Differencing and Merging of Architectural Views

Marwan Abi-Antoun Jonathan Aldrich Nagi Nahas Bradley Schmerl David Garlan
Institute for Software Research Intl, Carnegie Mellon University, Pittsburgh, PA 15213 USA
{mabianto+, aldrich+}@cs.cmu.edu, nnahas@acm.org, {schmerl+, garlan+}@cs.cmu.edu

Abstract [2, 13, 17] or match two elements if both theirdib
and their types match [5], which is not possibleesvh

Existing approaches to differencing and merging dealing with views at different levels of abstranti
architectural views are based on restrictive assump Many techniques detect only a small number of diffe
tions such as requiring view elements to have wuniqu €nces: for instance, ArchDiff [5] only detects irtges
identifiers or exactly matching types. and deletions, possibly leading to the loss of rimiz-

We propose an approach based on structural in- tion when elements are moved or renamed. Tracking
formation by generalizing a published polynomiatdi ~ changes using element-level versioning [12, 19] can
tree-to-tree correction algorithm (that detectsdrts,  infer high-level operations such as merges, splits
renames and deletes) into a novel algorithm to addi clones in addition to the low-level operations sash
tionally detect restricted moves and support fogcin inserts and deletes, but requires an upfront invest
and preventing matches between view elements. Wén tool building and cannot be used on existing eted
incorporate the algorithm into tools to compare and  In this paper, we propose an approach that over-
merge Component_and_connector (C&C) architectural comes some of these limitations. Our contributiares
views. Finally, we provide an empirical evaluatioh ¢ An approach for differencing and merging two

the algorithm on case studies to find and reconcile architectural views based on structural informa-

interesting divergences between architectural views tion, using tree-to-tree correction algorithms to
identify matches and classify the changes between

1. Introduction the two views. Optional type information can pre-

vent matches between incompatible view elements,

The software architecture of a system defines its ~ SPeeding execution and improving match quality.

high-level organization as a collection of runtiown- * A generalization of a recently published optimal
ponents, connectors, their properties and conssraim tree-to-tree correction algorithm for unor_dered la-
their interaction. Such an architecture is commonly beled trees [22] that detects renames, inserts and
referred to as a component-and-connector (C&C) view deletes into a novel polynomial-time tree-to-tree
As architecture-based techniques become more widely ~ €orrection algorithm that additionally detects re-
adopted, software architects face the problem adire stricted moves and _supports forcing and preventing
ciling different versions of architectural modetglud- matches between view elements.

ing differencing and sometimes merging architedtura * A Set of tools incorporating such algorithms foe th
views. For instance, during analysis, a softwachiar semi-automated synchronization of C&C views.
tect may want to reconcile two C&C views represent- One tool can synchronize a high-level C&C view
ing two variants in a product line architecture. [Bhce with a C&C view retrieved from an implementa-
the system is implemented, an architect may want to  tion. Anoth_er tool can more generally synchronize
compare a high-level conceptual C&C view with a two C&C views.

C&C view retrieved from the implementation (using * An empirical evaluation of the algorithms and the
architectural recovery techniques) to discover @npl associated tools on realistic programs.
mentation-level violations of the architecturalkint. The paper is organized as follows. Section 2 de-

Several techniques and tools have been proposed fopcribes the challenges in differencing and merging
differencing and merging C&C views. Most techniques Structural views, the underlying assumptions arel th
do not detect differences based on structural imger  limitations of our approach. Section 3 describes ou
tion: they assume that elements have unique idenstif novel tree-to-tree correction algorithm. Sectiordet



scribes how the algorithm is used to synchronizeCC&
views. Section 5 presents applications of the aggro
in case studies on real systems. Finally, we disces
lated work and conclude.

