A Field Study in Static Extraction of Runtime Architectures

Marwan Abi-Antoun

Jonathan Aldrich

School of Computer Science, Carnegie Mellon University
{marwan.abi-antoun, jonathan.aldrich}@cs.cmu.edu

ABSTRACT

We recently developed a static analysis to extract runtime
architectures from object-oriented programs written in ex-
isting languages. The approach relies on adding ownership
domain annotations to the code, and statically extracts a hi-
erarchical runtime architecture from an annotated program.
We present promising results from a week-long on-site
field study to evaluate the method and the tools on a 30-
KLOC module of a 250-KLOC commercial system. In a few
days, we were able to add the annotations to the module and
extract a top-level architecture for review by a developer.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms

Experimentation, Languages

Keywords

runtime architecture, architecture recovery, ownership types

1. INTRODUCTION

Software architects describe a system using different ar-
chitectural views. A code architecture or module view shows
code entities in terms of classes, packages, layers and mod-
ules. A runtime architecture or runtime view of a system
models runtime entities and their potential interactions [13].

Many tools automatically extract module views from source
code [22], but the support for runtime views is less mature
[20, 36]. Intuitively, many have preferred dynamic analyses
to extract runtime architectures. But, a dynamic analysis
extracts partial descriptions that cover interactions between
objects from a few program runs. To be most useful, an
architecture must capture a complete description of a sys-
tem’s runtime structure. This requires a static analysis that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PASTE ’08 Atlanta, Georgia USA

Copyright 2008 ACM 978-1-60558-382-2/08/11 ...$5.00.

is sound, i.e., one that reveals all entities and relations that
could possibly exist at runtime.

Previous static analyses extract low-level non-hierarchical
object graphs that do not provide architectural abstraction
[30, 24, 18, 37]. Other approaches use radical language
extensions [8, 33] or mandate architectural middleware or
frameworks [27]. To handle existing systems, an approach
must support existing languages, common design idioms,
and existing frameworks and libraries. But adding anno-
tations to clarify the design intent might be acceptable.

We have been applying ownership domain annotations for
architectural extraction [1, 4]. Ownership types were origi-
nally proposed to control aliasing [12, 7, 14], but also enable
the static extraction of runtime architectures, because they
track instances instead of types. In our architectural re-
covery method, a developer adds annotations to clarify the
architectural intent related to object encapsulation, logical
containment and architectural tiers. Using annotations to
recover design from code is not new [24]. But previous sys-
tems did not support hierarchy, and thus did not scale to
large systems at multiple levels of abstraction, nor did they
support critical language constructs like inheritance.

Our approach does have the overhead of adding annota-
tions to a program, which is currently done mostly manually.
Precise and scalable ownership inference is a separate prob-
lem and an active topic of ongoing research [26, 28].

In this paper, we present promising results from an on-site
field study to demonstrate the approach’s feasibility on real
code and users. The paper is organized as follows. Section 2
gives an overview of the approach. Section 3 discusses the
methodology we followed. Section 4 discusses the results.
We conclude with a discussion of related work in Section 5.

2. OVERVIEW

Architectural extraction maps source code entities to en-
tities in a high-level model. Consider a Document-View sys-
tem where a BarChart and a PieChart render a Model.

We used AgileJ to extract a module view from the pro-
gram [6]. Fig. 1(a) shows classes, inheritance and association
relations. For instance, classes BarChart and Model imple-
ment a Listener interface. The view also shows associa-
tions from Model and BaseChart to Listener. But it does
not explain the instance structure of the application. For
instance, it is not clear if a Model object and a BaseChart
object share the same Listener object at runtime. It is also
unclear whether instances of PieChart and BarChart, which
inherit from BaseChart, share one Listener object.

At runtime, BarChart and Model objects each contain a

List of Listener objects. Moreover, the Listener object
inside a list List<Listener> maps to multiple design ele-
ments, based on the context (Fig. 1(b)). For example, in-
side a Model object, a list element of type Listener refers
to a BaseChart object or one of its subclasses. But inside
a BaseChart object, a list element of type Listener refers
to a Model object. In Fig. 1(b), dashed white-filled boxes
represent runtime tiers. Solid-filled boxes represent objects.
Solid edges represent field references between objects.

An analysis for object-oriented code must handle inheri-
tance. Typically, PieChart and BarChart extend BaseChart,
and BaseChart declares a listeners field. In addition, there
is possible aliasing. In Fig. 1(b), if the listeners fields of
BarChart and Model referred to the same object at runtime,
the architecture would be deceptive; a correct architecture
must show them as one object.

