
 1

Differencing and Merging of Architectural Views

Marwan Abi-Antoun Jonathan Aldrich Nagi Nahas Bradley Schmerl David Garlan
Institute for Software Research Intl, Carnegie Mellon University, Pittsburgh, PA 15213 USA
{mabianto+, aldrich+}@cs.cmu.edu, nnahas@acm.org, {schmerl+, garlan+}@cs.cmu.edu

Abstract

Existing approaches to differencing and merging
architectural views are based on restrictive assump-
tions such as requiring view elements to have unique
identifiers or exactly matching types.

We propose an approach based on structural in-
formation by generalizing a published polynomial-time
tree-to-tree correction algorithm (that detects inserts,
renames and deletes) into a novel algorithm to addi-
tionally detect restricted moves and support forcing
and preventing matches between view elements. We
incorporate the algorithm into tools to compare and
merge component-and-connector (C&C) architectural
views. Finally, we provide an empirical evaluation of
the algorithm on case studies to find and reconcile
interesting divergences between architectural views.

1. Introduction

The software architecture of a system defines its
high-level organization as a collection of runtime com-
ponents, connectors, their properties and constraints on
their interaction. Such an architecture is commonly
referred to as a component-and-connector (C&C) view.
As architecture-based techniques become more widely
adopted, software architects face the problem of recon-
ciling different versions of architectural models includ-
ing differencing and sometimes merging architectural
views. For instance, during analysis, a software archi-
tect may want to reconcile two C&C views represent-
ing two variants in a product line architecture [5]. Once
the system is implemented, an architect may want to
compare a high-level conceptual C&C view with a
C&C view retrieved from the implementation (using
architectural recovery techniques) to discover imple-
mentation-level violations of the architectural intent.

Several techniques and tools have been proposed for
differencing and merging C&C views. Most techniques
do not detect differences based on structural informa-
tion: they assume that elements have unique identifiers

[2, 13, 17] or match two elements if both their labels
and their types match [5], which is not possible when
dealing with views at different levels of abstraction.
Many techniques detect only a small number of differ-
ences: for instance, ArchDiff [5] only detects insertions
and deletions, possibly leading to the loss of informa-
tion when elements are moved or renamed. Tracking
changes using element-level versioning [12, 19] can
infer high-level operations such as merges, splits or
clones in addition to the low-level operations such as
inserts and deletes, but requires an upfront investment
in tool building and cannot be used on existing models.

In this paper, we propose an approach that over-
comes some of these limitations. Our contributions are:
• An approach for differencing and merging two

architectural views based on structural informa-
tion, using tree-to-tree correction algorithms to
identify matches and classify the changes between
the two views. Optional type information can pre-
vent matches between incompatible view elements,
speeding execution and improving match quality.

• A generalization of a recently published optimal
tree-to-tree correction algorithm for unordered la-
beled trees [22] that detects renames, inserts and
deletes into a novel polynomial-time tree-to-tree
correction algorithm that additionally detects re-
stricted moves and supports forcing and preventing
matches between view elements.

• A set of tools incorporating such algorithms for the
semi-automated synchronization of C&C views.
One tool can synchronize a high-level C&C view
with a C&C view retrieved from an implementa-
tion. Another tool can more generally synchronize
two C&C views.

• An empirical evaluation of the algorithms and the
associated tools on realistic programs.

The paper is organized as follows. Section 2 de-
scribes the challenges in differencing and merging
structural views, the underlying assumptions and the
limitations of our approach. Section 3 describes our
novel tree-to-tree correction algorithm. Section 4 de-

 2

scribes how the algorithm is used to synchronize C&C
views. Section 5 presents applications of the approach
in case studies on real systems. Finally, we discuss re-
lated work and conclude.

2. Architectural View Differencing

Software architects rely on multiple architectural
views, where a view is a representation of a set of sys-
tem elements and the relationships between them. Since
a view can generally be described as a graph, view dif-
ferencing and merging is a problem in graph matching.

Graph matching measures the similarity between
two graphs using the notion of graph edit distance [7],
i.e., produces a set of edit operations that model incon-
sistencies by transforming one graph into another.
Typical graph edit operations include the deletion, in-
sertion and substitution of nodes and edges. Typically a
cost is assigned to each edit operation. Then the edit
distance of two graphs g1 and g2 is found by searching
for the sequence of edit operations with the minimum
cost that transform g1 into g2. A similar problem formu-
lation can be used for trees; however, tree edit distance
differs from graph edit distance in that operations are
carried out only on nodes and never directly on edges.

Graph matching is NP-complete in the general case
[7]: graphs with unique node labels can be processed
efficiently [8] which explains why many approaches
make this assumption. The most ambitious optimal
graph matching algorithms (i.e., if a global minimum of
the matching cost exists, it will be found) can handle at
most a few dozen nodes [7, 16]. Non-optimal heuristic-
based algorithms are more scalable but often place
other restrictive assumptions: for instance, the Similar-
ity Flooding Algorithm (SFA) “works for directed la-
beled graphs only. It degrades when labeling is uniform
or undirected, or when nodes are less distinguishable.
[It] does not perform well […] on undirected graphs
having no edge labels” [14].

Several efficient algorithms have been proposed for
trees, a strict hierarchical structure, so we focus on hi-
erarchical architectural views. While not all architec-
tural views are hierarchical, hierarchy is often used for
scalability to attain both high-level understanding and
detail. In a C&C view, the tree-like hierarchy corre-
sponds to the system decomposition, but cross-links
between the system elements form a general graph.
Other architectural views such as module views have
similar characteristics. Many approaches [4, 18, 25] are
hierarchical, so our choice is hardly new. However, we
relax the constraints of existing approaches as follows:
• No Unique Identifiers. For maximum generality,

we do not require elements to have unique identifi-

ers [5, 13]. Making this assumption enables the use
of exact and scalable algorithms that handle thou-
sands of nodes [8]. Unfortunately, architectural
view elements often do not have unique identifiers.

