linked list of Integer objects, such as cons1:Cons, cons2:Cons,
among others. Our approach unifies all the Cons cells into one
cons:Cons object and a self-edge represents the reference from a
cell to the next one (Fig. 9(a)).

Object Aliasing. When converting abstract objects from an ab-
stract graph into runtime objects, the analysis merges two abstract
objects in the same domain, if their types are related by inheritance.
The ownership domains type system guarantees that two objects in
different domains can never alias.

The runtime graph for DataAccess, up until this point, is in
Fig. 6(a). One runtime object, labeled with num1:Number, merges
the abstract objects int1 and num1 in domain STATE (Integer is
a subtype of Number).

Object Pulling. For soundness, each runtime object that is ac-
tually in a domain must appear in that domain in a runtime graph.
To ensure this property, an abstract object declared inside a formal
domain parameter is pulled into each actual domain that is bound
to the formal domain parameter.

Fig. 6(a) shows object v2 in the formal domain parameter
PENV. In Fig. 6(b), object v2 is pulled from the formal domain
parameter PENV to the actual domain ENV in UnitTest. Un-
less the user requests otherwise, we elide formal domains af-
ter pulling, so Fig. 6(b) no longer displays PENV. Similarly, an
ArrayList<Integer> object has a domain parameter ELTS (not
shown) that contains Integer objects. The inner PENV annota-
tion on v2 binds ELTS to PENV. The analysis transitively pulls the
Integer objects from ELTS into PENV, then into ENV (Fig. 8).

Object Relations. The solid edges in Fig. 6(b) correspond to
field reference edges. For instance, DataAccess declares the two
fields int1 and num1 in domain STATE. Objects int1 and num1
were merged, so there is a field reference edge from a DataAccess
object to the merged object. In future work, we could add usage
edges that show field accesses or method invocations.

3.3 Ownership Object Graph (OOG)
In the presence of recursive types, a runtime graph may grow
arbitrarily deep. Consider a class QuadTree, which declares fields
of type QuadTree in its OWNED domain, as follows:

 lent

 DATA

 STATE

 PENV

 ELTS

 ENV

num1:
Number

(vo2,vo3)

integer:
Integer

v2:
ArrayList<Integer>

(ve2)

integer:
Integer

(ve2.1)

dataAccess:
DataAccess

(vo4)

          (ve1)

v2(+):
ArrayList<Integer>

(vo5)

(ve1.1)

integer:
Integer

X

test:
UnitTest

(vo1)

Figure 8. OOG showing formal domains and root object.

class QuadTree {
domain OWNED;
OWNED QuadTree _nwQuadTree;
...

}

To ensure the analysis terminates, we want the runtime graph to
be finite. So we create a unique canonical runtime object for each
type in each domain declared in the program. Therefore, the object
representing QuadTree in domain OWNED must also represent the
child object of type QuadTree in the OWNED domain of the parent;
it is therefore its own parent in this representation. To display a
hierarchy in which no object is its own parent, the analysis creates
an OOG as a finite depth-limited unrolling of the runtime graph.
For the QuadTree example, we show one QuadTree object within
another, down to a finite depth (see the middle of Fig. 15).

Edge Summaries. An OOG is depth-restricted but must still
show all relations that exist at runtime. Merely truncating the re-
cursion in a runtime graph may fail to reveal all relations. For in-
stance, child objects in a hierarchy may have fields that point to
external objects, and the child objects may be beyond the visible
depth. The analysis adds summary edges from the parent objects to
those external objects.

An OOG includes, for any two objects A and B that have an
edge between them in a further unfolding of the runtime graph, an
edge between objects A′ and B′, where A′ is the object from which
A is unfolded and B′ is the object from which B is unfolded.

If the user-specified projection depth is d, the analysis projects
the runtime graph to a depth of d + n in order to produce summary
edges that are due to the nodes below the cutoff depth. Although the
depth of an actual runtime object graph is unbounded, our OOG is
finite. For any runtime graph, we conjecture there is a fixed depth
n that is sufficient to produce all such summary edges, and thus
to produce a sound OOG. However, we have neither a proof nor
an algorithm for computing n. Our soundness proof applies to the
runtime graph, which does not include summary edges.

For example, consider a list of Integer objects. IntList de-
clares a public domain ITERS for its iterators and a private domain
OWNED to hold the linked list. After pulling, a Cons object in domain
OWNED refers to an Integer object in domain DATA that contains
the list elements (Fig. 9(a)). If the projection depth is reduced to
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 LIST

 OWNED
 ITERS  DATA

current(+):
Cons

integer:
Integeriterator(+):

SequenceIterator

lst:
IntList

test:
IntListTest

(a) OOG for an IntList object.

 LIST  DATA

lst(+):
IntList

v1:
Integer

test:
IntListTest

(b) Summary edge between objects lst and v1.

Figure 9. Summary edges added after limiting the projection depth
or hiding lst’s substructure.

elide IntList’s substructure, the analysis adds a summary edge
from IntList to the pulled Integer object (Fig. 9(b)).

Recapitulation. An OOG is a graph with two types of nodes,
objects and domains. The nodes form a hierarchy where each ob-
ject node has a unique parent domain and each domain node has a
unique parent object. The root of the graph is a top-level domain.
There are two edge types. Edges between objects correspond to
field references or usage relations. Edges between domains corre-
spond to domain links, which we do not discuss here. Compared
to earlier definitions of object graphs [20], an OOG explicitly rep-
resents clusters of objects using domains and edges between these
clusters using domain links. In contrast to other ownership hier-
archies [11, 19], in an OOG, the owner of an object is a domain
instead of another object.