Conceptually, each view has a separate listeners object,
and the listeners object of a pieChart is distinct from that
of a barChart (Fig. 1(c)). So we may not want listeners
in the top-level tiers. In a runtime view, we model these
lists as part of a barChart or model. Fig. 1(c) uses the
nesting of boxes to indicate hierarchical containment. The
thick dashed borders indicate that these instances are owned
or strictly encapsulated by their outer objects.

Ideally, an architecture “can be read in 30 seconds, in 3
minutes, and in 30 minutes” [23]. Hierarchy enables eliding
information at any level to show overviews of the system
architecture at various levels of abstraction [38]. The (+)
symbol on an object’s label indicates that its sub-structure
is elided. Dotted edges summarize any solid edges by lifting
them from elided objects to visible ones (Fig. 1(d)).

Ownership Domains. An ownership domain is a con-
ceptual group of objects with an explicit name and explicit
policies that govern how it can reference objects in other
domains. Each object belongs to a single ownership domain
that does not change at runtime.

Fig. 2 shows the annotations that a developer might add
to an implementation of the above example. The actual
system uses existing language support for annotations [2],
but here, we use a simplified syntax that extends the lan-
guage. A developer indicates what domain an object is part
of by annotating each reference to that object in the pro-
gram (Line 19). Domain names are arbitrary, and ideally,
convey design intent. We often use capital letters to distin-
guish domains from other program identifiers.

Ownership domains may be declared at the top level of
the application (Line 17) or within an object (Line 4). Each
object can declare one or more public or private domains
to hold its internal objects, thus supporting hierarchy. A
private domain provides strict encapsulation. But a public
domain provides logical containment, and makes its objects
accessible to any object that can access the outer object [7].
An object model can access objects in a domain VIEW by
declaring on the class of model a formal domain parameter,
e.g., V (Line 11), and binding that formal domain parameter
to the actual domain VIEW (Line 19).

Static Analysis. We developed a static analysis to ex-
tract from an annotated program a hierarchical runtime ob-
ject graph, one that provides architectural abstraction by
ownership hierarchy and by types [1, 4]. Thus, only archi-
tecturally relevant objects appear in the top-level domains.
Each of those objects has nested domains and objects rep-
resenting sub-architectures, and so on, until low-level less

: |
! |

| barChart:
|| BarChart !
,,,,,,,,,,,,,, v |
I | |
'l model: i listeners: A‘ pieChart: | L listeners: !
I Model List<Listener> [PieChart List<Listener> :
: 1! !
DOCUMEI VIEW |

1

1 listeners: 1

barChart: b List<Listener> |1
1

1

BarChart 1
Vel 1 / OWNED]

listeners:

1

listeners: pieChart: ' > 1
List<Listener> |1
1

1

1

1oy
List<Listener> [l | PieChart

1

1

|
|
Il barChart(+): ||
! BarChart |
T=——--= .'-I‘ 4 (Listener) |
| 1k |
|| model(+): 401 |

Model ||, p B

|) 1% pieChart(+): |
| (Listenen) Yy |- “piechart |,
| | (Listener) |
L DOCUMENT || .
| VIEW |

(d) Overview architecture.
Figure 1: A Document-View architecture.

architecturally relevant objects are reached. The architec-
ture collapses nodes based on the ownership structure, not
according to where objects were declared in the program,
some naming convention, or a graph clustering algorithm.

3. SETUP AND METHODOLOGY

A field study is a generally accepted research method to
evaluate how well a software tool or method works with real
code and users [21]. In our field study, we extracted the
architecture of a portion of a large Java system. We se-
lected a target portion of the system, communicated with
the original developers of the code to understand their de-
sign intent, added annotations to the code, typechecked the
annotations, ran our static analysis to extract an architec-

© W N v W N e

R R R oe
S

15
16
17
18
19
20
21
22

interface Listener { }
class BaseChart<M> // Declare domain parameter M
implements Listener {
domain OWNED; // Declare protected domain OWNED
// Declare reference to List object in OWNED
// Inner annotation M is for the list elements
OWNED List<M Listener> listeners;

class BarChart<M> extends BaseChart<M> { }
class PieChart<M> extends BaseChart<M> { }
class Model<V> implements Listener {
domain OWNED;
// Inner annotation V is for the list elements
OWNED List<V Listener> listeners;
}
class Main {
domain DOCUMENT, VIEW; // Top-level domains
// Bind domain parameter V to actual domain VIEW
DOCUMENT Model<VIEW> model;
VIEW BarChart<DOCUMENT> barChart;
VIEW PieChart<DOCUMENT> pieChart;
}

Figure 2: Document-View system with annotations.

ture, and showed snapshots to the developers.

