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Abstract issues. Static analyses [29, 40] that approximate the runtime ob-

eject graph often produce large non-hierarchical graphs that do not

A developer often needs to understand both the code structur S .
convey design intent and do not scale to large programs (See visu-

and the execution structure of an object-oriented program. Class lizati o1 f |
diagrams extracted from source are often sufficient to understand@/1zations [2] for examples). . L
Many type systems enforcewnershipat compile time, i.e.,

the code structure. However, existing static or dynamic analyses ; 2 .
that produce raw graphs of objects ar?d relations getween thel’)T/L domake one object part of another object's representation [8, 7, 3, 11]
In the ownership domains type system [3], each object contains

not convey design intent or readily scale to large programs. . ) X .
Imposing an ownership hierarchy on a program's execution one or more .publlc or pnvatewnershlp 'dolmalns— conceptual .
groups of objects — and each object is in exactly one domain.

structure through ownership domain annotations provides an intu- . ; 4 !
As with most other ownership type systems, adding ownership

itive and appealing mechanism to obtain, at compile-time, a visual- d . i ; ; d trol aliasi
ization of a system’s execution structure. The visualization conveys omain annotations to a program's source code can control aliasing
and enforcenstance encapsulatiowhich is stronger than module

design intent, is hierarchical, and thus is more scalable than existing®. - > . > .
visibility mechanisms. Moreover, ownership domains can express

approaches that produce raw object graphs. . X X A -
We first describe the construction of the visualization and then 2nd enforce a tiered runtime architecture by representing a tier as
an ownership domain. Mlomain linkcan abstract permissions of

evaluate it on two real Java programs of 15,000 lines of code each X X

that have been previously annotated. In both cases, the automatiVhen objects can communicate [1]. . .

cally generated visualization fit on one page, and gave us insights _ OUr contribution in this paper is to leverage ownership domain

into the execution structure that would be otherwise hard to obtain 2notations to obtain at compile-time a sound visualization of the
execution structure of a program with ownership domain annota-

by looki tth de, at existi lass di t dable . . ! -
y 100KIng atthe code, ar exIsting class clagrams, or at unreada etlons, the Ownership Object Graph. The visualization is hierarchi-

visualizations produced by existing compile-time approaches. > X o
P y 9 P P cal, conveys design intent and compares favorably with existing
) compile-time visualizations of two previously annotated Java pro-
1. Introduction grams, each consisting of 15,000 lines of code.

Currently, annotations are added mostly manually, however,
active work in the area of semi-automated annotation inference
[4,9, 24 25] promises to lower the annotation overhead. The vi-
sualization reflects the annotations, and the quality of the visual-
standing is a non-trivial task. Little work has been done on mini- ization reflects the quahty of the annotations. The de5|gln Intent Is

o ; : ; expressed by choosing the ownership domains and their structure,
mizing this learning curve’ [38]. i .
then adding annotations to the program — currently manually.

In many cases, developers cannot rely that external design doc- The id d techni f hi fund | for ob
umentation is up-to-date. Many tools can automatically generate € Ideas and techniques of ownership are fundamental for ob-

class diagrams from program source [21]. However, a class dia- taining such a compile time visualization. First, ownership domains
gram shows the code structure and does not explain the executiorPToVide a coarse-grained ownership structure of an application with
structure of the system. In object-oriented design patterns, much@ grr]anularlty'larger ]Elhan ta)m object ﬁr_a class [37]. Srt]a_cond, own;j
of the functionality is determined by what instances point to what E'SNIP organizes a flat object graph into an ownership tree, an
other instances. For instance, in the Observer design pattern [15, phlerarchy is needed to achieve scalability and attain both high-
293], understanding *what” gets notified during a change notifica- Vel understanding and detail. Third, different ownership domains
tion is crucial for the function of the system, but “what” does not and different places in the hierarchy provide precision about inter-
usually mean a class, “what’ means a particular instance Further-domain aliasing and conservatively describe all aliasing that could
more, a class diagram often shows several classes depending on ke place at runtime. Since two objects in two different domains
single container class such sva.util.ArrayList. However cannot be aliased, the analysis can distinguish between instances

different instantiations of such a class often correspond to different that would be merged in a class diagram, allowing better under-
yetanding of the runtime structure of the system. Fourth, ownership

elements in the design, hence the need for an instance-based vie . -
domain names are specified by a developer and therefore can con-

to complemena class diagram. > < = rE . ; ;
A running object-oriented program can be represented agan vey more design intent than the aliasing information obtained using
a static analysis that does not rely on annotations [34].

ject graph nodes correspond to objects and edges correspond to . . : ) -

relations between objects. Existing dynamic analyses can describe _ Ve first define the Ownership Object Graph (Section 2) and de-
the runtime object graph of a system for a particular set of inputs S¢'1P€ the algorithm to construct it at compile time (Section 3). We
and exercised use cases [12, 33]. Obtaining at compile time a finite 16" Present concrete and in-depth examples of the visualization of
and conservative abstraction of all possible runtime object graphs WO réal annotated 15,000-line object-oriented programs (Section
is more challenging because of aliasing, precision and scalability 4)- Finally, we survey related work in Section 5 and conclude.

When modifying an object-oriented program, both the code struc-
ture (static hierarchies of classes) and the execution structure (dy-
namic networks of communicating objects) must be understood.
“For a developer unfamiliar with the system to obtain this under-
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2. The Ownershlp ObJeCt Graph class Branch< > /x Formal domain parameterx/ {
This section discusses the challenges in visualizing an annotated Public ;

program and describes the different intermediate representations -

we used to obtain the visualization. Customer c¢l:
A running object-oriented program can be representedas-a Teller ti;

time object graphnodes correspond tantime objectand edges Teller t2;

correspond to relations between runtime objects such as creation, xgﬁ:: x;

usage and reference [32]. The aim is to statically approximate all of '

the runtime object graphs that may be generated in any run of the class Bank {

program. The goals of the visualization are as follows: 1 I+ Private default domainx/

° $calability: to support h.igh-le.vel unde(standing, the visualiza- /+ Bind BranchcCUSTOMERS formal to ‘owned’ actual s/

tion groups runtime objects into relatively few top-level “ab- Branche & bl:
stract” elements, each represented by a canonical object; }

e Hierarchy: to provide detailed understanding, the visualization : : :
supports the ability to show the substructure of an abstract | Summary of syntax for ownership domains annotations [3]:
element. Thus the visualization can be viewed as a hierarchical | ¢ T o: declare objecs of typeT in domaind; .
tree of objects; [public] domain a: declare private [or public] domain;

. . . o . . . class C<d>: declare formal domain parameteon clas<;
* Design Intent: the visualization groups runtime objects into | ' o015 oy provide actual for formal domain parameter:
clusters that are meaningful abstractions — e.g., that an object| |in, , —> 4: give domairb permission to access domain

is in a tier — and documents design-level constraints using

domain links — e.g., that two tiers may communicate. The user rigyre 1. Ownership domains illustrated with a simplified Bank
provides the design intent regarding object encapsulation and system [3].Branch declares two domaingELLERS for Teller

communication using ownership domain annotations [1]; objects andVAULTS for Vault objects.Branch also declares a
 Soundness:to ensure that the visualization is a faithful rep-  qomain link from theTELLERS domain to theVAULTS domain
resentation of the runtime object graph, it mustseeind In to allow Teller objects to acces¥ault objects.Branch also

particular, all objects and relations present at runtime should be {5xes acusToMERS formal domain parameter to hofthstomer
represented. Furthermore, if two variables may alias at runtime, objects.Bank references @ranch object in fieldb1, binding the

they should appear in the graph as a single “abstract” element. cysTgMERS formal domain ofBranch to theBank’s own private
The analysis builds two intermediate representationsatan domainowned.