The root object of an OOG is often an instance of a class that
only declares the top-level domains and the objects inside them.
For readability, we sometimes elide the root domain and the root
object from an OOG and consider the domains inside the root type
as the top-level domains.

To provide architectural abstraction, an object graph must dis-
tinguish between objects that architecturally relevant and those that
are not. An OOG provides architectural abstraction primarily by
ownership hierarchy. It contains low-level objects into high-level
architectural objects. Thus, only architecturally relevant objects ap-
pear in the top-level domains. Each of those objects has nested do-
mains and objects representing subcomponents, and so on, until
low-level less architecturally relevant objects are reached.

Collapsing many nodes into one is a classic approach to shrink
a graph. However, an OOG collapses nodes based on the ownership
structure, not according to where the program declares the objects,
a naming convention or a graph clustering algorithm [13].

4. Formalization
In this section, we formally describe the analysis as a rewrite sys-
tem to generate instances from types, merge equivalent instances in
a domain, and deduce edges between instances.

4.1 Rewriting Rules
We use a labeled record notation for the data type declarations of
the AbstractGraph and the RuntimeGraph. We use (. . .) for a
tuple, {o . . .} for a set and [d . . .] for a sequence. We use <: to
denote subtyping. We sometimes qualify a domain d by the type T
that declares it as T ::d. We describe the algorithm to construct a
RuntimeGraph from an AbstractGraph using small-step rewriting
rules (Fig. 10).

To help keep the representations distinct, we use English letters
(o, d, . . .) for AbstractGraph elements and Greek letters (θ, . . .)
for RuntimeGraph elements. The AbstractGraph consists of the
AbstractTypes in the program, the AbstractDomains declared
in each type and the AbstractObjects declared in each domain.
Each AbstractObject maintains bindings, each from a formal to an
actual domain, shown as (dformal 7→ dactual) to avoid ambiguity.

There are no RuntimeDomains. To avoid copying, we directly
add AbstractDomains to the RuntimeGraph. A RuntimeObject
knows what AbstractDomain owns it and maintains a set of Ab-
stractObjects it merges. The RuntimeGraph directly includes all
the AbstractDomains, so the analysis converts AbstractObjects
into RuntimeObjects, starting with a root AbstractObject.

A context Θ is the set of valid RuntimeObjects that are part of
the RuntimeGraph. Once a RuntimeObject is removed from Θ, as
may happen during a replace operation, as we discuss later, it is no
longer part of the RuntimeGraph.

Given the list of all RuntimeObjects ({oi . . .}, d) in Θ, the
RuntimeObjects that are in a given AbstractDomain dx, are those
in Θ that have d = dx.

The analysis obtains the AbstractDomains inside a Run-
timeObject θ by looking up each AbstractObject oi : Ti that
θ merges, the declared AbstractType Ti of each oi, and each Ab-
stractDomain di that Ti declares.

The algorithm works by applying these rules until it can
no longer generate new facts, i.e., RuntimeObjects and Run-
timeEdges. Some rules add RuntimeObjects to the context Θ,
other rules replace existing RuntimeObjects with others. Despite
this non-monotonicity, the algorithm is stable because rule precon-
ditions prevent regenerating facts that have been removed.

Subtyping and Type Compatibility. R-AUX-COMPAT defines
type compatibility: the first two disjuncts are necessary to handle
the potential aliasing of variables based on subtyping, the third and
fourth disjuncts are heuristics which we discuss in Section 5 and
can be turned off. The rules use ownership domains subtyping [4],
which follows standard nominal subtyping, and in addition, checks
that all domain parameters are invariant with subtyping.

Runtime Objects. The judgment for creating objects is of the
form Θ =⇒ Θ′. Before creating a RuntimeObject for an Ab-
stractObject o of type t in AbstractDomain d, the analysis checks
if d already has a AbstractObject of type t′, where t and t′ are
compatible according to R-AUX-COMPAT. If such an object does
not exist, R-NEW-OBJECT creates a new RuntimeObject, which
we represent as θ = ({o . . .}, d). If there exists a RuntimeOb-
ject θ = ({o1 . . .}, d), R-MERGE-OBJECTS replaces θ with a new
RuntimeObject that unions the two sets {o . . .} and {o1 . . .}.

An object about to be created in a domain may have a type
that is compatible with two existing RuntimeObjects that are not
compatible with each other. In this case, the new object merges
nondeterministically with one of the existing objects, and then
merges with the other using R-MERGE-EXISTING. This avoids
multiple interface inheritance from triggering unsoundness [1].

For a given input, we believe the rules will always produce the
same graph structure, regardless of the potentially non-deterministic
order in which the rules are applied. A different execution of the
rules may, however, label a RuntimeGraph differently. A Run-
timeObject merges multiple AbstractObjects and each Abstrac-
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h ∈ AbstractGraph ::= (RootObject = o, AbstractTypes = {t . . .})
t ∈ AbstractType ::= (Id = t)

d ∈ AbstractDomain ::= (Id = d, DeclaringType = t)

o ∈ AbstractObject ::= (Id = o, DeclaringDomain = d, DeclaredType = t, Bindings = {b . . .})
b ∈ Binding ::= (FormalDomain = dFormal 7→ ActualDomain = dActual)

e ∈ AbstractEdge ::= (FromType = tsrc, ToDomain = ddst, ToType = tdst)

γ ∈ RuntimeGraph ::= (RootObject = θ, Objects = Θ, Edges = Ω)

θ ∈ RuntimeObject ::= (MergedObjects = {o . . .}, OwnerDomain = d)

η ∈ RuntimeEdge ::= (FromPath = [dsrc . . .], FromType = tsrc, ToPath = [ddst . . .], ToType = tdst)

Θ ::= ∅ | Θ, RuntimeObject({o . . .}, d)