Some of the research questions we wanted this case study
to help answer include:

e How to annotate a real object-oriented system? And
how much effort will it take?

e Can one add annotations for the top-level architecture,
then extend those annotations down?

e How can we improve the usability of the tools?

We refer to the person who conducted the field study, this
paper’s first author, as the experimenter. The developer is
the person who was familiar with the code being analyzed.

Pilot Constraints. Our tools consist of plugins in the
Eclipse Java development environment. So we required a
module that is Java-based. Since we were adding the an-
notations manually, we required a module under 50 KLOC.
In earlier evaluations, we sometimes refactored the subject
systems while adding the annotations [4]. Here, we wanted
to extract the as-is architecture. We also did not want to
explain the annotations or the static analysis to the devel-
opers, nor did we expect to involve them with the tools.

The Plan. Most architecture recovery starts by gath-
ering or eliciting documentation from developers who are
familiar with the code. Ideally, a developer would docu-
ment the as-designed runtime architecture, but realistically,
we knew that we may have to settle for a class diagram.

Data Collection. The experimenter measured the effort
by keeping track of the different activities in a time log, and
measured the end-to-end time, minus interruptions. He also
kept a log of annotation cases that revealed facts about the
code such as representation exposure or tight coupling.

The experimenter kept track of the iterations, and what
he changed between iterations, such as changing the settings
or inputs to the tools. He saved intermediate snapshots
of the extracted architecture. He also wrote detailed notes
to simulate the thinkaloud protocol (he could not actually
speak as he was sitting with others in an open-floor space).
After the study, we used the Eclipse history data for each
file to analyze how the annotations evolved.

Subject Selection. The experimenter ran the jMetra
[17] code measurement tool on the Java code base, and iden-
tified a module of around 30KLOC, excluding unit test code,

|—| can, bl tanls

Ibtable
rmodel
1 =] j I action
[=] wiew
renderer |-*—i-| * |

High-level module view, obtained using Lattix
LDM [25]. A box represents a Java package.

— - -a .H-'Locncl:_‘_ """"

IDATA '@ . T T T e e -

 __ N e | |‘L |
| MODEL Ty Ut

(b) A 30-second high-level runtime architecture.
The dotted edges summarize inter-tier references.

Figure 3: High-level module and runtime views.

which we refer to as LbGrid. LbGrid is a multi-dimensional
feature-rich grid control that consists of around 300 classes
(jMetra includes only static inner classes in the class count,
and LbGrid uses inner classes extensively).

In previous evaluations, we used code bases developed
prior to Java 1.5 and refactored them to use generics to
improve the precision of the analysis [4]. In this case, the
code already used generic types. As a bonus, a developer
who was familiar with that module would be available.

Static Analysis. At no time during the study did the
experimenter run the system. That would have required
an elaborate setup of a complex client-server system, and
training on how to use the system to get good coverage. So
using static analysis simplified the setup considerably.

Plan vs. Actual. The study did not go exactly as
planned. The developer familiar with LbGrid was not avail-
able on the first and the last days of the study. Generally,
the experimenter had limited access to the developer. We
estimate the developer spent around 4 hours, including the
initial meeting, designing and discussing the code architec-
ture, answering occasional questions, examining snapshots
and responding to our emails.

Target Architecture. The experimenter met with the
developer for two hours, and gave him an overview of the ar-
chitectural views we were extracting. The developer said he
used and liked tools that extracted class diagrams from code.
The experimenter asked the developer to draw the LbGrid
as-designed runtime architecture. The experimenter wanted
to use the as-designed architecture as a guide to add the an-
notations, by following the same top-level architectural tiers
and the same architectural decomposition. Unsurprisingly,
the developer drew an abstracted class diagram showing the
core types. Due to space limits, the developer’s diagram and
the extracted architecture are in an extended paper [3].

We now discuss the process the experimenter followed to
annotate LbGrid and extract its runtime architecture.

Isolating the Module. The experimenter set up stop-
analysis configuration files to analyze only the compilation

units from a list of selected packages and exclude others.

Tool Support. The experimenter used a tool to gen-
erate initial default ownership domain annotations for the
selected Java files [2]. He then completed the annotations
mostly manually, as we discuss in the next section. At times,
he used a utility to globally find and replace annotations
across several files. He used mainly two tools. First, a type-
checker validates the annotations and displays warnings in
the Eclipse problem window. A second plugin extracts a
hierarchical runtime architecture.

Adding Annotations. The best annotations produce a
view comparable to what an architect might draw for an ar-
chitecture. Just as there are multiple architectural views of
a system, there is no single right way to annotate a program.

