
Compile-Time Execution Structure of Object-Oriented Programs
with Practical Ownership Domain Annotations

Marwan Abi-Antoun
Carnegie Mellon University

marwan.abi-antoun@cs.cmu.edu

Abstract
Ownership domain annotations express and enforce design
intent related to object encapsulation and communication
directly in real object-oriented code.

First, this work will make the ownership domains type
system more expressive. Second, ownership domain annota-
tions enable obtaining, at compile time, the execution struc-
ture of an annotated program. The execution structure is
sound, hierarchical and scales to large programs. It also
conveys more design intent that existing compile-time ap-
proaches that do not rely on ownership annotations. Finally,
tools will infer these annotations semi-automatically at com-
pile time, once a developer provides the design intent.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Patterns

General Terms Design, Documentation, Experimentation

Keywords ownership types, ownership domains, execution
structure, runtime structure, dynamic structure

1. Problem Description
To correctly modify an object-oriented program, a developer
often needs to understand both the code structure (static hi-
erarchies of classes) and the execution structure (dynamic
networks of communicating objects). Several tools can gen-
erate the code structure of a program at compile-time.

Naturally, one way to obtain the execution structure is
to use dynamic analyses [12, 7]. But these analyses suffer
from several problems. First, runtime heap information does
not convey design intent. Second, a dynamic analysis may
not be repeatable, i.e., changing the inputs or exercising
different use cases might produce different results. Finally,
some analyses carry a significant runtime overhead [7].

Copyright is held by the author/owner(s).
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-865-7/07/0010.

Obtaining a sound execution structure of an object-
oriented program at compile-time is more challenging due
to aliasing, precision and scalability issues. The execution
structure is sound if it does not fail to reveal relationships
that may actually exist at runtime, up to a minimal set of
assumptions regarding reflective code, external libraries,
etc. Existing compile-time approaches use sound but heavy-
weight and thus unscalable analyses [11] or use unsound
analyses [9]. All produce non-hierarchical object graphs.

2. Research Statement
Hypothesis #1: Flexible ownership domain annotations
can express and enforce design intent related to encapsu-
lation and communication in object-oriented programs.
Ownership domains [3] divide objects into conceptual groups
called domains. Each object is in a single ownership domain
and each object can in turn declare one or more public or
private domains to hold its internal objects, thus supporting
hierarchy. An ownership domain can convey design intent
and represent an architectural tier, e.g., the Model tier in the
Model-View-Controller (MVC) design pattern.

Preliminary Work. We annotated two Java programs [2]
consisting of 15,000 lines of code each. While applying
these annotations, we identified limitations in the expres-
siveness of ownership domains [2]. This work will modify
the type system to address these limitations.

Expected Contribution #1: We plan to make ownership
domain annotations more expressive and more flexible. The
modified set of annotations will be implemented and evalu-
ated using case studies on non-trivial programs.

Hypothesis #2: Ownership domain annotations enable
a sound approximation of the system’s execution struc-
ture at compile-time, the Ownership Object Graph, that
is hierarchical and conveys design intent.
By grouping objects into clusters called domains, ownership
domain annotations enable an abstraction of the structure
of an application that is coarser than an object, and pro-
mote both high-level understanding and detail using hierar-
chy and clustering [1]. The ownership domains type system
also guarantees that two object instances in two different do-
mains cannot be aliased, so the analysis can distinguish be-

919



tween instances of the same class in different domains that
would be merged in a class diagram. This is more precise
than aliasing-unaware analyses [9] and more scalable than
heavyweight alias analyses [11]. Since the annotations are
specified by a developer, they can convey more design intent
than arbitrary aliasing information obtained using a static
analysis that does not rely on annotations [13]. Finally, un-
like approaches that require annotations just to obtain a visu-
alization [10], ownership annotations enforce useful object
encapsulation properties [5, 3, 6].

The novel contribution here is obtaining an execution
structure based on ownership domain annotations. Owner-
ship annotations give important information about the pro-
gram’s runtime object structures, at compile time. Indeed,
previous dynamic analyses have used ownership to organize
a program’s execution structure. But unlike dynamic analy-
ses which show the execution structure for a given program
run, a sound compile-time execution structure shows owner-
ship relations that are invariant over all program runs.