Ω ::= ∅ | Ω, RuntimeEdge(psrc, tsrc, pdest, tdst)

Object Rules Θ =⇒ Θ′

AbstractObject(o, d, t, {b . . .})
Θ ` try({o}, d)

[R-CONVERT-OBJECT]

RuntimeObject({opull . . .}, dparam) ∈ Θ RuntimeObject({oparent . . .}, dparent) ∈ Θ
AbstractDomain(dparam, typeof(oparent)) aparam(oparent, dparam, dactual)

Θ ` try({opull . . .}, dactual)
[R-PULL-OBJECT]

Θ ` try({o . . .}, d) 6 ∃ o, o1.( RuntimeObject({o1 . . .}, d) ∈ Θ ∧ ` compat(typeof(o), typeof(o1)) )

Θ =⇒ Θ, RuntimeObject({o . . .}, d)
[R-NEW-OBJECT]

Θ ` try({o . . .}, d) compat(typeof(o), typeof(o1))

Θ, RuntimeObject({o1 . . .}, d) =⇒ Θ, RuntimeObject({o . . .} ∪ {o1 . . .}, d)
[R-MERGE-OBJECTS]

compat(typeof(o1), typeof(o2))

Θ, RuntimeObject({o1 . . .}, d), RuntimeObject({o2 . . .}, d) =⇒ Θ, RuntimeObject({o1 . . .} ∪ {o2 . . . }, d)
[R-MERGE-EXISTING]

Auxiliary Rules

AbstractObject(o, d, t, {dparam 7→ dactual, . . .})
aparam(o, dparam, dactual)

AbstractObject(o, d, t, {b . . .})
typeof(o) = t

compat(t1, t2) iff t1 <: t2 or t2 <: t1 or existsNonTrivialLUB(t1, t2) or mapToSameDIT(t1, t2) [R-AUX-COMPAT]

Edge Rules Θ; RuntimeObject ` Ω =⇒ Ω′

RuntimeObject({o...}, d) ∈ Θ AbstractObject(o, d, tsrc, {b . . .}) AbstractEdge(tsrc, ddst, tdst)

Θ; RuntimeObject({o...}, d) ` Ω =⇒ Ω, RuntimeEdge([d], tsrc, [d, ddst], tdst)
[R-NEW-EDGE]

Θ; RuntimeObject({o...}, d) ` RuntimeEdge([dsrc...], tsrc, [ddst...], tdst) AbstractDomain(d, typeof(oparent))
RuntimeObject({oparent . . .}, dparent) ∈ Θ nocycle([dparent, dsrc...]) nocycle([dparent, ddst...])

Θ; RuntimeObject({oparent...}, dparent) ` Ω =⇒ Ω, RuntimeEdge([dparent, dsrc...], tsrc, [dparent, ddst...], tdst)
[R-PULL-EDGE]

RuntimeEdge([dsrc1 , dsrc2 ...], tsrc, [ddst...], tdst) ∈ Ω RuntimeObject({o...}, d) ` mapFtoA(dsrc1 , dsrc2) = dsrc′

Θ; RuntimeObject({o...}, d) ` Ω =⇒ Ω, RuntimeEdge([dsrc′ ...], tsrc, [ddst...], tdst)
[R-SUBST-EDGE-L]

RuntimeEdge([dsrc...], tsrc, [ddst1 , ddst2 ...], tdst) ∈ Ω RuntimeObject({o...}, d) ` mapFtoA(ddst1 , ddst2) = ddst′

Θ; RuntimeObject({o...}, d) ` Ω =⇒ Ω, RuntimeEdge([dsrc...], tsrc, [ddst′ ...], tdst)
[R-SUBST-EDGE-R]

AbstractObject(o, d, t, {dformal 7→ dactual, . . .})
RuntimeObject({o...}, d) ` mapFtoA(d, dformal) = dactual

[R-PATH-SUBST]

Figure 10. Data type declarations and rewriting rules to convert an AbstractGraph into a RuntimeGraph.
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 PARENT

 PARAM  ACTUAL

oPull:
TPull

oParent : TParent
[PARAM ->ACTUAL]

oPull:
TPull

Figure 11. opull gets pulled from PARAM to ACTUAL.

T-Store
. . . S[`] = C<`′.n>(v) ⇐⇒ Σ[`] = C<`′.n>

fields(Σ[`]) = T f =⇒ (S[`, i] = `′′) ∧ (Σ[`′′] <: Ti) . . .

Σ ` S
Figure 12. Partial store typing rule from FDJ [4].

tObject might have multiple types. The analysis picks one of those
types nondeterministically as the label for a RuntimeObject.

Next, R-PULL-OBJECT pulls up each RuntimeObject θ from
its owning formal domain dparam into the dactual domain bound
to dparam, possibly replacing RuntimeObjects (See Fig.11).

Runtime Edges. An AbstractEdge comes from a field refer-
ence, and thus includes tsrc, the type that declares the field, and
ddst and tdst, the domain and type of the object the reference points
to. Because RuntimeObjects may get replaced, a RuntimeEdge is
not defined in terms of a source and destination RuntimeObjects.
Instead, we define a RuntimeEdge as a source path psrc, a source
type tsrc, a target path pdest, and a target type tdst.

A path is a sequence, possibly empty, of type-qualified domains
to traverse to locate an object. In Fig. 8, the root object is in domain
lent. So the path [dlent, dDATA] and the type tDataAccess uniquely
identify the dataAccess object, reachable starting from the lent
domain, and into the DATA domain in the UnitTest class (the
tuples are in Fig. 13).