Because the developer did not draw an as-designed archi-
tecture, the experimenter studied the developer’s diagram
and suggested organizing the runtime architecture accord-
ing to the following top-level domains: UI, MODEL, LOGIC and
DATA. The developer confirmed that the proposed architec-
tural tiers seemed reasonable. Another senior developer who
is familiar with other parts of the system also agreed with
this high-level organization of the LbGrid architecture.

Then, the experimenter started mapping objects to do-
mains. As a first approximation, he mapped types to do-
mains. Of course, not all the instances of a type, such as
List, always appear in the same domain. Also, LbGrid has
several classes that have single instances, e.g., Workspace. In
many cases, he used the package declaration as a guide. For
instance, an instance of a class from a data package often
belonged to the DATA tier. The trickier cases were instances
of classes from nondescript utility packages that gave no in-
dication about which runtime tier they belonged to. The
experimenter organized the core types as follows:

e UI: instances of LbTable, etc.;

e MODEL: instances of LbTableModel, etc.;

e LOGIC: has instances of PivotManager, etc.;

e DATA: has instances of Workspace, Predicate, etc.

Once the experimenter figured out the top-level domains,
he propagated them as domain parameters, as needed, using
the mnemonic domain parameter names: U for UI, M for
MODEL, L for LOGIC, and D for DATA.

The annotation system supports partially annotating the
Java Standard Library (JDK), using external files [2]. The
experimenter reused from previous evaluations the external
files for the standard containers such as List, and set the
annotations for elements stored inside those containers. For
instance, on lines 7 and 14 (Fig. 2), the inner annotations are
for the List elements. Finally, he specified partial annota-
tions on the packages that the LbGrid code references, but
that the stop-analysis configuration files exclude from the
analysis. In a few cases, he used virtual fields to summarize
code that the analysis did not fully understand [2].

Typechecking the Annotations. The experimenter
followed an iterative process. After each round of annota-
tions, he ran the typechecker, examined the warnings, and
addressed them from the most to the least important ones.

Extracting Architectures. The extraction tool works
in the presence of annotation warnings, but warns that the
extracted architecture may not reflect all objects and rela-
tions. In the early iterations, we placed most objects in one
of the domain parameters, U, M, etc. Since each domain pa-
rameter was transitively bound to a top-level domain, e.g.,
U to UI, M to MODEL, these early architectures showed many

objects in the top-level domains. But these early diagrams
helped the experimenter refine the annotations and move a
few objects between the top-level domains. In later itera-
tions, he defined several private and public domains, and
moved secondary several objects from a top-level domain to
a private or public domain of a primary object.

Refining the Annotations. Our approach achieves the
desired number of objects in each top-level domain, primar-
ily through abstraction by ownership hierarchy. The strate-
gies include: (a) Using the strict encapsulation of private do-
mains; (b) Using logical containment with public domains;
(c) Passing low-level objects linearly. In addition, one can
reduce clutter further and use abstraction by types, which
merges fewer or more objects, in a given domain, based on
the architectural relevance of their declared types [4].

A rule of thumb in architectural documentation is to have
5 to 7 components per tier [23]. So the experimenter followed
one of the above strategies to minimize the number of top-
level objects and the number of annotation warnings.

The experimenter identified encapsulated objects that are
used only inside an object and not returned by any accessor
(Strategy (a)) and placed them in private domains. In some
cases, specifying a strict encapsulation to avoid the represen-
tation exposure required a small change to the code, namely,
to return a copy of an internal list instead of an alias.

He applied strategy (c) when a method performed a query,
allocated a container to store the query result objects, and
then another object iterated the container elements then
discarded the container without storing a reference to it.

The developer’s feedback helped the experimenter define
several public domains with architecturally meaningful ob-
jects (Strategy (b)). Using logical containment often in-
volved only localized changes to the annotations. For in-
stance, the public domain RENDERERS on LbTable holds ob-
jects of type TextCellRenderer and ColorCellRenderer.
The EDITORS domain holds objects of type TextCellEditor
and ColorCellEditor. In contrast, the module view shows
all these types in one renderer package (Fig. 3(a)).

Questions to Developer. The experimenter had lim-
ited interaction with the developer. Occasionally, he asked
the developer the following questions. Does an instance of
type T belong to tier D? Is object X in tier D conceptually
part of object Y, so X can be pushed down underneath Y?

He also asked the developer to identify the root object
from which to derive the runtime architecture. The devel-
oper pointed him to a unit test class.