stract graph which is converted into gisual graph which is then

displayed as the Ownership Object Graph. solid border grey-filled rectangle with a bold label represents an
object. A dashed edge represents a link permission between two
2.1 Abstract Graph ownership domains. A solid edge represents a creation, usage, or

The abstract graphis built from ownership domain annotations éference relation between two objects. An object labeled “obj : T
in the source code (Figure 1). The syntax for declaring and using indicates an object of tyg€ as in UML object diagrams. _
ownership domains follows that used for Java generics [3]. _ Object Merging. In the visual graph, a canonical visual object
For each type in the program, the abstract graph shows the own-iS created to represent a_II the abst(act objects of a given type in a
ership domains declared in it, and shows field and variable declara-9iven source-level domain declaration. Two abstract objects in the
tions asabstract objectsleclared insidabstract domainsThe ab- same domain in the abstract graph, if related by inheritance, could
stract graph provides scalability through ownership hierarchy and indeed refer to the same runtime object, and thus are merged for
captures design intent as described above, but is not adequate fofoundness. In general, this object may summarize multiple runtime
visualization for several reasons (See Figure 2). olpjects. For the _annotateq code in Figure 1, th(_a visual graph in
First, the abstract graph is not really hierarchical in the sense Figure 3 merges into one visual object (labelled with Teller)
of an object having children; rather, an object has a type and the
type has domains and the domains have object children. Second,
it does not include all objects: a domain contains abstract objects
only for the locally declared fields, but if that domain is passed as
a domain parameter to another object, and that object declares its
fields in that domain, those non-local fields will not be represented. v
Third, it does not show all aliasing: different field declarations — Brg}]i:h
and therefore different abstract objects, could be aliased and thus |
must be shown as one. To realize the properties above, the abstract
graph is converted intodsual graph

2.2 Visual Graph

The visual graph is an intermediate representation which instanti-
ates the types in the abstract graph and shows only objects and do-
mains: eaclvisual objectcontainsvisual domainsind eactvisual
domaincontainsvisual objectsThus, in the visual graph, one can
view the children of an object without going through its declared
type. Furthermore, to support the visualization goals listed earlier,
the construction of the visual graph takes into accalject merg- ) ]
ing, object pullingandtype abstraction Figure 2. The abstract graph for the Bank system. A black-filled

We visualize ownership domains as follows: a dashed border box represents a type, with white-filled domains declared inside it
white-filled rectangle represents an actual ownership domain. A and grey objects declared inside each domain.
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Figure 3. The visual graph for &ranch objectwithout pulling:

objectst1 andt2 are merged in domailELLERS, and similarly,
objectsvi andv2 in domainVAULTS. Objectc1 is shown in the
formal domain paramet&@USTOMERS (dotted border).
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Figure 4. Objectc1x* waspulled from the formal domain param-
eter CUSTOMERS in Figure| 3 into the actual domaienk . owned

to which it is bound. The dashed edge represents a domain link
betweerTELLERS andVAULTS.

the abstract objectst andt2 declared in domairELLERS since
they have the same declared type.

Merging objects of the same declared type that are in the same

domain may be imprecise. For instance, tWector objects in
the same domain would get merged even if they are never aliased

summarizes objects by type, because the type system guarante
that two objects that are in two different domains can never be
aliased. In some cases, adding generic types where applicable, e.g
for generic containers, can minimize excessive merging.

A developer can also prevent merging by placing two objects

Type Abstraction. For soundness, it may be necessary to merge
abstract objects of different but compatible declared types. For ex-
ample, consider the classes from the Java Abstract Window Toolkit
(AWT) library in Figurel 5. A variable of typalindow and a dif-
ferent variable of typ&rame in the same domain may alias each
other, the corresponding abstract objects must therefore be merged
for soundness.

In addition, it may be useful to do further heuristic merging to
improve abstraction and reduce clutter in the graph. For example, if
abstract objects of typRutton, Panel andFrame were declared
in the same domain, it may make sense to merge them into a sin-
gle visual object of typ€omponent or Accessible. On the other
hand, merging can be taken too far: merging all the abstract objects
in a domain into a single visual object of typeva.lang.0bject
would result in a trivial and uninteresting visual graph. Thus, we
heuristically merge abstract objects whenever they share one or
more non-trivialleast upper bound type¥he resulting visual ob-
ject is marked as having an intersection type that includes all the
least upper bounds. In the example above, the least upper bound
would be the intersection of the sgtomponent, Accessible}.

The definition of “trivial” is user-configurable; typically types
such afibject andSerializable are trivial, and so abstract ob-
jects which share these as a supertype are not merged according to
this heuristic. Again, a developer controls this heuristic by adding
or removing types from the list of trivial types.

Instantiation-Based View. Merging abstract objects based on
non-trivial least-upper-bound types can sometimes lead to un-
wanted merging. For instance, in the JHotDraw case study dis-
cussed in Sectionh 4.2, both interfac&smmand and Tool are in
the sameController domain and both extend the same inter-
face ViewChangeListener. As a result, the abstract objects for
Command and Tool get merged into the same visual object un-
less interfac&/iewChangeListener is added to the list of trivial
types. However, this would not work since several variables have
ViewChangeListener as their declared type.

The key insight however is that there are no object allocations
of the interfacé/iewChangeListener since an interface cannot be
instantiated directly. As an alternative to merging abstract objects,
it is possible to achieve soundness by scanning object allocations
instead of field and variable declarations, and then only adding
visual objects for types that are actually instantiated and not the
ones that are just declared. This technique is similar to how Rapid
Type Analysis (RTA) [5] determines the receiver of a method call
during the construction of a call graph.

. X . ; i *In the example above, if the analysis encounters an object allo-
Our analysis remains more precise than a class diagram which alsg

cation of aTool object but never that of @iewChangeListener

e§bject, the analysis would only create a visual objectTtarl, and

similarly for Command, thus achieving the desired effect of keeping
Command andTool distinct. This solution can also prevent merg-
ing all the abstract objects in a domain into a single visual object of

that should never get merged in separate domains, e.g., by defining

two domainsCASHVAULT and GOLDVAULT to storevl andv2 in
Figure 1 instead of using a single domaikULTS.

Object Pulling. The abstract graph may display an object only
in the domain where the domain is declared as a formal param-
eter. But in the visual graph, each runtime object that is actually
in a domain must appear where that domain is declared. To en-
sure this property of visual graphs, an abstract object declared in-
side a formal domain ipulled into each domain that the formal
domain is transitively bound to. Figuré 3 shows objettin the
formal domain paramet&USTOMERS (dotted border). In Figure/4,
objectc1 — marked with+ — was pulled from the formal domain
CUSTOMERS in Branch to the actual domaimwned in Bank (the
former is bound to the latter using the annotati@anch<owned>
on fieldb1 in Figure 1).