A context Ω keeps track of the set of RuntimeEdges. The
judgment for creating a RuntimeEdge takes the form:

Θ; RuntimeObject ` Ω =⇒ Ω′

R-NEW-EDGE converts an AbstractEdge into a RuntimeEdge
by identifying an object o of type tsrc, and recording the edge as
two paths starting at the parent of o. The source path is the domain d
of o. The destination path includes d followed by ddst, the domain
pointed to by the AbstractEdge. The destination type tdst is the
type of the field pointed to by the AbstractEdge.

A domain in the source or destination path of a RuntimeEdge
might be a formal domain. In that case, R-PULL-EDGE performs
an edge pulling operation similar to pulling objects, so that edges
appear in any actual domains to which the formal domain is bound.
R-PULL-EDGE may lengthen the domain paths. The rule checks
that it does not create cyclic paths, to avoid non-termination, using
the nocycle side condition.

R-SUBST-EDGE-L and R-SUBST-EDGE-R substitute formals
with actuals in the source path and destination path, respectively,
based on the binding information in the origin RuntimeObject. R-
PATH-SUBST actually performs the substitution, by looking at the
binding information in the origin RuntimeObject. In some cases, a
substitution can shorten a path (see Fig. 13 for examples).

4.2 Illustrative Example
The reader may wish to work through the rewriting rules on the
earlier DataAccess example. The OOG in Fig. 8 shows the root

object, as well as formal domains to clarify the object and edge
pulling operations. Fig. 13 shows selected AbstractGraph tuples
and some applications of the rewriting rules. # denotes the next
generated fact and #∗ denotes the fact at the fixed point. We man-
ually labeled some nodes and edges in Fig. 8 with the RuntimeOb-
jects and RuntimeEdges generated in Fig. 13.

We manually added to Fig. 8 a thick edge labeled as “X” as an
example of an imprecise edge that the rules do not generate. This
illustrates how OOG edges are more precise than those obtained by
superimposing field reference edges based on the associations in a
class diagram. Intuitively, ELTS is not bound to STATE, so no rule
should ever add an edge from v2:ArrayList to num1:Number in
STATE — even though Integer <: Number.

4.3 Soundness
We want a RuntimeGraph to be a sound approximation of the true
runtime object graph (ROG) for any program run. An OOG is a
depth-limited projection that preserves a RuntimeGraph’s sound-
ness by adding summary edges.

Our static analysis manipulates tuples extracted from the ab-
stract syntax tree of a program with ownership domain annotations.
By the soundness of the underlying type system, the store typing
characterizes any execution of a well-typed program, and thus, any
of its runtime object graphs.

Informally, we relate a ROG to the RuntimeGraph as follows:
• Object and Domain Soundness: Each object ` in a ROG

has exactly one representative RuntimeObject in the Runtime-
Graph. Similarly, each domain in the ROG is represented by
exactly one domain in the RuntimeGraph. Furthermore, this
mapping is consistent with respect to the ownership relation. If
object ` is in domain d in the ROG, then the representative of `
is in the representative of d in the RuntimeGraph. Similarly, if
` has a domain d in the ROG, then the representative for ` has
a representative domain for d in the RuntimeGraph.

• Edge Soundness: Edges in a runtime graph soundly abstract all
field points-to relations between objects in an ROG. Namely, if
there is a field reference from object `1 to object `2 in a ROG,
then there is a field reference edge between RuntimeObjects θ1

and θ2 corresponding to `1 and `2 in the RuntimeGraph, and
similarly for domain links.
We build on the formalization of ownership domains using

Featherweight Domain Java (FDJ) [4]. We reproduce here parts
of the store typing rule T-Store (Fig. 12). An overbar represents
a sequence. In FDJ, locations represent object identity. A type
C<d> consists of the class of an object and actual ownership
domain parameters. By Rule Aux-Owner, the first actual domain,
d1, is the owner. A store S maps a location ` to its contents: the
type of the object, and the values stored in its fields. S[`] denotes
the store entry for `. S[`, i] denotes the value in the ith field of S[`].

Given an object in a ROG represented by location `, Σ[`] =
C<`′.n>. Here, each `′i.ni refers to a domain named ni that is
part of the runtime object `′i. Also, owner(C<`′.n>) = `′1.n1.
T-Store ensures that the store type Σ gives a type to each location
in S, one that is consistent with the classes and actual ownership
domain parameters in S. CT is the class table. dom() returns
the mathematical domain of a mapping. domains() returns the
ownership domains that a type declares [4].

Theorem: Object and Domain Soundness. Given a Runtime-
Graph(Θ, Ω), H maps locations in the store to RuntimeObjects:

∀Σ ` S, ∀Θ,∃H : dom(S) 7→ dom(Θ),∀` ∈ S

Σ[`] = C<`′.n> and owner(S[`]) = `′.d

=⇒ H[`] = ({o1 . . . on}, d) and

d′ ∈ domains(C) =⇒ ∃i ∈ 1..n . typeof(oi) = Ti and d′ ∈ domains(Ti)
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(dlent, NULL) AbstractDomain for built-in domain lent – NULL parent (1)

(tUnitTest) (tDataAccess) (tArrayList<Integer>) AbstractTypes for the type declarations (2)

(otest, dlent, tUnitTest, {}) AbstractObject for test (3)

(tUnitTest, [dDATA], tDataAccess) AbstractEdge for UnitTest’s field reference to dataAccess (4)

(dDATA, tUnitTest) (dENV , tUnitTest) AbstractDomains for DATA and ENV (5)

(odataAccess, dDATA, tDataAccess, {dPENV 7→ dENV }) AbstractObject for dataAccess (6)

(tDataAccess, [dPENV ], tArrayList<Integer>) AbstractEdge for field reference in DataAccess to v2 (7)

(tDataAccess, [dSTATE ], tInteger) AbstractEdge for field reference in DataAccess to int1 (8)