2. Architectural View Differencing

Software architects rely on multiple architectural
views, where a view is a representation of a setyef
tem elements and the relationships between themeSi
a view can generally be described as a graph, diew
ferencing and merging is a problem in graph matghin

Graph matching measures the similarity between
two graphs using the notion of graph edit distaiTge
i.e., produces a set of edit operations that mivaen-
sistencies by transforming one graph into another.*®
Typical graph edit operations include the deletion,
sertion and substitution of nodes and edges. Tipiaa
cost is assigned to each edit operation. Then dite e
distance of two graphs @nd g is found by searching
for the sequence of edit operations with the mimmu
cost that transform;gnto . A similar problem formu-
lation can be used for trees; however, tree editidte
differs from graph edit distance in that operatiamns
carried out only on nodes and never directly oresdg

Graph matching is NP-complete in the general case
[7]: graphs with unique node labels can be proaksse
efficiently [8] which explains why many approaches
make this assumption. The most ambitious optimal
graph matching algorithms (i.e., if a global minmmof
the matching cost exists, it will be found) can diarat .
most a few dozen nodes [7, 16]. Non-optimal heigrist
based algorithms are more scalable but often place
other restrictive assumptions: for instance, thail&i-
ity Flooding Algorithm (SFA) “works for directed da
beled graphs only. It degrades when labeling igoumi
or undirected, or when nodes are less distingulshab
[It] does not perform well [...] on undirected graphs
having no edge labels” [14].

Several efficient algorithms have been proposed for
trees, a strict hierarchical structure, so we famugi-
erarchical architectural views. While not all ateli
tural views are hierarchical, hierarchy is ofteedigor
scalability to attain both high-level understandiantd
detail. In a C&C view, the tree-like hierarchy
sponds to the system decomposition, but cross-links
between the system elements form a general graph.
Other architectural views such as module views have
similar characteristics. Many approaches [4, 18 226
hierarchical, so our choice is hardly new. Howeves,
relax the constraints of existing approaches dsvist
e No Unique Identifiers. For maximum generality,

we do not require elements to have unique identifi-

ers [5, 13]. Making this assumption enables the use
of exact and scalable algorithms that handle thou-
sands of nodes [8]. Unfortunately, architectural
view elements often do not have unique identifiers.
No Ordering. In the general case, an architectural
view has no inherent ordering among its elements.
This suggests that an unordered tree-to-tree correc
tion algorithm might perform better than one for
ordered trees. Many efficient algorithms are avail-
able for ordered labeled trees (e.g., [20]). In €om
parison, tree-to-tree correction for unorderedsree
is MAX SNP-hard [27]. Some algorithms for un-
ordered trees achieve polynomial-time complexity,
either through heuristic methods (e.g., [6, 18) 24]
or under additional assumptions (e.g., THP [22]).
Renames.Names are often modified during soft-
ware development and maintenance. Architectural
view elements may not have persistent hames or
may be assigned automatically generated names.
This suggests that an algorithm should be able to
match renamed elements. A number of existing al-
gorithms claim to detect renames, but assume that
a large majority of nodes have exactly matching
information [6, 18]. Identifying a renamed element
as being deleted and then re-inserted, while pro-
ducing structurally equivalent views, results is-lo
ing properties about view elements that are crucial
for architectural analyses. For our purposes, a
matched node is a node with either an exactly
matching or a renamed label.

Hierarchical Moves. Architects often use hierar-
chy to control complexity. However, two architects
often differ in their use of hierarchy: components
expressed at the top level in one view could be
nested within another component in some other
view. We would like to detect sequences of node
deletions in the middle of the tree resulting in
nodes moving up a number of levels in the hierar-
chy, and sequences of node insertions in the mid-
dle of the tree resulting in nodes moving down in
the hierarchy (by becoming children of the inserted
nodes), as shown in cagg in Figure 1.

Manual Overrides. It is possible to encounter
cases involving structural aberrations that mag lea
a fully automated algorithm to incorrectly match
top-level elements between two trees and produce
an unusable output. Because of the dependencies
in the mapping, these incorrect matches cannot be
easily manually corrected after the fact. Instead,
we required a feature not typically found in tree-t
tree correction algorithms: allow the user to force
or prevent matches between certain view elements,
and have the algorithm take these constraints into



account to produce an improved overall match.