Preliminary Work. We have formally defined the Own-
ership Object Graph of an annotated program [1]. We im-
plemented a tool and evaluated it on two real 15,000-line
Java programs that we previously annotated. In both cases,
the Ownership Object Graph fit on one page and illustrated
the design intent, e.g., JHotDraw’s MVC design [1], bet-
ter than existing flat object graphs. The Ownership Object
Graph also gave us insights into possible design problems.

Expected Contribution #2: The Ownership Object Graph
would be most useful if it were sound. Otherwise, the tech-
nique would not be an improvement over existing unsound
heuristic approaches that do not require annotations. To
show that the Ownership Object Graph is a faithful repre-
sentation of the runtime object graph, we will produce a
formal proof of soundness of the Ownership Object Graph
by defining the invariants imposed on the data structures we
generate and their well-formedness rules.

Hypothesis #3: Once a developer manually adds a
small number of annotations, a tool can infer most of the
remaining annotations semi-automatically.
The Ownership Object Graph requires ownership domain
annotations, but adding these annotations manually to a large
code base is a significant burden. In our experience, simple
defaults can only produce between 30% and 40% of the an-
notations [2]. We plan to extend the earlier work on compile-
time annotation inference by Aldrich et al. [4] and improve
its precision and usability. In our approach, a developer in-
dicates the design intent by providing a small number of an-
notations manually. Scalable algorithms and tools then infer
the remaining annotations automatically.

Expected Contribution #3: We will develop a semi-
automated interactive inference tool to help a developer add
annotations to a code base without running the program. The
tool will be evaluated by taking the programs that were pre-
viously annotated manually, removing the annotations and

then using the tool to infer the annotations. We chose this
methodology since applying ownership domain annotations
often promotes decoupling the code, for example by pro-
gramming to an interface instead of a class [2].

Hypothesis #4: The Ownership Object Graph is use-
ful for reasoning about important runtime properties.
The execution structure is typically needed to reason about a
system’s runtime performance, distribution or security char-
acteristics. Reasoning about the execution structure may also
be simpler than reasoning about the program directly. We
will demonstrate more concretely the benefits of the Owner-
ship Object Graph using one of these applications.

3. Conclusion
Ownership domain annotations are worth adding to a pro-
gram because they: a) express and enforce the design in-
tent directly in code; b) enable a sound execution structure
at compile time; and c) can be inferred semi-automatically.
The execution structure complements the code structure and
is useful for reasoning about important runtime properties.

References
[1] M. Abi-Antoun and J. Aldrich. Compile-Time Views of

Execution Structure Based on Ownership. In IWACO, 2007.

[2] M. Abi-Antoun and J. Aldrich. Ownership Domains in the
Real World. In IWACO, 2007.

[3] J. Aldrich and C. Chambers. Ownership Domains: Separating
Aliasing Policy from Mechanism. In ECOOP, 2004.

[4] J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annota-
tions for Program Understanding. In OOPSLA, 2002.

[5] D. G. Clarke, J. M. Potter, and J. Noble. Ownership Types
for Flexible Alias Protection. In OOPSLA, 1998.

[6] W. Dietl and P. Müller. Universes: Lightweight Ownership
for JML. J. Object Technology, 4(8), 2005.

[7] C. Flanagan and S. N. Freund. Dynamic Architecture
Extraction. In Workshop on Formal Approaches to Testing
and Runtime Verification, 2006.

[8] JHotDraw. http://www.jhotdraw.org/, 1996.

[9] D. Jackson and A. Waingold. Lightweight Extraction of
Object Models from Bytecode. IEEE Transactions on
Software Engineering, 27(2):156–169, 2001.

[10] P. Lam and M. Rinard. A Type System and Analysis
for the Automatic Extraction and Enforcement of Design
Information. In ECOOP, 2003.

[11] R. W. O’Callahan. Generalized Aliasing as a Basis for
Program Analysis Tools. PhD thesis, Carnegie Mellon
University, 2001.

[12] D. Rayside, L. Mendel, and D. Jackson. A Dynamic Analysis
for Revealing Object Ownership and Sharing. In Workshop
on Dynamic Analysis, pages 57–64, 2006.

[13] D. Rayside, L. Mendel, R. Seater, and D. Jackson. An
Analysis and Visualization for Revealing Object Sharing. In
Eclipse Technology eXchange (ETX), 2005.

920