«interface»

XTI
& javax::accessibility::Accessible |ijava..awt..Component|

A

| @ java:awt:Container I

| @ java:awt:Button I

|
@ java:awt:Panel | O java:awt:Window I

| @ java:awt:Frame I

Figure 5. Type hierarchy excerpts from AWT.
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type java.lang.Object. If the analysis does not encounter an al-
location expression of the foraew 0bject () inthe code, it never
creates a visual object for theva.lang.0bject abstract type.

approximation of the true runtime object graph, as it may represent
multiple runtime objects with a single visual object, and similarly
for domains and edges. The following invariants relate the Owner-

A class hierarchy analysis could determine that a variable of ship Object Graph to the runtime object graph:

type ViewChangeListener could alias a variable of type — of

course, an alias analysis could do better. A newly allocated object

can be considered un-aliaseduarique [3]. A standard flow anal-
ysis can track the flow of an object from its point of creation to the
point at which it is first assigned to an ownership domain.

Design Intent Types.Since the visualization is instance-based,
labelling instances is important for conveying design intent. A

visual object can merge one or more abstract objects, and each

e Unique Representatives:Each object in the runtime object
graph is represented by exactly one object in the visual graph.
Similarly, each domain in the runtime object graph — as de-
fined in the dynamic semantics of ownership domains [3, p. 15],
is represented by exactly one domain in the visual graph;

e Edge Soundnessif there is a field reference from objeat
to objectos in the runtime object graph, then there is a field
reference edge between visual objetsand 05 in the visual

abstract object has an abstract type corresponding to a declared graph, corresponding @ ando. — similarly for domain links

type in the program. A visual object is labelledb’j: T” as in
UML object diagrams — wherebj is an optional instance name
andT is an optional type name. An abstract object maintains the
field name or variable name in the prograsbj is selected from
one of the abstract objects merged into a visual objeista list of

and edges;

e Ownership Soundnessif object o is in domaind in the run-
time object graph, then objeét(corresponding t@) is in do-
main§ (corresponding to domaid) in the visual graph. Sim-
ilarly, if o declares domain in the abstract graph, thehde-

least upper bound types as discussed above. The user can optionally clares domair in the visual graph.

specify a list of informativelesign intentypes. Adesign intent type

The Ownership Object Graph inherits other properties that are

is the preferred abstract type used to label a visual object. A trivial guaranteed by the soundness of the underlying ownership system
type is not used in the label unless it occurs as a declared type in— for example, that every object is assigned an owning domain
the program. Design intent types do not affect the soundness of thewhich is consistent with all program annotations and does not
Ownership Object Graph and are just for labelling. change over time. These invariants are correct up to the following
assumptions:

e All Sources Available: The program’s whole source code is
available, and the program operates by creating some main
object and calling a method on it (this justifies the Ownership
Object Graph's focus on a single root object, although multiple
root objects could in principle be shown). The class of that main
object is the type of the root of the Ownership Object Graph;

2.3 Ownership Object Graph

A visual object can contain itself so the visual graph must represent
a potentially unbounded runtime object graph with a finite graph.
For example, consider a classwhich declares a domaidand a
field of typeC in domaind:

Clajimca‘% & I+ Declare domain d=/ * No Reflective CodeReflection and dynamic code loading may
dC f; violate the above invariants by introducing unknown objects

} and edges, and possibly violating the guarantees of the under-
lying ownership system;

¢ Flow Analysis: Objects marked ashared andunique are not
currently shown in the Ownership Object Graph. Objects that
areshared would be trivial to add but would add many unin-
teresting edges to the Ownership Object Graph. Objects that are

Since there is a unique canonical object for each type in each
domain, the object representiggn domaind must also represent
the child object of typ€ in domaind of the parent; it is therefore its
own parentin this representation. A finite representation is essential
to ensure that the analysis terminates, but we want to show the user

a hierarchical view where no object is its own parent. We therefore
compute the Ownership Object Graph as a finite, depth-limited,
unrolling of the visual graph. In the example above, we would show
onec object within another down to a finite depth.

To summarize, an Ownership Object Graph is a graph with two

unique would require a flow analysis to be handled properly
(See Section 315). Usage edges (e.g., method invocations, field
accesses) could be generated for a system with only ownership,
but a flow analysis is required for usage edges to be sound in
the presence dfent objects.

types of nodes, objects and domains. The nodes form a hierarchy__D€SPité the assumptions about the whole program source being
where each object node has a unique parent domain and each dorglvallable and restrictions on reflection and dynamic loading, our
main node has a unique parent object. The root of the graph is asystem is stillrelatively soundin the presence of these features.
top-level domain. In addition, the Ownership Object Graph has the In particular, as ang as the_ reflective operations are annotated
object merging, object pulling and type abstraction properties. Fi- CO'fectly and consistently with ownership information, then any
nally, there are two kinds of edges: edges between objects corre-c’t.)JeCt referrgd to by some f'.eld in the source code thf"‘.t is available
spond to object creation, usage and reference relations, and edge¥!ll SNOW up in the Ownership Object Graph, as specified above.
between domains correspond to domain links. Compared to ear- For edge soundness, all field references in external library code

X L . . ; t be annotated. Since it is often not possible to annotate all
lier definitions of object graphs [32], the Ownership Object Graph MYS e ,, . ; :

explicitly represents clusters of nodes, i.e., domains, and edges be-SUCh co_de, ylrtual [26] or gh_ost ] fields may be dedared as
tween these clusters, i.e.. domain links. annotations in external files. ¥rtual field holds information that

is closely related to the meaning of an object, but need not be kept
directly in the object in a particular implementation [26]. These
annotations do not affect the execution of the system at runtime but
are treated as an object’s actual fields by the analysis.

2.4 Soundness

For the Ownership Object Graph to be most useful, it should be
a soundapproximation of the true runtime object graph for any
possible run of the program. In this section, we only present an 3. Analvsi
operational definition of the soundness of the Ownership Object “* nalysis
Graph and leave a proof of soundness for future work. At a high-level, the analysis works as follows: (1) Obtain an ab-
Intuitively, soundness means that every object, domain, and stract graph from ownership domain annotations; (2) Collapse the
edge in the runtime object graph is represented in the Ownershipinheritance hierarchy by copying fields into subclasses; (3) Instan-
Object Graph. However, the Ownership Object Graph may be an tiate abstractly the types in the abstract graph into objects in the
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visual graph, merging objects in the same domain by compatible

types (two types are compatible if they have a non-trivial least up-
per bound); (4) Pull objects in the visual graph from formal do-

mains to actual domains, again merging as necessary; (5) Add de-|
tails to the visual graph, such as field references, domain links, etc.;
and (6) Extract the display Ownership Object Graph as a depth-

limited projection of the visual graph.

3.1 Data Representations

The analysis first creates from the program texf\astractGraph
and then converts it into disualGraph. The data type declarations
of the AbstractGraph and VisualGraph are in Figure 6, and will

be referred to by the metavariables shown in parentheses. To help|

keep the representations distinct, we use English letters (. .)
for elements of thé\bstractGraph, and Greek letterg)( 4, . . .) for
elements of th&/isualGraph.