The user can specify any set of constraints as long /
as they preserve the ancestry relation between thes ¢ a ¢

forcibly matched nodes, i.e., & is an ancestor of
b, a is forcibly matched toc, and b is forcibly
matched tal, thenc must be an ancestor df

e Optional Type Information. Architectural views

r r r I r I
rename(a->b) ; ’
j\ h‘ delete(% %\mserﬁ(a) b|

/\ / g g
bc de g }K e becde B ode A\Aﬂ

bcd
T2

T T2 ¢ d

ek T2 L

Figure 1: Edit operations (adapted from [20]).
We will use instead of ,T,,T,) if there is no

may contain untyped elements or have different or confusion. To delete a nod¢ in tree T, we remove
incompatible type systems. This is the case whennodeN and make its children become the children of

comparing views at different levels of abstraction

the parent oN. To insert a nodé&l in treeT as a child

such as a conceptual-level (as-designed) view with of nodeM, we makeN one of the children of1, and

an implementation-oriented (as-built) view. There-
fore, an algorithm should not rely on matching
type information. It should be able to recover a

we make a subset of the childrenMdbecome children
of N (See Figure 1). Renaming a node only updates its
label and preserves any properties associateditwith

correct mapping from structure alone if necessary comparison, THP does not allow any insertions de-de

or from structure and type information if type in-
formation is available. However, an algorithm
could take advantage of type information (when

available) to prune the search tree by not attempt-

ing to match elements of incompatible types.
» Disconnected/Stateless Operatiorzor maximum

tions in the middle of the tree and works underahe
sumption that if two nodes match, so do their paren
(i.e., only subtrees can be inserted or deleted).
Suppose we obtain a mappin§ between trees T
and T,. From this mapping we can deduce edit
script (a sequence of edit operations) to tugnnto To.

generality, we assume a disconnected and stateleskirst, we flag all unmatched nodes in the firsetes

operation, i.e., no monitoring or recording of the
structural changes is taking place while the user i
modifying a given view as in [12, 19].

e Comparable Views. The two views being com-

deleted and all unmatched nodes in the secondatee
inserted. We order the operations so that all et
operations precede all insertion operations, delse
nodes in order of decreasing depth (deepest nct fi

pared and merged have to be somewhat structur-and insert them in increasing depth order. To detire

ally similar. When comparing two completely dif-
ferent views, the algorithm could trivially deletk

elements of one view and then insert all the ele-

ments in the other view.

3. Tree-to-Tree Correction

In this section, we describe a novel algorithm for
unordered labeled trees, MDIR (Move-Delete-Insert-
Rename), which generalizes a recent optimal tree-to
tree correction algorithm, denoted as THP [22]

3.1. Problem Definition

We first give an unambiguous definition of the
problem, adapted from [20]. We denote tHeode of
a labeled tree T in the postorder node ordering by
TIi]. |T| denotes the number of elements of T. e d
fine a triple (K, T, T,) to be a mapping from;Tto T,
whereJt is any set of pairs of integers (i,j) satisfying:
1) 1<=i<=[T], 1<=] <= [H;

2) For any pair of (ij;) and (b,j,) in M,
a) ip= i, if and only if j = j, (one-to-one)
b) T4[i4] is an ancestor ofJi,] if and only if Ty[j{] is
an ancestor of 5[ 5] (ancestor order preserved).

cost of an edit script, for each node in the souree,
we choose a cost of deletion (not necessarily dimees
for all nodes); for each node in the destinatiae twe
choose a cost of insertion (again, not necesstrdy
same for all nodes), and for each pair of noghean)
wheren is some node i, andmin T,, we choose a
cost of changing the label ofinto the label o (for
example, string-to-string correction [23]) chan{es-
nana” into “ananas” with a cost of two). The cost of
the edit script is then equal to the sum of thesco$
insertion, deletion, and renaming operations itaims.
Therefore, any given mapping has a unique costtdso,
find an optimal edit sequence, it is sufficienffital an
optimal mapping.

3.2. Explanation of the Algorithm

The algorithm’s pseudo-code is given in Figure 2.
Let C(i,j) be the cost of the optimal mapping from the
subtree rooted dtto the subtree rooted ptA set of
nodesS(i) is asuccessor saif nodei if it is a subset of
the set of descendentsiofind none of the elements of
S(i) is an ancestor of another, and each node of the su
tree rooted at is either a descendent or an ancestor of
an element o8(i).