(tDataAccess, [dSTATE ], tNumber) AbstractEdge for field reference in DataAccess to num1 (9)

(dSTATE , tDataAccess) (dPENV , tDataAccess) AbstractDomains STATE and PENV (10)

(onum1, dSTATE , tNumber, {}) (oint1, dSTATE , tInteger, {}) AbstractObjects for num1 and int1 (11)

(ov2, dPENV , tArrayList<Integer>, {dELTS 7→ dPENV }) AbstractObject for field declaration v2 (12)

(tArrayList<Integer>, [dELTS ], tInteger) AbstractEdge to ArrayList’s element from virtual field (13)

(dELTS , tArrayList<Integer>) AbstractDomain to store ArrayList’s elements (14)

(oobj , dELTS , tInteger, {}) AbstractObject from virtual field on ArrayList (15)

R-CONVERT-OBJECT(otest) # R-NEW-OBJECT(otest) # RuntimeObject({otest}, dlent) (vo1)

R-CONVERT-OBJECT(onum1) # R-NEW-OBJECT(onum1) # RuntimeObject({onum1}, dSTATE) (vo2)

R-CONVERT-OBJECT(oint1) # RuntimeObject({onum1}, dSTATE) ∈ Θ and onum1 : Number

and oint1 : Integer and Integer <: Number # R-MERGE-OBJECTS(oint1)

# replace RuntimeObject({onum1}, dSTATE) with RuntimeObject({onum1, oint1}, dSTATE) (vo3)

R-CONVERT-OBJECT(odataAccess) # RuntimeObject({odataAccess}, dDATA) (vo4)

R-PULL-OBJECT(({ov2}, dPENV )) and RuntimeObject({odataAccess}, dDATA) ∈ Θ and AbstractDomain(dPENV , tDataAccess)

and aparam(odataAccess, dPENV , dENV ) # try({ov2}, dENV ) #∗ RuntimeObject({ov2}, dENV ) (vo5)

({odataAccess}, dDATA) and AbstractEdge(7) # RuntimeEdge([dDATA], tDataAccess, [dDATA, dPENV ], tArrayList<Integer>)
(ve1)

Binding dPENV 7→ dENV on (6) and R-PATH-SUBST maps [dDATA, dPENV ] to [dENV ] (newpath1)

#∗ RuntimeEdge([dDATA], tDataAccess, [dENV ], tArrayList<Integer>) (ve1.1)

({ov2}, dPENV ) and AbstractEdge on (13) # RuntimeEdge([dPENV ], tArrayList<Integer>, [dPENV , dELTS ], Integer) (ve2)

Binding dELTS 7→ dPENV on (12) and R-PATH-SUBST maps [dPENV , dELTS ] to [dPENV ] (newpath2)

#∗ RuntimeEdge([dPENV ], tArrayList<Integer>, [dPENV ], tInteger) (ve2.1)

Figure 13. Rewriting rules illustrated on the DataAccess example.

Definition: Edge Soundness. Given a Σ, S, a RuntimeGraph(Θ,
Ω) and H that fulfill the above object and domain soundness, we
state edge soundness as follows (we do not yet have a proof of this):

∀Σ ` S, ∀`1, `2 ∈ S

S[`1, i] = `2 =⇒ H[`1] = ({o1 : T1 . . .}, d1)

and H[`2] = ({o2 : T2 . . .}, d2)

and ∃RuntimeEdge([. . . , d1], T
′
1, [. . . , d2], T

′
2) ∈ Ω.

(T ′1 <: T1 or T1 <: T ′1) and (T ′2 <: T2 or T2 <: T ′2)

Proof of Object and Domain Soundness. The proof is by induc-
tion over the ownership tree. The owner of an object is set at cre-
ation time as an existing domain on an existing object, so the own-
ership relation is well-founded and has no cycles. The base case
for the induction is trivial. The top-level object in the ROG has a
unique representative in the RuntimeGraph corresponding to the
root RuntimeObject. We strengthen the inductive hypothesis (i.h.)
as follows: In a ROG, each object of runtime type C is represented

by exactly one RuntimeObject θ that merges an AbstractObject o
of type C in the RuntimeGraph.

The details are in the companion report [3]. The proof cru-
cially relies on the unification of inherited domains in the Abstract-
Graph (Fig. 14). The proof requires several lemmas which are well-
formedness rules on the RuntimeGraph. For example:
Lemma: Unique Object per Domain and Type. If there exists a
RuntimeObject θ = ({o : T, . . .}, d) and a RuntimeObject
θ′ = ({o′ : T ′, . . .}, d) with T ′ <: T or T <: T ′, then θ is
the same as θ′.
Proof. Immediate from R-MERGE-OBJECTS.

Limitations. The proof assumes that objects are created only in
locally declared domains or domain parameters and does not reflect
the existence of lent or unique [4]. Indeed, an OOG may not
reflect an object marked unique until it is assigned to a specific
domain. Thus, an inter-procedural flow analysis is needed to track
an object from its creation (at which point it is unique) until its
assignment to a specific domain. This flow analysis is not currently
implemented, so a unique object obtained from a factory method
must be annotated with the domain to which it belongs. Similarly,
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a flow analysis can determine what domain a lent object is really
in. Our implementation does not currently display objects that are
annotated with lent, except for the root object. Unless the user
requests otherwise, we purposely exclude objects that are shared
since they often add uninteresting clutter (the analysis may also
merge objects in the shared domain excessively).

5. Abstraction by Types
In addition to abstraction by ownership hierarchy, an OOG can
provide abstraction by types. We motivate these features using a
real object-oriented system, JHotDraw (www.jhotdraw.org).