• No Ordering. In the general case, an architectural
view has no inherent ordering among its elements.
This suggests that an unordered tree-to-tree correc-
tion algorithm might perform better than one for
ordered trees. Many efficient algorithms are avail-
able for ordered labeled trees (e.g., [20]). In com-
parison, tree-to-tree correction for unordered trees
is MAX SNP-hard [27]. Some algorithms for un-
ordered trees achieve polynomial-time complexity,
either through heuristic methods (e.g., [6, 18, 24])
or under additional assumptions (e.g., THP [22]).

• Renames. Names are often modified during soft-
ware development and maintenance. Architectural
view elements may not have persistent names or
may be assigned automatically generated names.
This suggests that an algorithm should be able to
match renamed elements. A number of existing al-
gorithms claim to detect renames, but assume that
a large majority of nodes have exactly matching
information [6, 18]. Identifying a renamed element
as being deleted and then re-inserted, while pro-
ducing structurally equivalent views, results in los-
ing properties about view elements that are crucial
for architectural analyses. For our purposes, a
matched node is a node with either an exactly
matching or a renamed label.

• Hierarchical Moves. Architects often use hierar-
chy to control complexity. However, two architects
often differ in their use of hierarchy: components
expressed at the top level in one view could be
nested within another component in some other
view. We would like to detect sequences of node
deletions in the middle of the tree resulting in
nodes moving up a number of levels in the hierar-
chy, and sequences of node insertions in the mid-
dle of the tree resulting in nodes moving down in
the hierarchy (by becoming children of the inserted
nodes), as shown in case T1’ in Figure 1.

• Manual Overrides. It is possible to encounter
cases involving structural aberrations that may lead
a fully automated algorithm to incorrectly match
top-level elements between two trees and produce
an unusable output. Because of the dependencies
in the mapping, these incorrect matches cannot be
easily manually corrected after the fact. Instead,
we required a feature not typically found in tree-to-
tree correction algorithms: allow the user to force
or prevent matches between certain view elements,
and have the algorithm take these constraints into

 3

account to produce an improved overall match.
The user can specify any set of constraints as long
as they preserve the ancestry relation between the
forcibly matched nodes, i.e., if a is an ancestor of
b, a is forcibly matched to c, and b is forcibly
matched to d, then c must be an ancestor of d.

• Optional Type Information. Architectural views
may contain untyped elements or have different or
incompatible type systems. This is the case when
comparing views at different levels of abstraction
such as a conceptual-level (as-designed) view with
an implementation-oriented (as-built) view. There-
fore, an algorithm should not rely on matching
type information. It should be able to recover a
correct mapping from structure alone if necessary
or from structure and type information if type in-
formation is available. However, an algorithm
could take advantage of type information (when
available) to prune the search tree by not attempt-
ing to match elements of incompatible types.

• Disconnected/Stateless Operation. For maximum
generality, we assume a disconnected and stateless
operation, i.e., no monitoring or recording of the
structural changes is taking place while the user is
modifying a given view as in [12, 19].

• Comparable Views. The two views being com-
pared and merged have to be somewhat structur-
ally similar. When comparing two completely dif-
ferent views, the algorithm could trivially delete all
elements of one view and then insert all the ele-
ments in the other view.

3. Tree-to-Tree Correction

In this section, we describe a novel algorithm for
unordered labeled trees, MDIR (Move-Delete-Insert-
Rename), which generalizes a recent optimal tree-to-
tree correction algorithm, denoted as THP [22]

3.1. Problem Definition

We first give an unambiguous definition of the
problem, adapted from [20]. We denote the i th node of
a labeled tree T in the postorder node ordering of T by
T[i]. |T| denotes the number of elements of T. We de-
fine a triple (�, T1, T2) to be a mapping from T1 to T2,
where ��is any set of pairs of integers (i,j) satisfying:
1) 1<= i <=|T1|, 1<= j <= |T2|;
2) For any pair of (i1,j1) and (i2,j2) in �,

a) i1 = i2 if and only if j1 = j2 (one-to-one)
b) T1[i 1] is an ancestor of T1[i 2] if and only if T2[j 1] is
an ancestor of T2[j 2] (ancestor order preserved).

We will use �� instead of (�,T1,T2) if there is no
confusion. To delete a node N in tree T, we remove
node N and make its children become the children of
the parent of N. To insert a node N in tree T as a child
of node M, we make N one of the children of M, and
we make a subset of the children of M become children
of N (See Figure 1). Renaming a node only updates its
label and preserves any properties associated with it. In
comparison, THP does not allow any insertions or dele-
tions in the middle of the tree and works under the as-
sumption that if two nodes match, so do their parents
(i.e., only subtrees can be inserted or deleted).