BestSolution: Tist of node pairs that represents the best discovered matching between
successor sets of two nodes, where a successor set of node i is denoted by S(i)
currentSolution: dynamic Tist of node pairs that represents a matching being built between
successor sets of two nodes
costMatrix: CostMatrix[i][j] is the cost of the optimal mapping from s(i) to S(j)
BestCost: Cost of the BestSolution matching
BestGlobalMatch[]: array of node pairs corresponding to Teast cost mapping from T1 to T2
BestSuccessor[][]: 2D array of Tists of node pairs
m,m U BestSuccessor[1][]] means (m, n) is a match between one element of S(i) and
one element of S(j) in an optimal mapping from S(i) to S(j)
MatchMerit(i,j): measure of the similarity (i.e., quality of matching, not cost) between nodes i
and j, deduced from CostMatrix[i][j] as (1 - CostMatrix[i][j]/(sum of subtree weights))

Procedure: MDIR /* MAIN PROCEDURE */
Input:
Tree Ti: first tree to compare
Tree T2: second tree to compare (turn Ti1 into T2)
L(1 j): cost of string-to-string correction to change LaBeL(i) in Ti1 to LaBeL(j) in T2
Begin
Postorder Ti and T2 nodes
for(i = 1 to Ti.size)
for(J =1 to T2.size)
BestSuccessor[i][j] = Searcu(i, j)
costMatrix[i][j] = cost(BestSuccessor[i][j]) + L(i,])
ﬁ;TBESTMATCHING(Tl.SiZG, T2.s7z€)
En

Procedure: SEARCH /* SETUP DATA STRUCTURES FOR CALLING BACKTRACK */
Input:
iﬁ j: indices in trees T1 and T2 respectively
return
List of node pairs representing the best found mapping of the nodes of S(i) to the nodes of S(j)
Begin
Eit L be the 1ist of pairs (p,q) where p is a descendent of i and q is a descendent of j
Sort L according to MatchMer1t(p a)
Set BestSolution = empty Tist
Set CurrentSolution = empty 1list
Set BestCost = infinity
BAackTRACK(O0 /* 7ndex*/, L, 0 /* CurrentCost?®/)
return BestSolution
End

Procedure: BACKTRACK /* SEARCH FOR A GOOD MAPPING BETWEEN SUBTREES */
Input:
index: position reached in Tist L
L: 1ist of pairs of nodes (m,n) sorted by merit .
CurrentCost: sum of the cost of the elements in Currentsolution
Begin
1f ( no element of L can be added to CurrentSolution ) /* Base case */
if ( CurrentCost + cost of deleted subtrees < BestCost )
BestSolution = CurrentSolution
BestCost = CurrentCost
return

foreach element 1 = (m,n) in L starting at index
if ( Currentsolution already contains m, n or any of their ascendants or descendents )
continue
if ( adding 1 to current mapping violates bound B )
continue
Add cost of match to CurrentCost to obtain NewCost
Get a lower bound E of remaining cost using MatchMmerit
if ( E + NewCost >= BestCost )
continue
Add T to CurrentSolution
BackTRACK (index+1, L, NewCost)
dRemove 1 from CurrentSolution
En

Procedure: GETBESTMATCHING /* DEDUCE THE OPTIMAL MAPPING */
Input:
i, j: pair of nodes that belong to the best possible mapping between the two trees
Begin
oreach element e = (m, n) in BestSuccessor[i][j]
Add e to BestGlobalMatch
GETBESTMATCHING(M, n)
End

Figure 2: Pseudo-code of the algorithm: parameteR and forcing/preventing matches are not shown here.



Given two setsS(i) wherei belongs toT; and S(j)
wherej belongs toT,, it is possible to define the opti-
mal mapping ofS(i) to S(j) as a one to one function
from a subset 08(i) into S(j) with least cost, where the
cost of mapping elemeitof S(i) to element of S(j) is

ple, during the backtracking search, checking wéresh
node is still available is a single bitwise AND ogion
instead of a time-consuming loop over an array.

MDIR can be considered a generalization of THP
because THP only handles the case wtg=8 (i.e.,

equal to cost of the optimal mapping of the subtree only the children of a node can be in a successoofs

rooted atk to the subtree rooted Btand the cost of
leaving an elemerkt of S(i) without image is equal to
the cost of deleting the whole subtree rooted&, and
the cost of having an unmatched elemeim S(j) is
equal to the cost of inserting the entire subtoedead at
[. This suggests that if we know all the coS{gl,d,)
whered, is a descendent ofandd, is a descendent of
j, it is possible to comput€(i, j) by considering all
possible pairs of se{$(i),S(j)) and for each such pair,
getting the minimum weight bipartite matching defin
by the entries of the cost mat@corresponding to the
elements oB(i) andS(j).