The AbstractGraph consists of theéAbstractTypes in the pro-
gram, theAbstractDomains declared in each type, and thAdé-
stractObjects declared in each domain. AfibstractType also
lists AbstractEdges andAbstractLinks. TheVisualGraph instan-
tiates the types in thébstractGraph and showsVisualObjects
andVisualDomains: eachVisualObject containsVisualDomains
and eaclisualDomain containsVisualObjects. TheVisualGraph
also hasVisualEdges andVisualLinks.

The identifiers used for the elements in thisstractGraph and
VisualGraph do not correspond to the declared names of domains
or objects (e.g., field or variable names) since these cannot be as-
sumed to be globally unique, and do not take into account bind-
ing and scope. An implementation would typically have additional
fields to hold the user-friendly display name. In addition,/fdn

® AbstractGraph (g)
= Root : AbstractObject /* the root */
= Types: List<AbstractType>

® AbstractType ()

= TypeBinding: TypeBinding/* Java type */

= Domains: List<AbstractDomain>

= Links: List<AbstractLink>

= Edges: List<AbstractEdge>
AbstractDomain (d)

= DomainType: public | private | parameter

= Objects: List<AbstractObject>

= DeclaringType: AbstractType
® AbstractObject (0)

= Type: AbstractType /* declared type */

= Domain: AbstractDomain /* my ouner */

= Bindings: List<Binding>

= Visualized: boolean/* bookkeeping */
Binding (b)

= Formal: AbstractDomain

= Actual: AbstractDomain
AbstractEdge (e)

= From: AbstractType /* edge source */

= To: AbstractObject /* edge target */

= EdgeType: creation | usage | reference
AbstractLink (s)

= From: AbstractDomain /* link source */

= To: AbstractDomain /* link target */
® VisualGraph (7)

= Root: VisualObject
= Objects: List<VisualObject>
= Edges: List<VisualEdge>
= Links: List<VisualLink>
® VisualObject (0)

= Domains: List<VisualDomain>
= Merged: List<AbstractObject> /* abstract objects
merged into ‘this’ */
= Pulled: List<VisualObject> /* visual objects ‘this’
was pulled into */
= |sPulled: boolean/# bookkeeping */
= Parent: VisualDomain /* my owner */
® VisualDomain (§)
= Objects:  List<VisualObject>
domain */
= Parents: List<VisualObject> /* objects this domain
is part of */
= AbstractDomain: AbstractDomain /* map */
® VisualEdge ()
= From: VisualObject /* edge source */
= To: VisualObject /* edge destination */
= EdgeType: creation | usage | reference
® VisualLink (o)
= From: VisualDomain /* link source */
= To: VisualDomain /* link destination */

stract Type maintains its underlyingypeBinding to determine its
sub-typing relationship with respect to othesstract Types.

The analysis maintains a one-to-one mapping betwaésual-
Domain ¢ and its correspondingbstractDomain d to avoid extra
copying. However, &/isualObject typically merges severaAb-
stractObjects as discussed earlier.

3.2 Extract an AbstractGraph from Annotated Code /* objects in this

An AbstractGraph is obtained from the annotated program text
using a visitor on the Abstract Syntax Tree of the annotated pro-
gram. Most steps in Figure 7 are straightforward and are not shown
in great detail. During the construction of tAéstractGraph, pri-

vate ownership domains are givepmtectedsemantics The de-
fault domainowned is considered to be declared at the first point
of use and inherited thereafter. diined were to be declared in
java.lang.0Object, all the objects declared in themed domain
would be in the same inherited domain and would get unnecessar-
ily merged if they have the same declared type. Singletaired,

lent andunique AbstractDomains are created.

To simplify the treatment of inheritance when creating Ve
sualGraph, the AbstractGraph is post-processed by collapsing the
type hierarchy, i.e., pushing field references declared inAthe
stract Type corresponding to a given typeénto eachAbstract Type
of the sub-types of.

While the algorithm described in Figure 7 is presented in terms
of the ownership domains type system, it can be easily applied
to other ownership type systems that do not have the concept
of multiple ownership domains per object and assume a single
domain or “context” per object [8]. In those cases, we consider that is similar to the Java 1.5 “enhance&dzr-loop” for iterating over
each class implicitly declares a single ownership domaited collections and arrays. An overbar represents a sequence.
and proceed according to the algorithm. The other details of the = The transformation takes as input tAestractGraph g whose
transformation and visualization are unchanged. root is the top-leveAbstractObject 0,00t, @and AbstractDomain
droot 1S the domain foro,..¢. The top-level procedure 'UAL-
1IZEGRAPH (Figure 8) first creates a top-leVélsualDomain 6,00t
and then visualizes th&bstractObject 0,00t-

Figure 6. Data types used bjbstractGraph and VisualGraph.
Some fields are for bookkeeping only.
3.3 Convert an AbstractGraph to a VisualGraph

Constructing theVisualGraph from an AbstractGraph takes into
account the properties described earlier. The pseudo-code for the
algorithm is presented in Figure§ 8, 9 and 10. The notation

for (T anObject : setOfObjects) ...

IDomains declared in a class are inherited by its subclasseAus
Domains rule(Fig.14)], but are called somewhat confusinglyivate.
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1. For each type declaratiari in the program
(a) CreatéAbstractType t and add it tag. Types
(b) For each formal domain parameterGh
i. Create correspondingbstractDomain d
ii. Add d tot.Domains
(c) For each declared ownership domain
i. Create correspondingbstractDomain d
ii. Add d tot.Domains
(d) For each domain link betweeh andds in C'
i. CreateAbstractLink between thé\bstractDomain of d;
and theAbstractDomain of d2
ii. Add AbstractLink to ¢.Links
(e) For each declaratiohC’<a> oin C
i. If C" has noAbstractType, createt’ for C’
ii. If AbstractType ¢ of TypeC' has noAbstractDomain d,
created and add{ to t. Domains
iii. CreateAbstractObject o and add tai.Objects
iv. Create binding® from formals f of AbstractType t’ to
actualsa of t and add tw.Bindings
v. If declaration is a field declaration
A. CreateAbstractEdge e of type reference from Ab-
stractType t to AbstractObject o
B. Add e to t.Edges
2. Collapse inheritance hierarchy
(a) Copy any public domains defined on an interface to the eds
implementing the interface
(b) Push field references from each super-class into itckhgses

Figure 7. Obtaining theAbstractGraph.

The conversion involves two mutually recursive functions; V
SUALIZEOBJECTto convert anAbstractObject into a VisualOb-
ject and ViISUALIZEDOMAIN to convert amAbstractDomain into
aVisualDomain. EachAbstractDomain declared in thé\bstract-
Type of anAbstractObject is visualized in turn.

Before aVisualObject 6 is created for am\bstractObject o of
typet inside aVisualDomain ¢, the analysis calls INKDOBJECTt0
look for an existingVisualObject in § with which o can be merged,
i.e., if 6 has af of typet’ wheret and¢’ havenon-trivial least
upper boundsising procedure 6TLEASTUPPERBOUNDS. If such
an object does not exist, a n&fisualObject is created. |9 exists,
then it is used and is added to the list oAbstractObjects that
are merged by. Each call to iNDOBJECTtakes into account the
AbstractTypes of all theAbstractObjects that are merged into a
VisualObject.