4. FIELD STUDY RESULTS

Quantitative Data. Of the time spent on-site, the ex-
perimenter spent about 30 hours adding the annotations,
typechecking them, and examining snapshots of the extracted
architecture. After the experimenter returned from the field
trip, the developer emailed him some comments on a snap-
shot of the architecture. The experimenter spent another
5 hours adjusting the annotations to incorporate the de-
veloper’s suggestions and address high-priority annotation
warnings. At that point, the top-level architecture still did
not fit on one letter-size readable page, such as the devel-
oper’s code architecture (see appendix [3]). And there were
still around 4,000 annotation warnings, most of them minor.

Qualitative Data. We observed the following facts.
The developer understood assigning objects to run-
time tiers. The developer seemed comfortable thinking

with a granularity coarser than an object or a class. He
drew layers in his diagram that roughly correspond to pack-
ages, similarly to a high-level module view (Fig. 3(a)). He
understood mapping runtime objects to tiers, and even sug-
gested moving some objects from one tier to another.

The developer grasped the intuition behind abstrac-
tion by ownership hierarchy, namely, that the goal is to
only show primary objects in the top-level tiers:

“The following are too low-level to be at the outer-

most tier: CellPosition, ...”
The key abstraction mechanism in our approach is to push
secondary objects underneath primary objects. The devel-
oper understood that. For example, he recommended ob-
jects of type TableHeaderGroup and TableHeaderGridPath
be pushed underneath the LbTableModel object in the MODEL
tier. When provided with printouts of the extracted archi-
tecture, he expressed interest in viewing an object’s sub-
structure. At the time of the study, we did not have a
standalone viewer. Since then, we implemented an interac-
tive viewer that allows drilling into an object’s substructure,
zooming, scrolling and panning.

He noticed when a top-level domain showed many objects:

“All components in DATA are also too low-level to be
at the outermost tier, but I can’t think of a larger
component that you can expand to get to them. Not
sure how to represent this.”
To address the developer’s last comment about the DATA

tier, it is possible to elide a domain’s structure, as in Fig. 3(b).

The tool currently shows summary edges between collapsed
domains. In future work, we will implement a feature to
show edges between an object and a collapsed domain.

The developer understood object merging. By de-
sign, our runtime architecture conservatively maps to one
object all the objects within a domain that may alias, based
on their type information. For instance, objects in the VIEW
domain referenced by the Listener interface, the base class
AbstractChart or its concrete subclass BarChart, are merged
into a BarChart object, because they may alias (Fig. 1(c)).
The ownership domains type system guarantees that two
objects in different domains can never alias, however.

Riehle posited that designers often use the following tech-
niques to abstract their code architectures. They merge in-
terface and abstract implementation class — although im-
portant for code reuse, such a code factoring is often unim-
portant from a design standpoint. They also subsume simi-
lar classes under representative classes, to avoid the clutter
of showing many similar subclasses that vary in minor as-
pects [32, pp.139-140]. Indeed, the developer seems to have
used the above techniques in his own class diagram [3]. So
it is unsurprising that these heuristics seemed also intuitive
in a runtime view. However, our approach achieves similar
results by merging objects in a domain based on their type,
to soundly handle possible aliasing.

The extracted architecture shed some light into dark
corners of the system. Upon examining the extracted ar-
chitecture, the developer identified several classes that were
candidates for deletion.

The developer seemed unsure about certain object
communication. Developers often have a conceptual model
of their architecture that is mostly accurate, but may be a
simplification of reality [29, 8]. He drew some connections
with question marks. The extracted architecture might help
him confirm the presence or absence of communication.

A runtime architecture may help with certain coding
tasks, but not with others. The developer was skeptical
of the runtime architecture (we recorded his opinion below
before we gave him a standalone interactive viewer):

“To step back a little and look at the diagram itself,
so far, I can’t see the value of a runtime view. I
suspect that this will make more sense if I were to be
able to drill down into the components. Or do you
think that I should be able to see something in the
outermost tier itself?”

To address the developer’s comment, we showed him how
hierarchy enables obtaining a high-level runtime architec-
ture. For example, Fig. 3(b) makes explicit several global
structural constraints that are implicit in the code, e.g., that
objects in DATA do not reference objects in MODEL.

When reasoning about modifiability, a code architecture
may be more helpful than a runtime architecture. The de-
veloper may have been focused on such tasks because he
drew a detailed class diagram mostly from memory, and re-
ferred to Eclipse only occasionally to verify the name of a
type. He seemed apologetic about the current design having
many subclasses and a parallel inheritance hierarchy. Since
he was very familiar with the LbGrid code, he did not im-
mediately see the value of a runtime architecture.