Finally, letL(i,j) be the cost of changing the label
of nodei in the source tree to the label of ngde the
destination tree. The minimum cost obtained added t
L(i, j) will be equal taC(i, j). L(i,j) uses string-to-string
correction to evaluate the intrinsic degree of irity
between the labels of two nodes, using a standgad a
rithm to find the longest common subsequence [23].

We choose the best pdB(i),S(j))using abranch-
and-boundbacktracking algorithm. LdDEsSdi) denote
the set ofdescendentsfi. We try to choose a subs@t
of DEsdi) x DEsd(j) with minimal cost. This is done by
trying to add toQ one element oDEeEs i) x DES))
such that the new element @ is consistent with the

that node), producing a fully polynomial time aligiom
that is typically much faster than our generaliadgb-
rithm. Handling non-zero values 8fallows our algo-
rithm to detect hierarchical moves. MDIR is guaest
to find the optimal matching within the constraits
the boundB, provided it is allowed to run long enough.
On trees with more than a few hundred nodes and
when the average degree of a non-leaf node isegreat
than four, it is necessary to limit the running dirny
enforcing a bound on the number of recursive calls of
the backtracking search corresponding to a givén su
tree pair. Although boun& removes the guarantee of
optimality by limiting the number of recursive clthe
algorithm still obtains good results empiricallyin&
the algorithm uses the branch-and-bound technigue,
good match allows for tight bounds and therefomtyea
cutting of branches. The search terminates nornfaly
matrix entries actually corresponding to good meagch
and is interrupted only when the match is not good.
This allows the algorithm to return an optimal nhmatc
even if the backtracking is interrupted during toen-
putation of cost matrix entries corresponding to
matches that are not part of the optimal solution.
Forcing and Preventing Matches. MDIR also
supports the ability to force and prevent matches b

previous elements (no same node can be matched téveen a node in tree;Tand another node in tree. T

two different nodes, nor can a node appear in an el

Preventing a match between two nodesdj is done

ment ofQ, if either a descendent or an ancestor alreadybPy assigning a large cost to the correspondingyentr

appears in some element of Q). The algorithm back-

tracks each time it determines that there are n;emo
valid pairs to add, or when it determines thatabst of
the current branch will be too large to match tlestb
solution already discovered to date. As the prohiem
NP-complete, the approach outlined above can quickl
become intractable without additional constraints.

We chose to enforce an upper bouhdn the sum
of distances between elementsS(f) and the closest
child of i (respectively,S(j) andj) with B typically a
small integer. The reasoning behind this constraint
that nodes are not usually moved too far from their
original positions in a hierarchy, and it is relaty rare
for several non-leaf siblings to be deleted atshme
time. The bound has the additional benefit that only
relatively small neighborhoods of each node haveeto
considered for the computation of the optimal aist
single subtree pair, enabling us to perform margrap
tions very efficiently using bit manipulation. Fexam-

the cost matrixC[i][j] . Forcing a match between two
nodes is more difficult, due to the necessity afiding
the deletion of the forcibly matched nodes andhat t
same time allowing the deletion of some of thetem
tors. Additional details can be found in [1].

Runtime and Memory Complexity. An upper
bound on the running time of the MDIR algorithmas
follows: let X be the set of nodes of both treefie an
element ofX, p be the maximum allowable size of a
connected subgraph of the tree that can be detsted
inserted in the middle of the treféx,p) be the number
of nodes that lie within a distance (@f+1) from x, and
F(p) = max{f(x,p): XxJX}. Then MDIR has a worst
case running time d((2*F(p))! N?). In our implemen-
tation, pruning the search tree by using both steec-
ture and semantic information (e.g., type inforoayi
and being able to limit the running time by retamia
possibly suboptimal solution, make the average case
considerably faster than the worst case. In practie



observed runtime i©(K N), with K a large constant.  of 440 operations containing both deletions and re-
In comparison, THP has a worst case running time ofnames. In that case, the returned edit script was 2
O(cd® N%) whered is the maximum degree of a tree and times longer than the optimal edit script. MDIR pro
d << N [22]. Regarding memory requirements, both duced good results with most trees, even when phe o
THP and MDIR can be implemented@{(N’) space at  timal edit script involved 2/3 of the number of rsd
the expense of implementation complexity. We imple- With up to 85% of the nodes renamed and no delgtion
mented THP ir0O(d N), and MDIR inO(b N), where MDIR produced edit scripts within less than 1% lod t