Procedure RENONTRIVIALTYPES excludes from the com-
puted types any type mentioned in the list of trivial types. By de-
fault, the listincludegava.lang.0Object, java.io.Serializable
and other user-selected types. However, a trivial type is allowed to
be part of the least upper bounds, if thiestractObject is declared
of that type.

Once VisualObjects and VisualDomains have been created,
procedure BLLOBJECTSuses a worklist to pull existiny/isu-
alObjects: eachVisualObject is pulled from a formal to an ac-
tual domain, potentially creating a né¥isualObject if it cannot be
merged with an existing one. If a nefibstractObject is merged
into an existingVisualObject, the VisualObject is added back to
the worklist. NewVisualObjects are also added to the worklist so
they get pulled in turn. The analysis tracks WieualObjects that
a givenVisualObject is pulled into.

Finally, the top-level procedurelSUALIZE GRAPH calls Visu-
ALIZEFIELDREFsto add field references to tAésualGraph and
VISUALIZEDOMAINLINKS to add the domain links.

When adding the field references associated wittisaalOb-
ject 0, ADDFIELDREFS (Figurd 10) takes into account all the field
references declared in thebstract Type of eachAbstractObject
merged into &/isualObject. ADDFIELD REFSalso adds field refer-
ences to all the pulleffisualObjects that are tracked by the book-
keeping fields.

The algorithm given in Figure!8 is sound for systems that use
single inheritance and have no declared variables of a trivial type.
In systems that do not meet these restrictions, the algorithm may
produce multiple visual objects to represent the same runtime ob-
ject. In this case, two possible approaches can be used to restore
soundness. The first approach is the instantiation-based view de-
scribed in Sectioh|2 above, whereby visual objects are created for
each object that is instantiated rather than for each field or variable
declaration in the program.

In the second approach, the procedumedfOBJECTIn Figurd 8
is modified to identify alMisualObjects that could be merged with
the targefTypeBindings. If there is more than one subtisualOb-
ject, the analysis unifies théisualObjects and the resultinyisu-
alObject has the union of th¥isualDomains, mergedibstractO-
bjects, etc. The analysis then unifies recursively all tigualOb-
jects that a unifiedVisualObject was pulled into. The iDOB-
JECTprocedure then returns the unifigiualObject.

3.4 Convert the VisualGraph into the Ownership Object
Graph

The ownership object graph that is displayed is a depth-restricted
projection of the visual graph, starting from a root object. The
visualization currently uses the nested boxes discussed earlier but
the algorithm is not tied to a specific graphical notation.

This step is depends on the visualization package used. In our
prototype implementation, we use GraphViz [16]. Each dark grey
box for each object and white-filled node for each domain must
have a unique identifier — otherwise, nodes with the same identifer
get unified. Since there is onéisualDomain corresponding to
an AbstractDomain, and anAbstractDomain is shared across
all the AbstractObject instances of a giverbstractType, each
occurrence of &isualDomain that appears in "isualObject must
be assigned a new identifier.

Because the Ownership Object Graph is a depth-limited projec-
tion, it may omit objects deeply nested in the ownership hierarchy.
These objects are conceptually summarized by their containing ob-
ject, and the visualization remains sound with this summarization.
However, those objects may have field references to objects that are
present in the projection; for soundness, the corresponding edges
should be shown. In our approach, these field reference edges can
be represented by summary fields in the leaf objects of the graph.

These summary fields are identified as follows. For each leaf
object 0,y in the Ownership Object Graph, for each transitive
child objectf.piiq Of O1cqr, in anextended depth-limited projection
of the VisualGraph, we consider all actual field references from
VisualObject Ocni1q 10 VisualObject Otarget, Wherebiarge: is not
a child of 0,..¢. Each such edge is represented by a summary
edge frombicas 10 Oparent, Wherebpa,rent is the nearest parent
of Orarger that is visible in the Ownership Object Graph. This
algorithm will find summary fields for all fields present at runtime
as long as thextended depth-limited projectigmojects below the
leaves of the graph until a cycle in thMésualGraph is reached —

i.e., for each path downward from a leaf, the saviialObject is
reached a second time. This projection must still be depth-limited,
as in general th&/isualGraph may have an infinite depth due to
reference cycles.

3.5 Limitations and Future Work

In future work, we plan on improving the precision of the analysis,
proving the soundness of the Ownership Object Graph, and evalu-
ating the scalability of the approach on large systems.

Precision. Merging objects of the same type that are in the
same domain can lead to unwanted merging in some cases. Adding
generic types improves the precision of the analysis, but for addi-
tional precision, an alias analysis may be needed [29].
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Global: Map<AbstractDomain ,VisualDomain > map

Global: AbstractGraph ¢ (input)
Global: VisualGraph ~ (output)

VISUALIZE GRAPH()

droot = New VisualDomain ()
droot-AbstractDomaire doot

~ =new VisualGraph ()

~.Root= VISUALIZEOBJIECT(Sro0t , Oroot)
PuLLOBJECTY)

VISUALIZEFIELDREFY)
VISUALIZEDOMAINLINKS()

VISUALIZEOBJECT(VisualDomain §, AbstractObject 0)

t = GETTYPEBINDINGS(0.Typd
0 = FINDOBJECT(S, t)

if (6 ==NuULL)
then 6 = new VisualObject ()
6.Objectsadd(6 )
0.Parent=§
~.Objectsadd(6 )

0.Mergedadd(o)
0.Visualized= TRUE
for (d; : t.Domains)
do ¢; = VISUALIZEDOMAIN(0, d;)
6;.Parentsadd(6 )
0.Domainsadd(é; )
return 6

VISUALIZEDOMAIN (AbstractDomain d)
6 = map.getd)
if (6 ==NuLL)
then § = new VisualDomain ()
map.putd, d)
d.AbstractDomain- d
for (o; : d.Objects)
do if (0;.Visualized)
then continue
VISUALIZEOBJECT(Y, 0;)
return §

FINDOBJECT(VisualDomain §, List<TypeBinding> )
for (0, : 6.0Objects)
do t,, = GETMERGEDT YPEY(0;)
0= GETLEASTUPPERBOUNDS(ty,, 1)
if (ARENONTRIVIALTYPEY(Y, 7))
then return 6;
return NULL

GETTYPEBINDINGS(AbstractType t)
> Obtain list of transitive supertypes

GETLEASTUPPERBOUNDS(List /, List z)
> Compute least-upper-bounds if they exist

ARENONTRIVIAL TYPEg(List #, List )

> Exclude from/ trivial types such agava.lang.0Object

> or in the user-specified list of trivial types
> EXCEPT if it is one of the declared typesin
return TRUE if remaining list of types non-empty

GETMERGEDT YPEYVisualObject 6)

List I = new List()

for (o; : 6.Merged)
do l.add(o;.Type)

return (

Figure 8. Pseudo-code for creatingsualGraph.