We posit that because the runtime architecture abstracts
away the factoring into interfaces, base classes and sub-
classes, it may actually be simpler to explain to someone
completely unfamiliar with the code, such as a new hire.

A runtime architecture can help explain listeners.
A runtime architecture can help answer questions such as:
What instances point to what other instances? As a re-
sult, a runtime view can help explain what objects get no-
tified during a change notification. In many cases, UML
class diagrams or call graphs do not help answer such ques-
tions, because they do not show instances. For example,
Figs. 1(c),1(d) highlights the reference structure between
pieChart, barChart and model better than Fig. 1(a).

LbGrid uses listeners heavily. Several classes have lists
of listeners and implement various listener interfaces. Nei-
ther the developer’s diagram nor an automatically gener-
ated class diagram, explain how the listeners work in Lb-
Grid. We posit that this aspect of the architecture would
be particularly challenging for a new hire. In future work,
we will identify LbGrid bug reports or enhancement requests
that require understanding the listener architecture, and for
which the extracted runtime architecture would be useful.
Picking the right labels for architectural elements is
crucial, to avoid obtaining a model that developers do not
recognize [29]. The developer insisted on specific labels for
the various tiers, e.g., use UIMODEL instead of MODEL (we still
use MODEL here for consistency with prior documentation).
He always looked for instances of the core types:

“Where is GridPanel? I don’t see it here.”

Each object in an extracted architecture merges at least
one field or variable reference declared in the program. An
object might have multiple types, and the analysis picks one
of those types as the label. We already provide a feature to
search by name or by type for an object in the hierarchy
of objects that constitutes an architecture. The tool can
also trace each node or edge in an architecture to a set of
nodes from the program’s abstract syntax tree, down to the
corresponding lines of code in the program.

In response to the developer’s feedback, we implemented
a feature to allow the user to specify a list of labeling types.

For example, in Fig. 1(d), the decoration (Listener) is
added to an object’s label, if it merges at least one object of
that type, as is the case for pieChart, barChart and model.

The developer expected to see multiplicities on the
runtime architecture. Indeed, the developer’s diagram
has specific multiplicities on several associations. Many
UML reverse engineering tools also show multiplicities. The
developer suggested that this information would be useful.

The developer seemed to favor an unsound abstracted
task-specific view over a sound runtime architecture.
A tool that extracts a class diagram automatically would
show at least 300 classes for LbGrid, organized by packages.
However, the developer’s diagram had many fewer types.
So the question is whether a runtime architecture should
soundly reflect all objects and relations that exist at run-
time, or only those that are of current interest to the devel-
oper. In our principled approach, the primary means of ab-
straction is through ownership hierarchy. One changes the
annotations to push secondary objects under primary ob-
jects, and sometimes changes the code to implement strict
instance encapsulation. An unprincipled approach would
allow eliding any object or domain in the extracted archi-
tecture. In future work, we will consider ways to make a
runtime architecture more concretely reflect the types that
are of interest to a developer, while maintaining soundness.

We identify the following confounding factors.

Experimenter Bias. The experimenter understood own-
ership domain annotations and designed several tools that
were used in the field study. However, a typechecker kept
him honest, i.e., he could not just insert any annotation or
manipulate the extracted architectures.

Code Unfamiliarity. The experimenter was completely
unfamiliar with the code. A developer who is familiar with
the code could perhaps add better annotations faster.

Developer Motivation. The field study occurred in a
workweek during which the developers were busy meeting a
product ship deadline. As a result, they were less motivated
to help the experimenter.

S. RELATED WORK

Architectural Recovery. Many architectural recovery
approaches use information such as naming conventions and
directory structures [31], and obtain abstracted code archi-
tectures, not runtime architectures [10]. Many studies use
trial and error with graph clustering algorithms [19, 11] or
various sources of information extrinsic to the code. In our
study, we only added annotations, typechecked them, and
occasionally, discussed a snapshot with a developer. The
measurable success criteria in our approach are to first min-
imize the number of objects in the top-level domains, and
second, to minimize the remaining annotation warnings.

Several dynamic analyses have been proposed [35, 34, 16].
Di1SCOTECT [34] recovers a non-hierarchical runtime archi-
tecture from a running program, one that shows one com-
ponent for each instance created at runtime. A dynamic
analysis produces a partial description for particular inputs
and exercised use cases. In our approach, the remaining an-
notation warnings give some indication of how soundly the
extracted architecture represents the runtime structure.