b is a large constant factor. optimal script on trees of 640 nodes, showing that
can recover the mapping from tree structure alone.
3.3. Empirical Evaluation The improved match quality comes at a heavy run-

time cost: MDIR was about 60 times slower than THP
Evaluating the accuracy of the algorithm is neces- on average, with bounR set 100,000. As predicted,
sary because boun@sandR remove the guarantee of setting boundR to 5,000 produced slightly sub-optimal

optimality. The test data was built as follows:géner- edit scripts for a noticeably reduced running tifBee
ate a random tree with random labels taken froma p  [1] for additional empirical data when varyify.
of 10 possible names so as to be non-unique; 2) cop In summary, MDIR has a dramatically improved

the tree; 3) delete a random number of nodes in theaccuracy over THP and an acceptable non-interactive
copy, including both internal and leaf nodes; 4jame performance for most common usage scenarios. Unlike
a number of nodes in the copy; 5) and finally, carap  optimal graph matching algorithms, it can scale to
the two trees using THP and MDIR. The deletion op- thousands of nodes and can handle realistic acehite
erations in the middle of the tree correspond &ré tural views, as will be demonstrated by the casdiss.
stricted moves that MDIR detects. Additional detail
can be found in the companion technical report [1]. 4. General Approach to Synchronization

The length of an optimal edit script must necessar-

ily be equal to the sum of the number of deletiod a We use the tree algorithm to synchronize hierar-
the number of renaming operations. Table 1 shows fo chical graphs corresponding to C&C views. The struc
different tree node sizes, the length of the optieatt tural information in a C&C view is represented as a
script, the length of the actual edit script and thn- cross-linked tree structure that mirrors the highal
ning time (in seconds) for both THP and MDIR. decomposition of the system. The tree also includes

On average, THP produced edit scripts sub- some redundant information to improve the accucdcy
optimal by about 120% whereas MDIR produced edit the structural comparison: for instance, the sebtfea
scripts sub-optimal by about 7%. In the worst case, node corresponding to a port includes all the port’
THP produced a suboptimal edit script by about 400% involvements, i.e., all components (and their ports
whereas MDIR's worst case performance resultediin a reachable from that port. Cross-links refer backhi
edit script sub-optimal by around 150%. In bothesas  defining occurrence of each element and allow #ex u
accuracy deteriorated significantly when nodesacdé  to navigate the architectural graph. Each element i
degree were allowed or when the trees were very dif decorated with properties (such as type information
ferent. MDIR’s worst case was on a source treed@f 6 The type information, if provided, is used to budd
nodes separated from its target by an optimalsedipt matrix of incompatible elements that may not be
) matched. Additional constraints can be user-spetifi
Table 1: Evaluation of MDIR (R = 100,000). A graph representing a C&C view can generally

Case # Ideal THP MDIR have cycles in it. Representing an architecturaplgras
Nodes | Ops Ops | Secs| Opd Secd a tree causes each shared node in the architectural

Rename | 640 569 | 770 2 569 64 graph to appear several times in several subtréts,
1280 857 | 1509 7 963 222 cross-links referring back to their defining ocamntes.

These redundant nodes, while increasing the sitigeof
Delete | 640 | 492 | 701 492 50 | corresponding trees, greatly improve the accurdcy o
1280 1113| 1397

1114 169| the tree-to-tree correction; however, they may e i
Move 640 441 | 1076 1093 215| consistently matched with respect to their definirg
1280 652 2407

N o w| ;|

735 471| currences, either in what they refer to or in theoai-
Degree | 640 288 | 712 88 65 ated edit operations. We work around these incensis
1280 =76 | 1194 10 =T 578 tent matc_hes using _two passes. _Durl_ng the f|r§t,pae
synchronize the strictly hierarchical informatioorie-




sponding to the system decomposition, i.e., compo-« Restrict Tree Depth: the trees can exclude ele-
nents, ports and representations. During the second ments beyond a certain user-settable tree depth;

pass, we synchronize the edges in the graph corre< Elide Elements: entire subtrees can be excluded
sponding to the general graph. The post-processing by the user from comparison. Elision is temporary

step is simple since the mapping between the niodes and does not generate any edit actions.