Suppose we obtain a mapping ��between trees T1
and T2. From this mapping we can deduce an edit
script (a sequence of edit operations) to turn T1 into T2.
First, we flag all unmatched nodes in the first tree as
deleted and all unmatched nodes in the second tree as
inserted. We order the operations so that all deletion
operations precede all insertion operations, delete the
nodes in order of decreasing depth (deepest node first),
and insert them in increasing depth order. To define the
cost of an edit script, for each node in the source tree,
we choose a cost of deletion (not necessarily the same
for all nodes); for each node in the destination tree we
choose a cost of insertion (again, not necessarily the
same for all nodes), and for each pair of nodes (n, m)
where n is some node in T1 and m in T2, we choose a
cost of changing the label of n into the label of m (for
example, string-to-string correction [23]) changes “ba-
nana” into “ananas” with a cost of two). The cost of
the edit script is then equal to the sum of the costs of
insertion, deletion, and renaming operations it contains.
Therefore, any given mapping has a unique cost. So, to
find an optimal edit sequence, it is sufficient to find an
optimal mapping.

3.2. Explanation of the Algorithm

The algorithm’s pseudo-code is given in Figure 2.
Let C(i,j) be the cost of the optimal mapping from the
subtree rooted at i to the subtree rooted at j. A set of
nodes S(i) is a successor set of node i if it is a subset of
the set of descendents of i and none of the elements of
S(i) is an ancestor of another, and each node of the sub-
tree rooted at i is either a descendent or an ancestor of
an element of S(i).

Figure 1: Edit operations (adapted from [20]).

 4

���������	�
���	����
�
������	���������������
�������������	��������������	
��������
��
������������������������������
�����
�����������������������������
�
����	�	����
����������	��
�����
������	�
����
��	���	����
�
������	���������������
����������	
����	
����	���������
��
���������������������������������
�����
�����
��������	�����������	� 	! "!�	������������
��������	��������	
��
������	�������"��
����������������
��������������	�
������	
����
����#���������� !���������
�
������	�����������
�	
��������������������	
��
����$%����$&�
������������� ! !��&'��������
��	�����
�
������	���
������
�∈�������������� 	! "!����
�����
��	����������������
��
�������
���
���	���
���
����
�������
���
���"��	
��
����	��������	
��
������	�������"��
��������	��	�"������������
������	�	���	����	(�(��)���	����
������	
���
���������������
�
�����	�
���������
��"����������
������������	� 	! "!�����%�*���������	� 	! "!+������
�����������	�������
����
,����������,����������,����������,�����������'-.�'-.�'-.�'-.����+/+/+/+/��������0-1�,.2�3'4.3�0-1�,.2�3'4.3�0-1�,.2�3'4.3�0-1�,.2�3'4.3�/+/+/+/+�
-
����-
����-
����-
��������
$����$%��
	��������������������
$����$&������
����������������������
�$%�	
���$&��
5�	�"���������
����	
�*��*���	
���������	�
�������
���50�35�	��	
�$%����50�35�"��	
�$&��

���	
���	
���	
���	
����
,���������$%��
��$&�
�����

��
��
��
���	�6�%����������$%(�	7���
��
��
��
��
���"�6�%����������$&(�	7���
����������������� 	! "!�6��30.�8�	��"��
������������	� 	! "!�6������������������� 	! "!��9�5�	�"��
#3$�3�$�0$�8-1#�$%(�	7���$&(�	7���

3
�3
�3
�3
��
�
,����������,����������,����������,��������������30.�8�30.�8�30.�8�30.�8�����+/+/+/+/��������3$4,�'0$0��$.4�$4.3�3$4,�'0$0��$.4�$4.3�3$4,�'0$0��$.4�$4.3�3$4,�'0$0��$.4�$4.3��:2.��055-1#��:2.��055-1#��:2.��055-1#��:2.��055-1#�����0�0�0�0�;;;;$.0�;�$.0�;�$.0�;�$.0�;�/+/+/+/+����
-
����-
����-
����-
��������
	��"��	
�	����	
�������$%��
��$&��������	�����

�����
�����
�����
�����
����
�5	����
�
������	����������
�	
�����������
��
������	
���
�����
������
���	���������
������
���"��
���	
���	
���	
���	
����
5���5���������	����
���	������)����������	���������
��
���
�	��
��)�	���������
��
���
�"�
�����5�������	
�������������	����)��
�������������	�
�6���������	���
���������
������	�
�6��������	���
�������������6�	

	
	���
�0�;$.0�;�<�+/�	
���/+��5��<�+/������
�����/+��
�����
�����
�����
�����
����������	�
�

3
�3
�3
�3
�����
����
,����������,����������,����������,��������������0�;0�;0�;0�;$$$$.0�;�.0�;�.0�;�.0�;�+/+/+/+/��������30.�8�:2.�0�#22'��0,30.�8�:2.�0�#22'��0,30.�8�:2.�0�#22'��0,30.�8�:2.�0�#22'��0,,-1#��3$=331��4,-1#��3$=331��4,-1#��3$=331��4,-1#��3$=331��4����$$$$.33��.33��.33��.33��/+/+/+/+����
-
����-
����-
����-
��������
	
��������	�	�
���������	
��	���5�
5���	����
���	����
�
��������
���������������	��
�����
������������
�����������
����������
���	
������
������	�
�

���	
���	
���	
���	
����
	
	
	
	
���
�������
���
�5���
������������������
������	�
���+/�����������/+�
��	
	
	
	
��������
������9�������
������������������>������������
��������������	�
�6������
������	�
�
��������������6������
������
����������
�����
�����
�����
����
����

������
������
������
������������
����6����
��	
	
	
	
�5������	
�����	
����
��	
	
	
	
��������
������	�
�����������
��	
�����
�����
���
����	������
��
�����������
��
�����
��������
�	
����
�	
����
�	
����
�	
������
��	
	
	
	
������	
������������
������	
���	����������
������
����������
�	
����
�	
����
�	
����
�	
���
��0���������
���������������
�������������	
�1�������
��#��������������
��3��
�����	
	