PuLLOBJECTY)

Stackworklist = new Stack()
for (0 : ~.Objects)
do worklist.push@)
while (lworklist.iSEmpty() )
do VisualObject 0 = worklist.pop()
PuLL OBJECT(H, worklist)

PuLL OBJECT(VisualObject 0, Stackworklist)

> List.add first checks if element exists to avoid duplicates
> and returngRUE if element is added;ALSE otherwise.
> by | = by is shorthand foby = b1 OR b2
0y = 6.Parent
dy = ¢ ¢.AbtractDomain
for (do : GETACTUALS(dy ) )
doif (do ==dy )
then continue
da =map.getda)
tm = GETMERGEDT YPES(H)
6y = FINDOBJIECT(8q, tm)
changed = FALSE
if (0p ==NULL )
then 6, = new VisualObject ()
~.Objectsadd(6;, )
0p.Parent= 4,
0p.IsPulled= TRUE
dq.Objectsadd(6,, )
changed = TRUE
0.Pulledadd(, )
for (o: 6.Merged)
do changed | = 0,,.Mergedadd(o )
> Add domains from merged object
for (9; : 6.Domains)
do changed | = 6,.Domainsadd(d; )
0;.Parentsadd(d), )
> If anything changed, add back teorklist
> so that merged objects get pulled too...
if (changed)
then worklist.push(@) )

GETACTUALS(AbstractDomain dy)

List I = new List()

05 =map.getdy)

for (0; : 6.Parents) > Pull “up” only

do for ( o; : 6;.Merged)
do for ( b; : 0.Bindings)
do if (b;.Formal==d; )
then l.add(b; .Actual)

return [

Figure 9. Pseudo-code for creatingjsualGraph (continued).

An object markedinique is not shown until it is assigned to a
specific domain. Thus, an inter-procedural flow analysis is needed
to track an object from its creation (at which point itusique)
until its assignment to a specific domain. In the current tool, this
flow analysis is not implemented, saaique object returned from
a factory method must be annotated with the domain in which it
should be displayed. In addition, the flow analysis can determine
what domain alent object is really in. A precise handling of
the lent annotation is needed to add to the Ownership Object
Graph usage edges corresponding to method invocations and field
accesses since many method parameters are annotatebtewith
Those edges are currently missing.

Scalability. Finally, we lack empirical evidence of the scala-
bility of the approach to large systems. In the absence of semi-
or fully-automated annotation inference (a separate research prob-
lem), the main difficulty would be adding the ownership domain
annotations to legacy code.
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VISUALIZEFIELDREFY)

for (0 : ~.Objects)
do ADDFIELDREFY @)

ADDFIELDREFYVisualObject Osyc)

for (o: 0src.Merged)
do for (e : o.TypeEdges)
do for (d, : GETBINDINGS(0, e.To.Domain) )
do 6, = map.getd,)
045t = GETMERGED(d, €.TO)
if (O4s¢ '=NULL)
then ADDFIELDREFYOsrc, O4st)

ADDFIELDREFYVisualObject Os;c, VisualObject 6¢)

n =new VisualEdge ()
n.From= 6.
77-T0= Odst
if (v.Edgesadd(n))
then for (Osrc,, : Osrc-Pulled)
do for (0gst,, : Oase-Pulled)
do ADDFIELDREFlsrc, s Oast,,)

GETBINDINGS(AbstractObject o, AbstractDomain d)

List I = newList()
for (b: 0.Bindings)
do if (b.Formal==d)
then l.add(bActual)
return [

GETMERGED(VisualDomain §, AbstractObject o)
for (0, : 6.0bjects)
do for (o, : 0;.Merged)
doif (o ==0)
then return 0;
return NULL

VISUALIZEDOMAIN LINKS()
for (t: g.Types)
do for (s : t.Links)
do VisualLink o = new VisualLink ()
o.From=map.get(s.From)
o.To=map.get(s.To)
~.Linksadd(o )

Figure 10. Pseudo-code for creatingsualGraph (continued).

4. Evaluation

To evaluate our approach, we built tools and conducted two casegp.-level Ownership Object Graph obtained from the annotated
studies on real object-oriented implementations.

4.1 Ownership Object Graph Tool

The tool obtains the Ownership Object Graph of an annotated Sents many instances at runtime and is labeled with one or more

program, represents it as a GraphViz clustered graph [16] angoffe “design intent” type from the coréramework package (variable

the following features:
¢ Top-Level Objects:the displayed Ownership Object Graphis a

e Elide Private Domains: the tool allows the user to elide all the
private domains at once and show only the public domains in
the visible Ownership Object Graph;

e User Elision: the tool can elide temporarily uninteresting ele-
ments. When the sub-structure of an object is elided, the symbol
(+) is appended to its label;

e Traceability: the tool can show for a given visual object, the
list of abstract objects and their abstract types merged into it, to
help the user fine-tune the list of trivial types;

e Navigation: the tool supports zooming, searching Alystrac-
tObject or AbsractType name, etc.

4.2 Case Study: JHotDraw

The subject system for the first case study is JHotDraw [20].
Version 5.3 has around 200 classes and around 15,000 lines of
Java. The core types in JHotDraw were organized according to the
Model-View-Controller pattern as follows:
® Model: consists oDrawing, Figure, etc. ADrawing iS com-
posed ofFigures which know their containin@rawing. A
Figure has a list ofHandles to allow user interactions;
e View: consists oDrawingEditor, DrawingView, etc.;
e Controller: includesHandle, Tool andCommand. A Tool is

used by @rawingView to manipulate drawing. A Command

encapsulates an action to be executed.

Annotation Process.JHotDraw was annotated without making
any structural refactoring such as extracting interfaces, etc. Since
JHotDraw Version 5.3 did not use generic types and to improve
the precision of the analysis, we used Eclipse refactorings [14] to
infer the most specific generic types of containers sucheasor
— and prevent objects of typkctor<Handle> and those of type
Vector<Figure> from getting merged. The annotation process is
described in detail elsewhere [1].

Ownership Object Graph. We made use of the visualization
during the annotation process: for instance, visualizing the anno-
tations encouraged us to make more use ofciihieed annotation
sinceowned pushes objects down in the ownership hierarchy and
avoids cluttering the top-level domains.

The list of trivial types includes interfaces implemented by
many classes, e.gStorable, Animatable, constant interfaces,
e.g., SwingConstants?, as well as interfaces implementing the
Observer design pattern, e.giewChangeListener. Both Tool
and Command implementViewChangeListener and are in the
Controller domain, so they may get merged otherfise

Evaluation. Existing compile-time analyses [40, 19] cannot
produce, for a program the size of JHotDraw, a readable flat object
graph that fits on one page (See other visualizations [2]). The

program using our approach is shown in Figure 11 and clearly
illustrates the Model-View-Controller design.
Each gray box corresponds to a “canonical object” that repre-

names were not particularly informative and are not shown).
In the visualization, theController domain clearly shows

depth-limited projection of the visual graph —the depth is user- Command, Handle and Tool instances. The self-edge drvol
selectable but cannot be too large. The user can interactivelyis explained by the fact that aindoableTool wraps aTool
select an object as the root of the graph to view its substructure; and similarly, arindoableCommand wraps aCommand. TheView

e Trivial Types: the tool allows the user to specify an optional

list of trivial types;

¢ Design Intent Types:the tool allows the user to specify an

optional list of design intent types for labelling objects;

e Object Labels: objects can be labelled with an optional field

domain shows instancesbfawingEditor (the application itself)
andDrawingView. TheModel domain shows instancesBfgure:

2nheriting from a constant interface to access the corstaithout qual-
ifying them is a bad coding practice, the Constant Intertaigpattern[6|

name or variable name and an optional type name. The type ltem #17] and Java 1.5 suppoststic importsto avoid it.
used in the label consists of a least-upper-bound type or a design3 The tool currently scans field and variable declarations ramidobject

intent type as discussed earlier;

allocations as discussed in Section 2.
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aFigure has one or mor@onnectors that define how to locate a
“connection point”.