Object Graph Analyses. Several static analyses pro-
duce non-hierarchical object graphs without using annota-
tions. PANGAEA [37] produces a flat object graph without

an alias analysis and is unsound. WOMBLE [18] uses syn-
tactic heuristics and abstraction rules for container classes
to obtain an unsound object model, which has multiplic-
ities. AJAX [30] uses an alias analysis to build a refined
object model as a conservative static approximation of the
heap graph reachable from a given set of root objects. How-
ever, AJAX does not use ownership and produces flat object
graphs. In general, flat objects graphs do not provide archi-
tectural abstraction or scale, because the number of top-level
objects in the architecture increases with the program size.
Annotation-Based Systems. Lam and Rinard [24]
proposed a type system and a static analysis (which we re-
fer to here as LR) whereby developer-specified annotations
guide the static abstraction of an object model by merging
objects based on tokens. LR supports a fixed set of stati-
cally declared global tokens, and the result of their analysis
is showing a graph with which objects appear in which to-
kens. Using token parameters, the same code element can be
mapped to different design elements depending on context.
Domains are declared on a class, but fresh instances of these
domains are created for each instance of that class. LR uses
a statically fixed number of tokens, all of which are at the
top level, so LR cannot show hierarchy such as a listeners
object nested within a Model object (Fig. 1(c)). LR’s only
case study was on one 1.7KLOC module. If we were apply
LR to LbGrid, LR would show at least 300 objects in the
top-level tokens. In contrast, our system applies abstrac-
tion by ownership hierarchy and types to show an order of
magnitude fewer objects in the top-level domains.
Confined types track classes not instances [9], and have
a lower annotation overhead than ownership types. But a
package in confined types is roughly a package-level static
ownership domain and thus coarser than a token.
Language Extensions. The first author previously re-
engineered a 15-KLOC Java program to ArchJava [5]. The
re-engineering required code changes, such as making fields
be private (a component class cannot have public fields).
ArchJava also prohibits returning references to instances of
component classes, which required more invasive changes
such as changing the application’s initialization order [5].
We do not believe it would have been feasible to re-engineer
the LbGrid module in the same few days that it took to add
the ownership domain annotations, even after accounting
for possible tool and language familiarity. Thus, there is
compelling evidence that an annotation-based approach is
likely more adoptable than radical language extensions such
as ArchJava or others [8, 33|, at least for existing systems.
Diagram Evaluation. Several researchers have evalu-
ated empirically the usefulness of various design diagrams,
e.g., [15]. Unfortunately, these evaluations mostly focus on
module views such as class diagrams, or partial runtime
views such as sequence diagrams. We hope to see more
evaluations of runtime architectures. For instance, Gamma
et al. used object diagrams which show object instances ex-
clusively, to explain many of the standard design patterns.

Acknowledgments. Funding was provided by NSF CA-

REER award CCF-0546550, DARPA contract HR00110710019,

and LogicBlox Inc. The authors also thank Molham Aref
and the developers from LogicBlox Inc., for hosting the
weeklong on-site field study. Brad A. Myers and William
Scherlis offered useful advice on conducting a field study.
Thomas LaToza, Brad A. Myers and Christopher Scaffidi
gave us helpful comments on earlier drafts of this paper.

6.
1]

REFERENCES

M. Abi-Antoun and J. Aldrich. Compile-Time Views
of Execution Structure Based on Ownership. In Intl.
Workshop on Aliasing, Confinement and Ownership in
Object-Oriented Programming, pages 81-92, 2007.

M. Abi-Antoun and J. Aldrich. Ownership Domains in
the Real World. In Intl. Workshop on Aliasing,
Confinement and Ownership in Object-Oriented
Programming, pages 93—-104, 2007.

M. Abi-Antoun and J. Aldrich. A Field Study in
Static Extraction of Runtime Architectures. Technical
Report CMU-ISR-08-133, Carnegie Mellon University,
June 2008. Extended version of this paper.

M. Abi-Antoun and J. Aldrich. Static Extraction of
Sound Hierarchical Runtime Object Graphs. Technical
Report CMU-ISR-08-127, Carnegie Mellon University,
2008.

M. Abi-Antoun, J. Aldrich, and W. Coelho. A Case
Study in Re-engineering to Enforce Architectural
Control Flow and Data Sharing. J. Systems and
Software, 80(2):240-264, 2007.

Agile]J. StructureViews. www.agilej.com, 2008.

J. Aldrich and C. Chambers. Ownership Domains:
Separating Aliasing Policy from Mechanism. In
ECOOP, pages 1-25, 2004.

J. Aldrich, C. Chambers, and D. Notkin. ArchJava:
Connecting Software Architecture to Implementation.
In ICSE, pages 187-197, 2002.