���������	
����������	��
��				

���3�9�1�������?6�������������
����������
�	
���
�	
���
�	
���
�	
���
��0�������������
������	�
�
���0�;$.0�;�	
���9%��5��1��������
��.��������
���������
������	�
��

3
�3
�3
�3
�����
����
,����������,����������,����������,����������####3$3$3$3$����3�$3�$3�$3�$����0$�8-1#�0$�8-1#�0$�8-1#�0$�8-1#�+/+/+/+/����''''3'4�3�$83�2,$-�05��03'4�3�$83�2,$-�05��03'4�3�$83�2,$-�05��03'4�3�$83�2,$-�05��0,,-1#�,,-1#�,,-1#�,,-1#�/+/+/+/+����
-
����-
����-
����-
��������
	��"����	���
�
��������������
������������������	��������	
��������
���������������

���	
���	
���	
���	
����

������
������
������
������������
����6�����
��	
	
	
	
�������������� 	! "!�
��0������������#�����������
��#3$�3�$�0$�8-1#����
��

3
�3
�3
�3
�����
����

Figure 2: Pseudo-code of the algorithm: parameter R and forcing/preventing matches are not shown here.

 5

Given two sets S(i) where i belongs to T1 and S(j)
where j belongs to T2, it is possible to define the opti-
mal mapping of S(i) to S(j) as a one to one function
from a subset of S(i) into S(j) with least cost, where the
cost of mapping element k of S(i) to element l of S(j) is
equal to cost of the optimal mapping of the subtree
rooted at k to the subtree rooted at l, and the cost of
leaving an element k of S(i) without image is equal to
the cost of deleting the whole subtree rooted at k, and
the cost of having an unmatched element l in S(j) is
equal to the cost of inserting the entire subtree rooted at
l. This suggests that if we know all the costs C(d1,d2)
where d1 is a descendent of i and d2 is a descendent of
j, it is possible to compute C(i, j) by considering all
possible pairs of sets (S(i),S(j)), and for each such pair,
getting the minimum weight bipartite matching defined
by the entries of the cost matrix C corresponding to the
elements of S(i) and S(j).

Finally, let L(i,j) be the cost of changing the label
of node i in the source tree to the label of node j in the
destination tree. The minimum cost obtained added to
L(i, j) will be equal to C(i, j). L(i,j) uses string-to-string
correction to evaluate the intrinsic degree of similarity
between the labels of two nodes, using a standard algo-
rithm to find the longest common subsequence [23].

We choose the best pair (S(i),S(j)) using a branch-
and-bound backtracking algorithm. Let DESC(i) denote
the set of descendents of i. We try to choose a subset Q
of DESC(i)�DESC(j) with minimal cost. This is done by
trying to add to Q one element of DESC(i)�DESC(j)
such that the new element in Q is consistent with the
previous elements (no same node can be matched to
two different nodes, nor can a node appear in an ele-
ment of Q, if either a descendent or an ancestor already
appears in some element of Q). The algorithm back-
tracks each time it determines that there are no more
valid pairs to add, or when it determines that the cost of
the current branch will be too large to match the best
solution already discovered to date. As the problem is
NP-complete, the approach outlined above can quickly
become intractable without additional constraints.

We chose to enforce an upper bound B on the sum
of distances between elements of S(i) and the closest
child of i (respectively, S(j) and j) with B typically a
small integer. The reasoning behind this constraint is
that nodes are not usually moved too far from their
original positions in a hierarchy, and it is relatively rare
for several non-leaf siblings to be deleted at the same
time. The bound B has the additional benefit that only
relatively small neighborhoods of each node have to be
considered for the computation of the optimal cost of a
single subtree pair, enabling us to perform many opera-
tions very efficiently using bit manipulation. For exam-

ple, during the backtracking search, checking whether a
node is still available is a single bitwise AND operation
instead of a time-consuming loop over an array.

MDIR can be considered a generalization of THP
because THP only handles the case where B=0 (i.e.,
only the children of a node can be in a successor set of
that node), producing a fully polynomial time algorithm
that is typically much faster than our generalized algo-
rithm. Handling non-zero values of B allows our algo-
rithm to detect hierarchical moves. MDIR is guaranteed
to find the optimal matching within the constraints of
the bound B, provided it is allowed to run long enough.

On trees with more than a few hundred nodes and
when the average degree of a non-leaf node is greater
than four, it is necessary to limit the running time by
enforcing a bound R on the number of recursive calls of
the backtracking search corresponding to a given sub-
tree pair. Although bound R removes the guarantee of
optimality by limiting the number of recursive calls, the
algorithm still obtains good results empirically. Since
the algorithm uses the branch-and-bound technique, a
good match allows for tight bounds and therefore early
cutting of branches. The search terminates normally for
matrix entries actually corresponding to good matches
and is interrupted only when the match is not good.
This allows the algorithm to return an optimal match
even if the backtracking is interrupted during the com-
putation of cost matrix entries corresponding to
matches that are not part of the optimal solution.

Forcing and Preventing Matches. MDIR also
supports the ability to force and prevent matches be-
tween a node in tree T1 and another node in tree T2.
Preventing a match between two nodes i and j is done
by assigning a large cost to the corresponding entry in
the cost matrix C[i][j] . Forcing a match between two
nodes is more difficult, due to the necessity of avoiding
the deletion of the forcibly matched nodes and at the
same time allowing the deletion of some of their ances-
tors. Additional details can be found in [1].