Understanding whyprawing did not appear in théodel tier
led us to discover thaitandardDrawing, the base class imple-
menting thedrawing interface, extendSompositeFigure, thus a
Drawing is-aFiguré!. Although this is not a design probleper se
itis inconsistent with the design intent in the cdteamework pack-
age: there, interfacBrawing does not extend interfadeigure.

refactored to us&ector<Vector<Node>>. The annotation pro-
cess is described in detail elsewhere [1].

Evaluation. The Ownership Object Graph in Figure 12 shows
clearly the core HillClimber top-level objectsindow, canvas,
engine andgraph. Similarly, theSearch objectin thelogicTier
domain merges many instances of sub-classes of §&s<h such
asMCHSearch, RandSearch, etc.

The Graph base class declaresnades:Vector<Node> field

This finding was unexpected in a framework as carefully designed and its subclas#illGraph refers to that same object. Generic
and as widely studied as JHotDraw. Although a class diagram could types improved the precision of the analysis and prevented the

reveal that &8tandardDrawing iS aFigure, the Ownership Ob-
ject Graph quickly pinpoints that.
The top-level domains have only 28 objects even though JHot-

Draw has 200 around types and presumably each type is instanti-
ated at least once. This illustrates how the properties of the Owner-

merging of edges:Vector<Edge> and nodes:Vector<Node>.
Thegraph:Graph object merges botGraph andHillGraph and
shows objectaodes andedges in its owned domain.

Since a domain is introduced where it is declared and then
is inherited according to therotected semanticsHillGraph

ship Object Graph provide more abstraction and more design intentand Graph share the samewned domain. However, when two

than a visualization of the raw object graph [19, 40].
In fact, designers often employ similar techniques in a design-

“unrelated” objects, e.g., Button object and @anel object get
merged (since they have a non-trivial least upper bound) and each

oriented class diagram, i.e., one not retrieved from an implementa- has its declaredwned domain, it is possible to have multiple

tion using a tool: amerge interface and abstract implementation

domains of the same name in a given visual object — in that case,

class— although important for code reuse, such a code factoring is a domain name is fully qualified with the type name where it was

often unimportant from a design standpoint; angbpsume a set
of similar classes under a smaller set of representative classes

declared in the abstract graph.
The visualization highlights the need to potentially make object

showing many similar subclasses that vary only in minor aspects on edgesIn, the incident edges on a node, encapsulated inside object
a class diagram often leads to needless clutter [36, pp. 139-140]. Itnode:Entity. This would require changing the annotations and
seems the JHotDraw designers used similar techniques to presenthe code as necessary to abide by the rules of the type system. This

the JHotDraw design in their tutorials [36].

In the Ownership Object Graph, all runtime figure objects ref-
erenced in the program by tlfeégure interface, its abstract imple-
mentation classbstractFigure, or any of its concrete subclasses
DecoratorFigure, ConnectionFigure, etc., appear as a single
Figure object in theModel domain.

The distinction between public and private domains within each

object enables eliding all the private domains at once to show only

the top-levelModel, View and Controller domains in object
Main. To illustrate the hierarchy however, objects were selected in-
dividually and their internals were elided — those have the symbo
(+) appended to their labelBrawingEditor shows its internals:
its privateowned domain has aficonkit object among others, and
IconKit has its own substructure, but the latter is elided.
Currently, the visualization does not show multiplicities: at run-
time, there is onerawingEditor (the application itself), one
IconKit, but one or mor®@rawingView objects.

4.3 Case Study: HillClimber

in turn would push the object down the ownership tree and remove
it from the top-level domain.

Themediator:ICanvasMediator object was introduced dur-
ing a refactoring to decouple the code [1] and mediate between the
graph and thecanvas. Finally, the object labeledindow:Frame
merges several user interface objects representing dialogs, etc., thu
illustrating the type abstraction property.

5. Related Work

Program Visualization. There is a large body of software visual-
ization research where the emphasis is on novel kinds of visualiza-
tion using colors, shapes, 3D, etc. Our contribution in this paper is
not the visualizatioper se— we're using the simple but effective
GraphViz package — it is in having developer-specified ownership
annotations drive a sound compile-time visualization of the pro-
gram'’s execution structure.

Many dynamic analyses visualize the execution structure but
ignore ownership: they instrument the running program, filter the
program traces based on various query criteria and then visualize

By many accounts, JHotDraw is considered the brainchild of ex- the summarized information in novel ways, often with a granularity

perts in object-oriented design and programming. In comparison, not larger than an object or a class[23] 37, 35, 17, 39, 30, 10]. On
the subject system for this case study, HillClimber, is another the other hand, such analyses handle programs for which source
15,000 line application that was mainly developed and maintained code is not available, do not require source code annotations or

by undergraduates.

In HillClimber, the applicatiorwindowuses aanvaso display
nodesandedgesof agraphin order to demonstrate algorithms for
constraint satisfaction problems provided by émgjine

Annotation Process.HillClimber was organized into data
ownership domain to store thgraph, a ui domain to hold the
user interface elements, andlegic domain to hold the engine,

changes to the source code to add the annotations and allow more
fine-grained user interaction in producing the visualization.
Ownership Annotation Inference. Annotation inference is an
active area of research using both static [4, 9, 24, 25] and dynamic
[41] analyses. However, a fully automated inference cannot create
multiple public domains in one object and meaningful domain pa-
rameters to represent the design intent, such as the sepadate

search objects, and associated objects. Unlike JHotDraw, addingview, andController in the JHotDraw case study. Existing in-

annotations to HillClimber involved refactoring to decouple the

code. Again, to increase the precision of the analysis, we refac-

ference algorithms produce for each class a long list of domain pa-
rameters, often place each field in a separate domain, or annotate

tored the code to use generics, mostly automatically using Eclipse. many objects withshared or 1ent [4].

However, Eclipse cannot infer the generic type of a variable of type
Vector storing arrays oflode objects: such code was manually

4 According to the Release Notes for JHotDraw Version 5.%,¢hange was
made to support insertingbrawing as aFigure inside anothebrawing.

Dynamic Object Graph Analyses.Dynamic analyses can infer
the ownership structure of a running program based on its heap
structure. Although these techniques have the advantage of not
requiring abundant source code annotations, they can only infer the
equivalent ofowned, shared, lent andunique annotations. This
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Figure 11. Top-level Ownership Object Graph for JHotDraw. This graph was latchatomatically by GraphViz without user intervention.
The edges correspond to field references.