JHotDraw is rich with design patterns, uses composition and
inheritance and has evolved through several versions. Version 5.3
has 200 classes and 15,000 lines of Java. We defined three top-level
domains to organize the core types as follows:
• MODEL: has instances of Drawing, Figure, Handle, etc. A
Drawing is composed of Figures. A Figure has Handles for
user interactions;

• VIEW: has instances of DrawingEditor, DrawingView, etc.;
• CONTROLLER: has instances of Tool, Command and Undoable.

A DrawingView uses a Tool to manipulate a Drawing. A
Command represents an action to be executed.

5.1 Instantiation-Based View
In JHotDraw, many types extend or implement listener interfaces
to realize the Observer design pattern. For instance, both interfaces
Command and Tool are in CONTROLLER and both extend the inter-
face ViewChangeListener.

Consider θTool = ({oTool, oV CL, . . .}, dC) and θCmd =
({oCmd, oV CL, . . .}, dC) with oCmd:Command, oTool:Tool and
oV CL:VCL. Command <: VCL and Tool <: VCL but neither Tool
<: Command nor Command <: Tool. VCL is ViewChangeListener
and dC is CONTROLLER. R-MERGE-EXISTING replaces θTool and
θCmd with θToolCmd = ({oCmd, oTool, oV CL, . . .}, dC).

As a result, the analysis merges the abstract objects for Command
and Tool into the same runtime object. In keeping with the good
practice of programming to an interface instead of an implementa-
tion, many abstract objects have interface types. The analysis that
we described until this point, produces for JHotDraw an OOG that
merges too many architecturally relevant objects (see the outcome
in the report [3]).

A key insight, however, is that there are no object creations of
interface types. So to gain some precision, we can construct the Ab-
stractGraph differently (Fig. 14). Line (c) generates a declaration-
based view (DBV) by generating abstract objects for all field and
variable declarations. In contrast, Line (d) considers only object
creation expressions and generates an instantiation-based view
(IBV), and is similar to how Rapid Type Analysis (RTA) deter-
mines a method call’s receiver during call graph construction [6].

Using an IBV, the analysis never generates an abstract object
of type ViewChangeListener. Rather, it creates abstract ob-
jects for types SelectionTool and AlignCommand. Then, the
runtime graph keeps AlignCommand and SelectionTool dis-
tinct, since there is no subtyping relation between them. Thus, an
IBV can keep Command and Tool distinct (SelectionTool <:
Tool, ViewChangeListener and AlignCommand <: Command,
ViewChangeListener).

Special Cases. Even in an IBV, the analysis must still handle
variable declarations of interface types. For example, in JHotDraw,
a CommandMenu object in domain VIEW declares a Vector<Command>,
and places the Vector’s Command objects in a domain parameter
C. Also, a virtual field indicates the presence of a Command abstract
object in Vector’s ELTS formal domain that stores the elements.
Recall that Command is an interface. So the analysis cannot pick a
more precise type for that abstract object, nor can it ignore it and

1. For each type declaration C in the program
(a) Create AbstractType t
(b) For each actual or formal domain in C

i. Create corresponding AbstractDomain d
(c) For each declaration d C′<a> o in C (DBV) or else
(d) For each creation new C′<a>(. . .) in C (IBV)

i. If C′ has no AbstractType, create t′ for C′

ii. If AbstractType t of Type C has no AbstractDo-
main d, create d

iii. Create AbstractObject o
iv. Create bindings {b . . .} from formals f of Abstract-

Type t′ to actuals a of t
v. If field declaration (in DBV) or object creation as-

signed to a field (in IBV)
A. Create AbstractEdge e from AbstractType t to

AbstractDomain a1 and AbstractType t′

2. Unify domains related in an inheritance hierarchy
(a) If C <: T , unify domains C::d and T ::d
(b) If interface I declares public domain I::d, unify with

C::d if C implements I
3. Expand generic types (perform type substitutions)
4. Synthesize AbstractEdges from array type to array element

Figure 14. Visitor to generate the AbstractGraph.

be sound, as this abstract object is pulled and carries binding infor-
mation to generate the appropriate RuntimeEdges. For instance,
the analysis pulls a Command abstract object from ELTS to a do-
main parameter C, and transitively to CONTROLLER. It also creates
a RuntimeEdge from CommandMenu to any subclass of Command
in CONTROLLER, such as RedoCommand. If the analysis were to add
a Command abstract object to the ELTS domain, this would result in
the same excessive merging as in a declaration-based view. Instead,
the analysis creates a virtual abstract object, one that gets pulled
just like any other. But the analysis excludes a virtual abstract ob-
ject from the list of objects inside an AbstractDomain — except to
avoid re-adding it to that same domain. Moreover, a virtual abstract
object does not affect object merging. Finally, when creating the
depth-limited projection of the runtime graph, the analysis omits
virtual abstract objects after they have served their purpose. For
simplicity, we exclude virtual objects from the formal system.

Finally, even when using an instantiation-based view, an object
creation expression of the form new Object() would create an ab-
stract object that would cause the analysis to merge all the objects
in that domain into one object. To avoid this problem, the abstract
graph construction synthesizes for such an abstract object the ab-
stract type of an implicit anonymous class.

5.2 Abstraction by Trivial Types
For JHotDraw, an instantiation-based view, as discussed above,
lacks abstraction because it shows objects for RedoCommand,
and NewViewCommand, as well as objects for ConnectionTool,
CreationTool, etc. What we want is to merge all Command in-
stances together and all Tool instances together, but not merge
Tool and Command instances together. For soundness, the anal-
ysis adds an edge from (or to) each object in the source (or tar-
get) path that is type compatible with the source (or target) type,
respectively. So the analysis adds an edge from CommandMenu
to RedoCommand, NewViewCommand, etc. Moreover, a Command
wraps another Command. So the resulting graph is almost fully con-
nected (See the outcome in the report [3]).