Runtime and Memory Complexity. An upper
bound on the running time of the MDIR algorithm is as
follows: let X be the set of nodes of both trees, x be an
element of X, p be the maximum allowable size of a
connected subgraph of the tree that can be deleted or
inserted in the middle of the tree, f(x,p) be the number
of nodes that lie within a distance of (p+1) from x, and
F(p) = max{f(x,p): x∈X}. Then MDIR has a worst
case running time of O((2*F(p))! N2). In our implemen-
tation, pruning the search tree by using both tree struc-
ture and semantic information (e.g., type information)
and being able to limit the running time by returning a
possibly suboptimal solution, make the average case
considerably faster than the worst case. In practice, the

 6

observed runtime is O(K N2), with K a large constant.
In comparison, THP has a worst case running time of
O(d3 N2) where d is the maximum degree of a tree and
d << N [22]. Regarding memory requirements, both
THP and MDIR can be implemented in O(N2) space at
the expense of implementation complexity. We imple-
mented THP in O(d N2), and MDIR in O(b N2), where
b is a large constant factor.

3.3. Empirical Evaluation

Evaluating the accuracy of the algorithm is neces-
sary because bounds B and R remove the guarantee of
optimality. The test data was built as follows: 1) gener-
ate a random tree with random labels taken from a pool
of 10 possible names so as to be non-unique; 2) copy
the tree; 3) delete a random number of nodes in the
copy, including both internal and leaf nodes; 4) rename
a number of nodes in the copy; 5) and finally, compare
the two trees using THP and MDIR. The deletion op-
erations in the middle of the tree correspond to the re-
stricted moves that MDIR detects. Additional details
can be found in the companion technical report [1].

The length of an optimal edit script must necessar-
ily be equal to the sum of the number of deletion and
the number of renaming operations. Table 1 shows for
different tree node sizes, the length of the optimal edit
script, the length of the actual edit script and the run-
ning time (in seconds) for both THP and MDIR.

On average, THP produced edit scripts sub-
optimal by about 120% whereas MDIR produced edit
scripts sub-optimal by about 7%. In the worst case,
THP produced a suboptimal edit script by about 400%
whereas MDIR's worst case performance resulted in an
edit script sub-optimal by around 150%. In both cases,
accuracy deteriorated significantly when nodes of large
degree were allowed or when the trees were very dif-
ferent. MDIR’s worst case was on a source tree of 640
nodes separated from its target by an optimal edit script

of 440 operations containing both deletions and re-
names. In that case, the returned edit script was 2.5
times longer than the optimal edit script. MDIR pro-
duced good results with most trees, even when the op-
timal edit script involved 2/3 of the number of nodes.
With up to 85% of the nodes renamed and no deletions,
MDIR produced edit scripts within less than 1% of the
optimal script on trees of 640 nodes, showing that it
can recover the mapping from tree structure alone.

The improved match quality comes at a heavy run-
time cost: MDIR was about 60 times slower than THP
on average, with bound R set 100,000. As predicted,
setting bound R to 5,000 produced slightly sub-optimal
edit scripts for a noticeably reduced running time (See
[1] for additional empirical data when varying R).

In summary, MDIR has a dramatically improved
accuracy over THP and an acceptable non-interactive
performance for most common usage scenarios. Unlike
optimal graph matching algorithms, it can scale to
thousands of nodes and can handle realistic architec-
tural views, as will be demonstrated by the case studies.

4. General Approach to Synchronization

We use the tree algorithm to synchronize hierar-
chical graphs corresponding to C&C views. The struc-
tural information in a C&C view is represented as a
cross-linked tree structure that mirrors the hierarchical
decomposition of the system. The tree also includes
some redundant information to improve the accuracy of
the structural comparison: for instance, the subtree of a
node corresponding to a port includes all the port’s
involvements, i.e., all components (and their ports)
reachable from that port. Cross-links refer back to the
defining occurrence of each element and allow the user
to navigate the architectural graph. Each element is
decorated with properties (such as type information).
The type information, if provided, is used to build a
matrix of incompatible elements that may not be
matched. Additional constraints can be user-specified.

A graph representing a C&C view can generally
have cycles in it. Representing an architectural graph as
a tree causes each shared node in the architectural
graph to appear several times in several subtrees, with
cross-links referring back to their defining occurrences.
These redundant nodes, while increasing the size of the
corresponding trees, greatly improve the accuracy of
the tree-to-tree correction; however, they may be in-
consistently matched with respect to their defining oc-
currences, either in what they refer to or in the associ-
ated edit operations. We work around these inconsis-
tent matches using two passes. During the first pass, we
synchronize the strictly hierarchical information corre-

Table 1: Evaluation of MDIR (R = 100,000).

THP MDIR Case #
Nodes

Ideal
Ops Ops Secs Ops Secs

640 569 770 2 569 64 Rename

1280 857 1509 7 963 442

640 492 701 2 492 50 Delete

1280 1113 1397 5 1114 169

640 441 1076 3 1093 215 Move

1280 652 2407 9 735 471

640 288 712 2 288 65 Degree

1280 576 1194 10 576 248

 7

sponding to the system decomposition, i.e., compo-
nents, ports and representations. During the second
pass, we synchronize the edges in the graph corre-
sponding to the general graph. The post-processing
step is simple since the mapping between the nodes in
the two graphs is known at that point.

Synchronization is a five-step process: 1) setup the
synchronization; 2) optionally view and match types; 3)
view and match instances; 4) optionally view and mod-
ify the edit script; 5) confirm and optionally apply the
edit script. Because Steps 1 and 5 are straightforward,
we will only discuss Steps 2-4. In Step 2, manually
matching the type structures between the two views
(see Figure 3) can produce semantic information that
speeds up the comparison but is otherwise optional. It
can also reduce the amount of data entry for assigning
types to the elements to be created by the edit script. In
Step 3, matching instances uses tree-to-tree by: a)
building tree-structured data from the two C&C views;
b) using tree-to-tree correction to identify matches and
structural differences (Figure 4); and c) obtaining an
edit script that can be used to merge the two views.