B. Bokowski and J. Vitek. Confined Types. In
OOPSLA, November 1999.

I. T. Bowman, R. C. Holt, and N. V. Brewster. Linux
as a Case Study: its Extracted Software Architecture.
In ICSE, pages 555-563, 1999.

A. Christl, R. Koschke, and M.-A. Storey. Equipping
the Reflexion Method with Automated Clustering. In
WCRE, 2005.

D. Clarke, J. Potter, and J. Noble. Ownership Types
for Flexible Alias Protection. In OOPSLA, 1998.

P. Clements et al. Documenting Software Architecture.
Addison-Wesley, 2003.

W. Dietl and P. Miiller. Universes: Lightweight
Ownership for JML. Journal of Object Technology,
4(8), 2005.

W. Dzidek, E. Arisholm, and L. Briand. A Realistic
Empirical Evaluation of the Costs and Benefits of
UML in Software Maintenance. TSE, 34(3):407-432,
May-June 2008.

C. Flanagan and S. N. Freund. Dynamic Architecture
Extraction. In Workshop on Formal Approaches to
Testing and Runtime Verification, August 2006.
hyperCision Inc. jMetra. www.hypercision.com, 2008.
D. Jackson and A. Waingold. Lightweight Extraction
of Object Models from Bytecode. TSE, 27(2), 2001.
R. Kazman and S. J. Carriére. Playing Detective:
Reconstructing Software Architecture from Available
Evidence. Automated Softw. Eng., 6(2), 1999.

D. Kirk, M. Roper, and M. Wood. Identifying and
Addressing Problems in Object-Oriented Framework
Reuse. Empirical Software Engineering, 2006.

B. Kitchenham, L. Pickard, and S. L. Pfleeger. Case
studies for method and tool evaluation. IEEE

[28]

[29]

[30]

31]

32]

[33]

Software, 12(4):52-62, 1995.

R. Kollman, P. Selonen, E. Stroulia, T. Systé, and

A. Zundorf. A Study on the Current State of the Art
in Tool-Supported UML-Based Static Reverse
Engineering. In WCRE, pages 22-32, 2002.

H. Koning, C. Dormann, and H. van Vliet. Practical
Guidelines for the Readability of IT-Architecture
Diagrams. In SIGDOC, 2002.

P. Lam and M. Rinard. A Type System and Analysis
for the Automatic Extraction and Enforcement of
Design Information. In ECOOP, pages 275-302, 2003.
Lattix Inc. LDM tool. www.lattix.com, 2008.

Y. Liu and S. Smith. Pedigree Types. In Intl.
Workshop on Aliasing, Confinement and Ownership in
Object-Oriented Programming, 2008.

S. Malek, M. Mikic-Rakic, and N. Medvidovic. A
Style-Aware Architectural Middleware for
Resource-Constrained, Distributed Systems. TSE,
31(3):256-272, 2005.

A. Milanova. Static Inference of Universe Types. In
Intl. Workshop on Aliasing, Confinement and
Ouwnership in Object-Oriented Programming, 2008.

G. C. Murphy, D. Notkin, and K. J. Sullivan. Software
Reflexion Models: Bridging the Gap between Design
and Implementation. T'SE, 27(4):364-380, 2001.

R. W. O’Callahan. Generalized Aliasing as a Basis for
Program Analysis Tools. PhD thesis, Carnegie Mellon
University, 2001.

T. Richner and S. Ducasse. Recovering High-Level
Views of Object-Oriented Applications from Static
and Dynamic Information. In ICSM, 1999.

D. Riehle. Framework Design: a Role Modeling
Approach. PhD thesis, Federal Institute of Technology
Zurich, 2000.

J. Schafer, M. Reitz, J.-M. Gaillourdet, and

A. Poetzsch-Heffter. Linking Programs to
Architectures: An Object-Oriented Hierarchical
Software Model based on Boxes. In The Common
Component Modeling Example: Comparing Software
Component Models, 2008.

B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and
H. Yan. Discovering Architectures from Running
Systems. TSE, 32(7):454-466, 2006.

M. Sefika, A. Sane, and R. Campbell. Architecture
Oriented Visualization. In OOPSLA, 1996.

F. Shull, F. Lanubile, and V. R. Basili. Investigating
Reading Techniques for Object-Oriented Framework
Learning. TSE, 26(11):1101-1118, 2000.

A. Spiegel. Automatic Distribution of Object-Oriented
Programs. PhD thesis, FU Berlin, 2002.

M.-A. D. Storey, F. D. Fracchia, and H. A. Miiller.
Cognitive Design Elements to Support the
Construction of a Mental Model During Software
Exploration. J. Systems & Software, 44(3), 1999.