To improve abstraction and reduce clutter, we defined one
heuristic to merge abstract objects whenever they share one or
more non-trivial least upper bound (LUB) types. The resulting run-
time object has an intersection type that includes all the least upper
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bounds. This heuristic can be turned off by taking out the exist-
sNonTrivialLUB disjunct in R-AUX-COMPAT (Fig. 10).

Merging all the abstract objects in a domain into a single run-
time object of type Object would result in a sound but uninterest-
ing OOG. So the heuristic does not merge abstract objects that only
share trivial types as supertypes. Trivial types are user-configurable
and typically include Object, Cloneable and Serializable
from the Java Standard Library. Many marker interfaces that do not
declare any methods, such as RandomAccess, are good candidates.

For JHotDraw, the default trivial types produce an OOG that
still suffers from too much merging [3]. JHotDraw has its own
list of interfaces that many classes implement such as Storable
and Animatable. We added those to the list of trivial types, as
well as constant interfaces such as SwingConstants (inheriting
from a constant interface is a bad coding practice that predates
Java 1.5 static imports). We also added the listener interfaces as
trivial types. Based on the discussion above, the analysis merges
RedoCommand and NewViewCommand, because Command is their
non-trivial LUB. Similarly, ConnectionTool and CreationTool
have Tool as their non-trivial LUB. But the analysis does not
merge ConnectionTool and RedoCommand because their LUB,
ViewChangeListener, is a trivial type.

5.3 Abstraction by Design Intent Types
Abstraction by trivial types can quickly unclutter an OOG, but
is not very precise. For instance, the JHotDraw OOG based on
trivial types does not show distinct Drawing and Figure ob-
jects (Fig. 15). Presumably, both interfaces are architecturally rel-
evant. This is because the base class that implements Drawing,
StandardDrawing, extends CompositeFigure, which in turn
implements Figure. But Drawing does not extend Figure and
is not a trivial type. Merging objects based on non-trivial LUBs,
coupled with merging objects after the fact for soundness, causes
abstract objects of type Drawing and Figure to get merged in
MODEL. An object may have multiple types, but some types may
be more architecturally relevant than others. In this example,
StandardDrawing extends CompositeFigure to enable nesting
a Drawing inside another Drawing. In this case, we would like to
view a StandardDrawing object as a Drawing object, instead of
a Figure object.

To achieve this precision, the analysis also supports the follow-
ing heuristic. The user defines a list of design intent types. To de-
cide whether to merge two abstract objects o : t and o′ : t′, the
analysis finds the first types in the list of design intent types, t̂ and
t̂′, such that t <: t̂ and t′ <: t̂′. The analysis merges objects o and
o′ if t̂′ <: t̂ or t̂ <: t̂′. If the design intent type list does not include
a type for t or t′, then this heuristic does not apply. This heuristic
corresponds to the disjunct mapToSameDIT in R-AUX-COMPAT
and can also be turned-off.

For example, JHotDraw’s framework package includes ab-
stract classes and interfaces that define the core framework. We
added to the list of design intent types all the types in the framework
package and ordered them from most to least architecturally rele-
vant (Drawing appears before Figure). As a result, the analysis
merges objects of type StandardDrawing and BouncingDrawing
with objects of type Drawing into one object. It also merges objects
of type AbstractFigure, CompositeFigure, among others, with
objects of type Figure. But it keeps objects of type Drawing and
Figure distinct in MODEL, just as we desired.

6. Discussion and Related Work
Evaluation. We evaluated the analysis on several extended exam-
ples of representative medium-sized programs to answer the fol-
lowing research question: Does an OOG have a reasonable ab-

straction level or does it suffer from too much or too little merging?
The companion technical report shows various OOGs for the sub-
ject systems we studied, totalling 38 KLOC [3]. We also conducted
an on-site field study where we analyzed a 30 KLOC module from
a proprietary commercial system of over 250 KLOC. In 35 hours,
we were able to add the annotations to the module and extract a
top-level architecture for review by a developer [2].

In comparison, Rayside et al. reported that a static object graph
analysis based on RTA produced unacceptable over-approximations
for most non-trivial programs [22].

Performance. We have not yet studied the runtime complexity
of the analysis. But the performance seems satisfactory. Computing
the OOG in Fig. 15 takes less than a minute on a modest Intel Pen-
tium 4 CPU 3GHz with 1.5 GB of RAM. This time includes build-
ing the program’s abstract syntax tree to retrieve the annotations,
building the abstract graph, converting it into a runtime graph, and
then projecting it into an OOG. Using an instantiation-based view
is faster than a declaration-based view because it results in fewer
abstract objects that the analysis must manipulate.

Architectural Extraction Process. Just as there are multiple
architectural views of a system, there is no single right way to an-
notate a program. The best annotations produce a view comparable
to what an architect might draw for an architecture. Good annota-
tions minimize the number of objects in the top-level domains by
pushing more objects underneath other objects.

A developer controls the architectural extraction process as fol-
lows. First, she chooses the top-level domains. Then, she achieves
the desired number of objects in each top-level domain, through
several strategies: (a) Pushing secondary objects underneath pri-
mary objects using strict encapsulation (private domains) or logical
containment (public domains); (b) Passing low-level objects lin-
early whenever possible; and (c) Using abstraction by trivial types
or design intent types to merge fewer or more objects. Finally, she
achieves an appropriate level of visual detail by expanding or col-
lapsing the substructure of selected objects, or changing the pro-
jection depth uniformly across all objects. The analysis adds any
summary edges to account for the elided substructures.