The differences found during structural matching
are shown in each tree by overlaying icons on the af-
fected elements (see Figure 4). If an element is re-
named, the tool automatically selects and highlights the
matching element in the other tree. For inserted or de-
leted elements, the tool automatically selects the inser-
tion point by navigating up the tree until it reaches a
matched ancestor. Various features can restrict the size
of the trees and help reduce the comparison time:
• Start at Component: the trees can be rooted at

user-selectable components to reduce their sizes;

• Restrict Tree Depth: the trees can exclude ele-
ments beyond a certain user-settable tree depth;

• Elide Elements: entire subtrees can be excluded
by the user from comparison. Elision is temporary
and does not generate any edit actions.
Additional features give the user manual control:

• Forced matches: manually force a match between
two elements that cannot be structurally matched;

• Manual overrides: override any edit action sug-
gested by the comparison.
In Step 4, the edit script produced by tree-to-tree

correction is used to produce a common supertree pre-
viewing the merged view after the edit actions are ap-
plied. This step can be used to supplement the edit
script with additional semantic information. For in-
stance, the user can assign types to elements to be cre-
ated, change the types of existing elements, or override
automatically inferred types. Finally, the user can can-
cel any unwanted edit actions.

Setting types on elements to be created may affect
the processing of the edit script. For instance, when a
component instance is assigned a type, it may inherit
ports from its assigned type, so the edit script need not
create additional ports on the component instance; it
may rename a port to match the name declared in the
architectural type. The user can rename any architec-
tural element in the edit script. The edit script is also
checked for some common problems such as creating
any architectural elements without an assigned type.

5. C&C View Synchronization Tools

We now apply the approach just described in two
semi-automated tools for C&C view synchronization.

5.1. Case study: Aphyds

The first tool can synchronize an implementation-
level architectural view such as one reconstructed using
architectural recovery techniques with a conceptual-
level architectural view expressed in an Architecture
Description Language (ADL). We have chosen Acme
[9] and ArchJava [3] to illustrate our approach.

This problem domain clearly requires going be-
yond insertions and deletions to support renames and
moves, as there will always be name differences of the
same structural information between Acme and
ArchJava. As an illustration, even if code generation is
used to automatically generate a skeleton implementa-
tion from the architectural model, connector names and
role names are lost during code generation (since
ArchJava does not even name those elements). Identi-
fying a renamed element as being deleted and then re-

Figure 3: The user manually specifies arbitrary
matches, by relating the type hierarchies in both
views flattened and shown side-by-side: e.g., the
user assigns any ArchJava port with only pro-
vided methods the provideT Acme type defined in
the MVCFam, a Model-View-Controller style.

 8

inserted results in losing type and style information,
properties that are crucial for architectural analyses.

We illustrate this tool in a case study on Aphyds
[3]. The starting point was an informal drawing (shown
in [3]) of the desired conceptual architecture drawn by
the developer of the original Java program. In the fol-
lowing discussion, the architect is a third party with no
prior experience with the original Java program or the
re-engineered ArchJava program. The architect created
an Acme model; he represented the circuitModel as a
single component and added all the computational
components to a representation of circuitModel (See
Figure 5). In the original diagram, some arrows meant
to distinguish between control flow and data flow, but
the architect decided to show all communication as
connectors. The architect let the synchronization tool
compare the two views: as he was the least sure about
how he represented the circuitModel component in
Acme, he decided to focus on this component first.

The tool detected a few renames, e.g., ArchJava
uses model instead of circuitModel, and inside that
representation, ArchJava uses globalRouter instead of
route (See Figure 4). The architect was particularly
intrigued that the Acme representation for circuitModel
had more connectors than the ArchJava implementa-
tion: in Figure 4, the tool only matched the starConnec-
tor in the middle of Figure 5. The architect investigated
this further and confirmed that the dataflow arrows in
the informal diagram are not actually in the implemen-
tation, so he accepted the edit actions to delete the ex-
tra connectors from the Acme model. Finally, the tool
helped with detecting additional divergences such as an
undocumented bi-directional communication between
two components and an entirely missing subsystem.

On an Intel Pentium4® CPU 3GHz with 1GB of
RAM, comparing an Acme tree of around 650 nodes
with an ArchJava tree of around 1,150 nodes (as in
Figure 4) with MDIR took under 2 minutes, whereas
our implementation of THP took around 30 seconds
but produced less accurate results: in particular, THP
did not treat component privateAphyds as an insertion
and mismatched all the top-level components. In this
case study, the edit script consisted of over 300 re-
names, over 600 inserts and over 100 deletes.

5.2. Case Study: Duke’s Bank

Two architects will often differ in their use of hier-
arch: some components expressed at the top level in
one C&C view can be nested within another component
in some other C&C view. For example, one architect
may use hierarchy to hide certain decisions from some
parts of the system but a designer may flatten the hier-

archy for efficiency reasons. In Acme, this corresponds
to replacing an architectural element with its represen-
tation. For our next case study, the subject system is
Duke’s Bank, a simple Enterprise JavaBeans (EJB)
banking application. The architect wanted to compare
the architecture presented in the documentation with
the actual architecture discovered by instrumenting the
running system as explained in [26].