10 2007/7/3


_system__system_system_Model_myUndoableActivity_myUndoableActivity
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Figure 12. Ownership Object Graph for HillClimber, laid out automatically by Graphiéz without user intervention.

assumes a strict owner-as-dominator hierarchy which is not flexible show the ownership structure in a single run of a program, the Own-
enough to represent design patterns such as the Composite patterrership Object Graph obtained at compile time is prescriptive and
Rayside et al. [33] characterize sharing and ownership and shows ownership relations that will be invariant over all program
produce a matrix display of the ownership structure. Similarly, runs. Third, a dynamic analysis cannot be used on an incomplete
Mitchell [27] uses lightweight ownership inference to examine a program still under development or to analyze a framework sepa-
single heap snapshot rather the entire program execution, and scalegately from a specific instantiation. Finally, some dynamic analyses
the approach to large programs through extensive graph transfor-carry a significant runtime overhead — axtB0x slowdown in
mation and summarization. Flanagan and Freund [12] proposedone case [12], which must be incurred each time the analysis is
a dynamic analysis to reconstruct each intermediate heap from arun, whereas the main cost of adding annotations is incurred once.
log of object allocations and field writes, then apply a sequence  Static Object Graph Analyses.Several static analyses produce
of abstraction-based operations to each heap, and combine the revarious object graphs, but they do not use ownership and do not
sults into a single object model that conservatively approximates all convey design intent. ANGEA [40] produces a flat object graph.
observed heaps from the programs execution. Their toak o WOoMBLE [19] uses syntactic heuristics and hard-coded heuristics
VARK, has the notion of ownership and containment and uses sim- for container classes to obtain an object model including multiplici-
ple heuristics to choose the most appropriate generalization. Nobleties, but its analysis does not attempt to be sound and the flat object
et al. [18, 28] and Potanin et al. [31] also process heap snapshotsgraph it produces does not scale to large programs: in particular,
and show both matrix and graph visualizations of ownership trees, the WoMBLE visualization of the 15,000-line JHotDraw does not
indicating an object’s “aliasing shadow” and “interior”. fit on one readable page [2] nor does it convey the Model-View-
There are several problems with dynamic analyses: first, run- Controller design.
time heap information does not convey design intent. Second, ady-  AJAX [29] uses an alias analysis to build a refined object model
namic analysis may not be repeatable, i.e., changing the inputs oras a conservative compile-time approximation of the heap graph
executing different use cases might produce different results- Com reachable from a given set of root objects, and simplifies it through
pared to dynamic ownership analyses — which are descriptive anda series of transformations. Howevenax does not use ownership
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and produces flat object graphs. Althougha4 has been evaluated

on a system with as many as 36,000 lines of code, the object graphs

it produces are manually post-processed to become readable, and ) I

its heavyweight analysis does not scale to much larger programs. [13] g' g{g?fgéﬂt’eﬁaég'g?ét?g'&H'é'?&'iﬂgefb?j a’:l/aeEI?L?Si 32'0%%’&' and
Lam and Rinard [22] proposed a type system for describing ' ) : } 9 ' -

and enforcing design: developer-specified annotations guide the 141 R: M. Fuhrer, . Tip, A. Kiezun, J. Dolby, and M. Keller ffigiently

B 4 . . : Refactoring Java Applications to Use Generic LibrariesEGOOPR,
abstraction by merging objects witbkensand merging methods 2005. g PP

with subsystemsand are used to produce a flat object graph, that [15] . Gamma, R. Helm, R. Johnson, and J. Viissideesign Patterns:

was evaluated on a 1,700-line program. However, the tokens and Elements of Reusable Object-Oriented Softwakddison-Wesley,

subsystems are statically fixed (unlike domains, all instances of a 1994.

class use the same tokens declared in the class), so they do nofl6] E. R. Gansner and S. C. North. An Open Graph Visualizafigstem

model runtime hierarchy, do not describe data sharing as precisely ~ and its Applications to Software Engineerin§oftware Practice &
. . : . Experience30(11), 2000.

as ownership domains, and do not handle inheritance. In contrast, [17] J. Gargiulo and S. Mancoridis. Gadget: A Tool for Extiag the

2 Visualization: ownership Smnotations are useful i thelr own gt | DY7amie SIUELTE of Java Programs. 2001

as demonstrated by the extensive research into ownership types[ls] L Hill, J. Noble, and J. Potter. Scalable VisualizaBoof Object-

- . . Oriented Systems with Ownership Treeslournal of Visual
[8,(7,/4) 3, 11]. Finally, our approach handles inheritance. Languages and Computing3(3), 2002.

Rayside et al. had proposed earlier a static object graph analysis|1g] p. jackson and A. Waingold. Lightweight Extraction object
based on Bacon and Sweeney’s Rapid Type Analysis (RTA) [5] Models from BytecodelEEE Trans. on Softw. Eng27(2), 2001.
but indicated that it produced unacceptable over-approximations [20] JHotDraw.http://www. jhotdraw.org/, 1996.
for most non-trivial programs [34]. [21] R. Kollman, P. Selonen, E. Stroulia, T. S¥sand A. Zundorf. A

Study on the Current State of the Art in Tool-Supported UMasBd
Static Reverse Engineering. WICRE 2002.

[22] P.Lam and M. Rinard. A Type System and Analysis for théokuatic
Extraction and Enforcement of Design Information. EEOOR,
2003.

[12] C. Flanagan and S. N. Freund. Dynamic Architecture Exioa. In
Workshop on Formal Approaches to Testing and Runtime \&tiii,
006.

6. Conclusion

Ownership domain annotations with meaningful domain names add
hlerarchy toa ﬂf”‘t o_bJeCt graph, precision about lnter-domc_aun al'a_s' I[23] D. B. Lange and Y. Nakamura. Interactive VisualizatidrDesign
ing, convey design intent, and enable an instance-based hierarchica Patterns Can Help in Framework UnderstandingD®PSLA 1995.
visualization of the execution structure of a system, to complement 4] v. iy and A. Milanova. Ownership and Immutability Infevee for
views of the code structure provided by existing approaches. UML-based Object Access Control. I6SE, 2007.
Evaluating the approach on two previously annotated Java pro- [25] K -K. Ma and J. S. Foster. Inferring Aliasing and Enaalpsion

grams consisting of 15,000 lines of code each produced in both Properties for Java. IBOPSLA 2007. To appear.

cases a visualization that fits on one page and conveys the complex|2g] S. McCamant and M. D. Emst. Early Identification of Incaatipili-
design intent better than existing compile-time approaches that do ties in Multi-Component Upgrades. EICOOR 2004.

not rely on ownership annotations. [27] N. Mitchell. The Runtime Structure of Object OwnersHipECOOR,

2006.

[28] J. Noble. Visualising Objects: Abstraction, Encapsiain, Aliasing,
and Ownership. Ihectures on Software Visualizatio?002.

[29] R. W. O’Callahan. Generalized Aliasing as a Basis for Program
Analysis ToolsPhD thesis, Carnegie Mellon University, 2001.

[30] R. Oechsle and T. Schmitt. JAVAVIS: Automatic Programudb
ization with Object and Sequence Diagrams using the Javad>ebu
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