Why Ownership Domains? The approach was presented in
terms of the ownership domains type system, where each object
contains public or private domains, and each object is in exactly
one domain. In principle, the approach also applies to ownership
type systems that assume a single context per object [8]. There is,
however, a crucial expressiveness advantage in ownership domains
that can reduce the number of objects in the top-level domains. In
an owner-as-dominator type system, any access to a child object
must go through its owning object [8]. In contrast, the ownership
domains type system supports pushing almost any object under-
neath any other object in the ownership hierarchy. A child object
may or may not be encapsulated by its parent object: a child object
can still be referenced from outside its owner if it is part of a public
domain of its parent, or if a domain parameter is linked to a pri-
vate domain [4]. Logical containment with public domains is more
flexible than the strict encapsulation of private domains, and helps
reduce the number of objects in the top-level domains.

Architectural dynamism. An OOG is an approximation of
the actual runtime architecture, one that is conservative and may
include more than actually will be there, by virtue of using a sound
static analysis. Thus, our approach seems best suited for systems
with little dynamic architectural reconfiguration.

Dynamic Analyses. There are several dynamic analyses for ex-
tracting or visualizing runtime structures [25, 10]. Static analy-
sis, which considers all possible executions, is essential to extract
sound information. DISCOTECT [25] recovers a non-hierarchical
runtime architecture from a running system, one that shows one
component for each instance created at runtime. DISCOTECT does
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Figure 15. Top-level JHotDraw OOG. The objects in the top-level domains are collapsed, except for Figure.

not require annotations, but instead, a developer maps low-level
events from runtime traces to architectural elements.

More closely related are dynamic analyses that infer runtime
ownership structures. These techniques do not require program an-
notations but assume a strict owner-as-dominator model which can-
not represent many design idioms. Rayside et al. produce matrix
displays of the ownership structure [21]. Similarly, Mitchell uses
lightweight ownership inference to examine a single heap snap-
shot rather than the entire program execution, and scales the ap-
proach to large programs through extensive graph transformation

and summarization [17]. Noble, Potter, Potanin et al. showed both
matrix and graph views of ownership structures and demonstrated
that ownership is effective at organizing runtime object structures
[11, 19]. We use the same key insight but in a static analysis that
must address additional challenges.

Language Extensions. Specifying the architecture directly in
code using language extensions simplifies the static extraction of
runtime architectures [5, 24]. The ArchJava language specifies a
architectural components directly in code, but prohibits returning
references to instances of component classes, and this requires
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re-engineering existing implementations [5]. Ownership type an-
notations support common object-oriented idioms better, and al-
low returning references to objects. Thus, our annotation-based ap-
proach seems more adoptable for existing systems [2].

Object Graph Analyses. Several static analyses produce non-
hierarchical object graphs without using annotations. PANGAEA
[26] produces a flat object graph without an alias analysis and is
unsound. WOMBLE [12] uses syntactic heuristics and abstraction
rules for container classes to obtain an object model including
multiplicities. The WOMBLE analysis is unsound and aliasing-
unaware by design. AJAX [18] uses a sound alias analysis to build
a refined object model as a conservative static approximation of the
heap graph reachable from a given set of root objects. However,
AJAX does not use ownership and produces flat object graphs.
Its output was manually post-processed to remove “lumps” with
more than seven incoming edges [18, p. 248]. AJAX’s heavyweight
but precise alias analysis does not scale to large programs. In
general, flat object graphs do not provide architectural abstraction
and do not scale, because the number of top-level objects in the
architecture increases with the program size.

Annotation-Based Systems. Lam and Rinard [14] proposed a
type system and a static analysis (which we refer to here as LR)
whereby developer-specified annotations guide the static abstrac-
tion of an object model by merging objects based on tokens. LR
supports a fixed set of statically declared global tokens, and the
result of the analysis is a graph showing which objects appear in
which tokens. Using token parameters, the same code element can
be mapped to different design elements depending on context. Un-
like ownership domains, there is a statically fixed number of to-
kens, all of which are at the top level, so LR cannot show hierar-
chy, such as listeners nested within a model object (Fig. 2(b)).
In contrast, declaring ownership domains within an object defines
a sub-architecture of contained objects, and in the case of recursive
types, the domain structure is hierarchical and unbounded in depth.
The LR paper and formal system do not mention inheritance, and
there is no proof of soundness of LR either with or without inher-
itance. LR’s only case study was an order of magnitude smaller
than JHotDraw (1.7KLOC). If we were to apply LR to JHotDraw
anyway, ignoring inheritance, it would show at least 200 objects in
the top-level tokens. In contrast, our system applies abstraction by
ownership hierarchy and by types to show an order of magnitude
fewer objects in the top-level domains.

A package in confined types [7], which track classes not in-
stances, can be considered as a package-level static ownership do-
main, and thus, is coarser than an LR token.

Shape Analysis. Our analysis creates a graph that summarizes
possible relationships among objects at runtime. Shape analysis,
e.g., [23], is related, but differs on two counts. First, shape anal-
yses are whole-program analyses that do not scale. Second, they
produce heap abstractions that show a graph consisting of nodes to
represent a set of objects and edges to represent points-to relations.
Our representation is hierarchical, whereby a set of objects is con-
tained inside a domain of another object. Hierarchy allows varying
the level of architectural abstraction (See Fig. 2(c)). Shape analysis
represents objects that are being used by the program using unique
materialized objects, while it summarizes objects that are not in
use. In contrast, our analysis, once it merges two objects in a do-
main, never separates them. So, shape analysis could produce more
precise results for small non-hierarchical graphs. But our analysis
can keep as separate two objects that are in distinct domains, be-
cause the underlying type system guarantees they can never alias.
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