The architect converted an informal diagram [21]
into an Acme model (See Figure 6). Since the model
recovered by instrumentation includes each session and
entity bean instance created at runtime, the architect
post-processed it to consolidate multiple instances into
one instance (See Figure 7) to make it comparable to
the documented architecture where each component
instance represents a number of run-time components.

The synchronization tool was able to match all the
elements between the two views despite the large num-
ber of renames. The tool correctly detected the moves
corresponding to replacing the container component in
one view with its representation in the other view. The

Figure 4: Comparison of Acme C&C view (left)
and ArchJava C&C view (right): starConnector
matches a connector in ArchJava with an auto-
matically generated name (highlighted nodes);
privateAphyds exists in ArchJava but not in Acme.
Match (), Insert (), Delete (), Rename ()

Figure 5: Acme representation of the circuitModel
component. Extra connectors are marked with ����.

 9

tool also detected an undocumented port on Ac-
count_Controller_Bean communicating with the DB
component through a DbWriter connector. Figure 6
does not show such a connection: indeed, in EJB, all
database access is through entity beans. The tool found
a violation of the specification in Sun’s own example!

On an Intel Pentium4® CPU 3GHz with 1GB of
RAM, MDIR took around 30 seconds to compare the
two Acme trees, one with around 330 nodes, and one
with around 390 nodes. In this case, the edit script con-
sisted of over 250 renames and over 50 inserts. As ex-
pected, THP did not correctly identify any of the
moved view elements in this case.

6. Related Work

Several algorithms have been proposed for differ-
encing hierarchical information, in the context of pro-
gram differencing (e.g., JDIFF [4], Dex [18]) and de-
sign differencing (e.g., UMLDiff [25]). These algo-
rithms are based on the assumption that the entities
they are trying to match are uniquely named and many
nodes match exactly. This enables recognizing the un-
changed entities first and using them as landmarks,
which makes for efficient algorithms. However, these
algorithms are unable to match nodes based on struc-
ture alone or based on structure and highly non-unique
semantic information such as entity types. For instance,
a heuristic solution with a worst-case O(N3) supporting
arbitrary move, copy and glue operations [6] was tested
on instances where more than 80% of the nodes
matched exactly. As a result, these algorithms are less
suitable for comparing architectural views, as they will
perform poorly when all the nodes are renamed, or
when most of the renamed nodes are concentrated in
one area of the tree (e.g., when entire subtrees are re-
named). This may be atypical when comparing two
versions of a given program or a design model (at a
given level of abstraction), but in our architectural
views, most names are transient or automatically gen-
erated. Both THP and MDIR would still work even in
the total absence of semantic information (i.e., using
tree structure only). For instance, in both case studies,
our inputs had more than half of their nodes renamed.
Finally, none of these algorithms offer the ability to
manually force or prevent matches. In particular, it may
be possible to easily add the ability to prevent matches
to some of them (e.g., JDIFF), but adding the ability to
force matches could be substantially more complicated.

Tree Alignment vs. Tree Edit. Tree differences
can be represented using tree alignment instead of tree
edit distance. Each alignment of trees actually corre-
sponds to a restricted tree edit in which all the inser-

tions precede all the deletions. Algorithms based on
tree alignment can detect unbounded deletes [11] and
can generalize to more than two trees, something not
easily done with tree edit distance algorithms. But the
memory requirements of tree alignment algorithms, for
the tree sizes and branching factors that are typical of
our inputs, would be several orders of magnitude
higher than those of MDIR– O(22d N 2) where d is the
maximum degree of the tree.

Graph Matching Approaches. As mentioned ear-
lier, exhaustive graph matching algorithms based on
variations of A* [16] do not scale beyond a few dozen
nodes [10]. More scalable, heuristic-based approaches,
such as spectral methods perform poorly when the
graphs are not nearly isomorphic or may occasionally
miss the optimal solution [7]. Others, such as the Simi-
larity Flooding Algorithm (SFA) [14] have a low accu-
racy (around 50%), while the accuracy of MDIR is
above 90%, on a roughly similar range of graph sizes.
Furthermore, SFA relies heavily on labels, which are
different when the graphs originate from different do-
mains, even if they express the same relationships:
“while matching of an XML schema against another
XML schema delivers usable results, matching of a
relational schema against an XML schema fails” [14].

Probabilistic matching based on label, region, type
or position information has been proposed [28], but the
approach requires training the evidencers. The authors
also admit that using a simple greedy search algorithm
does not work in many cases.

Model Transformation. Graph transformation
approaches (see [15] and references therein) tackle the
same problem using a different set of assumptions.
First, in many graph grammars, productions do not

Figure 6: Documented architecture in Acme: com-
ponents are inside an EJB container (thick bor-
der). Session and Entity Beans are grouped.

Figure 7: Recovered architecture in Acme: the
violation of the specification is marked with ����.

 10

delete vertices and edges, effectively prohibiting inser-
tions and deletions, one of our requirements. Second,
graph transformation approaches do not attempt to find
the optimal transformation including preserving proper-
ties of view elements. Finally, these approaches do not
yet offer easy to use diff-like tools such as the ones
presented in Sections 4 and 5.

7. Conclusions

In this paper, we presented a novel algorithm for
differencing and merging tree-structured data that
compares favorably to existing algorithms based on
empirical evaluation. We used the tree-to-tree correc-
tion algorithm to compare and merge hierarchical ar-
chitectural views specifically component-and-
connector (C&C) architectural views. We then pre-
sented tools that incorporate the algorithm and showed
how our relaxed assumptions match more closely the
problem domain. Finally, we evaluated the tools in case
studies and showed the practicality of the approach to
find interesting architectural differences.

Acknowledgments. This work was supported in part by
NASA cooperative agreements NCC-2-1298 and
NNA05CS30A, NSF grants CCR-0204047 and CCF-
0546550, a 2004 IBM Eclipse Innovation Grant, the Army
Research Office grant number DAAD19-02-1-0389 entitled
“Perpetually Available and Secure Information Systems”,
and was performed as a joint research project in Strategic
Partnership between Carnegie Mellon University and Jet
Propulsion Laboratory.

8. References
[1] Abi-Antoun, M., Aldrich, J., Nahas, N., Schmerl, B. and
Garlan, D. Differencing and Merging of Architectural Views.
Technical Report CMU-ISRI-05-128, 2005.
[2] Alanen, M. and Porres, I. Difference and Union of Mod-
els. In Proc. «UML» 2003, 2003.
[3] Aldrich, J., Chambers, C. and Notkin, D. ArchJava: Con-
necting Software Architecture to Implementation. In Proc.
International Conference on Software Engineering, 2002.
[4] Apiwattanapong, T., Orso, A. and Harrold, M.J. A Dif-
ferencing Algorithm for Object-oriented Programs. In Proc.
Automated Software Engineering, 2004.
[5] Chen, P., Critchlow, M., Garg, A., van der Westhuizen,
C. and van der Hoek, A. Differencing and Merging within an
Evolving Product Line Architecture. In Proc. PFE-5, 2003.
[6] Chawathe, S. and Garcia-Molina, H. Meaningful change
detection in structured data. In Proc. ACM SIGMOD, 1997.
[7] Conte, D., Foggia, P., Sansone, C., Vento, M. Thirty
years of graph matching in pattern recognition. In Int'l J.
Pattern Recognition and Artificial Intelligence, 18(3), 2004.
[8] Dickinson, P.J., Bunke, H., Dadej, A., and Kraetzl, M.
Matching graphs with unique node labels. In Pattern Analy-
sis & Applications. 7(3), pp. 243- 254, 2004.

[9] Garlan, D., Monroe, R., and Wile, D. Acme: Architec-
tural Description of Component-Based Systems. In Founda-
tions of Component-Based Systems, Cambridge University
Press, 2000.
[10] Hlaoui, A. and Wang, S. A new algorithm for graph
matching with application to content-based image retrieval.
In Proc. Joint IAPR Int. Workshops SSPR and SPR, 2002.
[11] Jiang, T., Wang, L., and Zhang, K., Alignment of
trees— an alternative to tree edit. In Theoretical Computer
Science, 143:137--148, 1995.
[12] Jimenez, A. M. Change Propagation in the MDA: A
Model Merging Approach. M.S. Thesis. University of
Queesland, 2005.
[13] Mehra, A., Grundy, J. and Hosking, J. A Generic Ap-
proach to Supporting Diagram Differencing and Merging. In
Proc. Automated Software Engineering, 2005.
[14] Melnik, S., Garcia-Molina, H. and Rahm, E. Similarity
Flooding: A Versatile Graph Matching Algorithm and its
Application to Schema Matching. In Conference on Data
Engineering (ICDE) and Extended Technical Report, 2002.
[15] Mens, T. A taxonomy of model transformation and its
application to graph transformation technology. In Proc. Int'l
Workshop GraMoT, 2005.
[16] Messmer, B.T. Efficient Graph Matching Algorithms for
Preprocessed Model Graphs, Ph.D. Thesis, University of
Bern, 1996.
[17] Ohst, D., Welle, M., and Kelter, U. Differences between
Versions of UML Diagrams. In Proc. FSE, 2003.
[18] Raghavan, S., Rohana, R., Leon, D., Podgurski, A. and
Augustine, V. Dex: a semantic-graph differencing tool for
studying changes in large code bases. In Proc. ICSM, 2004.
[19] Roshandel, R., van der Hoek, A., Mikic-Rakic, M. and
Medvidovic, N. Mae A System Model and Environment for
Managing Architectural Evolution. In TOSEM, 2004.
[20] Shasha, D., Zhang, K. Approximate Tree Pattern Match-
ing, in Pattern Matching Algorithms, Apostolico, A. and
Galil, Z., Eds., Oxford University Press, 1997.
[21] Sun Microsystems. J2EE Tutorials. Duke’s Bank.
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank2.html
[22] Torsello, A., Hidovic-Rowe, D. and Pelillo, M. Poly-
nomial-Time Metrics for Attributed Trees. In IEEE Trans.
Pattern Analysis and Machine Intelligence, 2005.
[23] Wagner, R.A. and Fischer, M.J. The string to string
correction problem. Journal of the ACM, 21:168--173, 1974.
[24] Wang, Y., Dewitt, D.J. and Cai, J.-Y. X-Diff: An Effec-
tive Change Detection Algorithm for XML Documents. In
Proc. 19th Intl. Conference Data Enginering (ICDE), 2003.
[25] Xing, Z. and Stroulia, E. UMLDiff: An Algorithm for
Object–Oriented Design Differencing. In Proc. Automated
Software Engineering, 2005.
[26] Yan, H., Garlan, D., Schmerl, B., Aldrich, J. and
Kazman, R. DiscoTect: A System for Discovering Architec-
tures from Running Systems. In Proc. ICSE, 2004.
[27] Zhang, K., and Jiang, T. Some MAX SNP-hard results
concerning unordered labeled trees. In Information Process-
ing Letters, 49, pp. 249–254, 1994.
[28] Mandelin, D., Yellin, D. and Kimelman, D. A Bayesian
Approach to Architectural Model Matching. In Proc. ICSE,
2006.