the two graphs is known at that point. Additional features give the user manual control:
Synchronization is a five-step process: 1) setep th «  Forced matches:manually force a match between

synchronization; 2) optionally view and match typ&s two elements that cannot be structurally matched:;

view and match instances; 4) optionally view andimo «  Manual overrides: override any edit action sug-

ify the edit script; 5) confirm and optionally agphe gested by the comparison.

edit script. Because Steps 1 and 5 are straighafohw In Step 4, the edit script produced by tree-to-tree

we will only discuss Steps 2-4. In Step 2, manually correction is used to produce a common supertree pr
matching the type structures between the two ViEWSviewing the merged view after the edit actions ape
(see Figure 3) can produce semantic information tha plied. This step can be used to supplement the edit
speeds up the comparison but is otherwise optidhal. script with additional semantic information. For- in
can also reduce the amount of data entry for asggn  stance, the user can assign types to elements ¢oebe
types to the elements to be created by the edfitsen ated, change the types of existing elements, orridee

Step 3, matching instances uses tree-to-tree by: ahytomatically inferred types. Finally, the user cam-
building tree-structured data from the two C&C vi&ew  ce| any unwanted edit actions.

b) using tree-to-tree correction to identify matked Setting types on elements to be created may affect
structural differences (Figure 4); and c) obtainBly  the processing of the edit script. For instancegwh
edit SC”pt that can be used to merge the two views Component instance is assigned a type' it may iinher

The differences found during structural matching ports from its assigned type, so the edit scrijgdineot
are shown in each tree by overlaying icons on fhe a create additional ports on the component instaitce;
fected elements (see Figure 4). If an element 4is re may rename a port to match the name declared in the
named, the tool automatically selects and highdighe  architectural type. The user can rename any amhite
matching element in the other tree. For insertedesr  tyral element in the edit script. The edit scriptaiso
leted elements, the tool automatically selectsirber- checked for some common problems such as creating

tion point by navigating up the tree until it reasha  any architectural elements without an assigned. type
matched ancestor. Various features can restricsitee

of the trees and help reduce the comparison time:
e Start at Component: the trees can be rooted at
user-selectable components to reduce their sizes;

5. C&C View Synchronization Tools

We now apply the approach just described in two
semi-automated tools for C&C view synchronization.

Acme Types: }néﬁ Archlava Twpes:
+ EEE &rchlavaFam Match = EEE Archlava
= EFF MVCFam :5' +- (23 Component Types 51 Ca.se Study: Aphde
+- (07 Component Types Unmlatch —I-[£3 Connector Types
—1-[23 Connector Types - '¢' AMY . . . .
- 4 CalRetwnConnT £ Roles The first tool can synchronize an implementation-
E5El . . .
b [3 Roles =13 Port Types level architectural view such as one reconstruotiag
= EventBusT - o ANY . . .
Ca Rolos Show T arch|tectur_al recovery techniques v_v|th a congeptual
=13 Port Types . o REQUIRE OMLY level architectural view expressed in an Architestu
LI Oreler =l Role Types Description Language (ADL). We have chosen Acme
o modelT B AMNY h
o provideT [9] and ArchJava [3] to illustrate our approach.
o pubsubT This problem domain clearly requires going be-
o usel yond insertions and deletions to support renameés an
=l (3 Role Types . .
B providerT moves, as there will always be name differencethef
B userT same structural information between Acme and
Figure 3: The user manually specifies arbitrary ArchJava. As an illustration, even if code generais

matches, by relating the type hierarchies in both used to automatically generate a skeleton implement
views flattened and shown side-by-side: e.g., the tion from the architectural model, connector nawes

user assigns any ArchJava port with only pro- role names are lost during code generation (since
vided methods theprovideT Acme type defined in ArchJava does not even name those elements). 4denti
the MVCFam, a Mode-View-Controller style. fying a renamed element as being deleted and then r



inserted results in losing type and style informati Acme Instances: g Avchiavalnstances:

properties that are crucial for architectural asesy =55 Aphyds_Step3a compars " [T Aphyds
. . . =23 Components =23 Components
We I||UStI’ate thIS tOOI INn a case Study on Aphde +-(& channelRouteiewer Clear +1-(& channelRouteViewer
[3]. The starting point was an informal drawingdgim =@ dreuittodel o e
. . N Show e
in [3]) of the desired conceptual architecture drdw = ??«Epmcode‘ t z gpwtsdl
. . = amponents - = repmodel
the developer of the original Java program. Inftile +- G channel Order =3 Components
. : . . : . - (& circuit e - (5 channelRout
I0\_N|ng dISC_USSIon, _the archlt_e(_:t is a third parithwo 2@ foorPlanner | scral S {ar,
prior experience with the original Java progranthe 4@ partitioner = %@ foorplsnner
. . +- (7 place Fepart # (&} gabalRouter
re-engineered ArchJava program. The architect edeat +- G route o %@ partitioner
an Acme model; he represented tieuitModel as a O e tanne "™ | o9 placer
single component and added all the computational ¥ conn_partitioner = i Jcorn_cicu
. . . + conn_place_routs Rreset +- (& placeRouteViewer
components to a representation afcuitModel (See +--4n conn_route_chan --(@ privateaphyds
Figure 5). In the original diagram, some arrows mhea e e e o
to distinguish between control flow and data fldot %@ floorPlanviewer +-G) viewer
. . . . #-(& placeRouteviewer +-[(3 Connectors
the architect decided to show all communication as | ¢; connsctors
connectors. The architect let the synchronizatmol t < > < >

compare the two views: as he was the least suretabo Figure 4: Comparison of Acme C&C view (left)

how he represented tharcuitModel component in and ArchJava C&C view (right): starConnector

Acme, he decided to focus on this component first. matches a connector in ArchJava with an auto-
The tool detected a few renames, e.g., ArchJavamatically generated name (highlighted nodes);

uses model instead ofcircuitModel, and inside that  privateAphyds exists in ArchJava but not in Acme.

representation, ArchJava usgiebalRouterinstead of Match (#), Insert (2), Delete @), Rename §)

route (See Figure 4). The architect was particularly U n n_=

intrigued that the Acme representation ¢acuitModel

had more connectors than the ArchJava implementa-

tion: in Figure 4, the tool only matched tstarConnec- . tehegref

tor in the middle of Figure 5. The architect investigh [ S frove § % ]

this further and confirmed that the dataflow arraws '“N"PZ""“-K {ooce § %

the informal diagram are not actually in the impéem

tation, so he accepted the edit actions to deleteex-

tra connectors from the Acme model. Finally, thelto  Figure 5: Acme representation of thecircuitModel

helped with detecting additional divergences sichra ~ component. Extra connectors are marked with.

undocumented bi-directional communication between archy for efficiency reasons. In Acme, this corsps
two components and an entirely missing subsystem. o replacing an architectural element with its esen-

On an Intel Pentium4® CPU 3GHz with 1GB of tation. For our next case study, the subject system
RAM, comparing an Acme tree of around 650 nodes puke’s Bank, a simple Enterprise JavaBeans (EJB)
with an ArchJava tree of around 1,150 nodes (as inpanking application. The architect wanted to corapar
Figure 4) with MDIR took under 2 minutes, whereas the architecture presented in the documentatioh wit
our implementation of THP took around 30 seconds the actual architecture discovered by instrumentiiey
but produced less accurate results: in particlléf? running system as explained in [26].

did not treat componemtrivateAphydsas an insertion The architect converted an informal diagram [21]
and mismatched all the top-level components. I8 thi into an Acme model (See Figure 6). Since the model
case study, the edit script consisted of over 380 r recovered by instrumentation includes each sessidn

names, over 600 inserts and over 100 deletes. entity bean instance created at runtime, the archit
post-processed it to consolidate multiple instariots
5.2. Case Study: Duke’s Bank one instance (See Figure 7) to make it comparable t
the documented architecture where each component
Two architects will often differ in their use ofefn instance represents a number of run-time components

arch: some components expressed at the top level in  The synchronization tool was able to match all the
one C&C view can be nested within another componentelements between the two views despite the large nu
in some other C&C view. For example, one architect ber of renames. The tool correctly detected theasov
may use hierarchy to hide certain decisions fromeso  corresponding to replacing tltentainercomponent in
parts of the system but a designer may flatterhiée one view with its representation in the other vidle



tool also detected an undocumented port Ac
count_Controller_Beancommunicating with theDB
component through ®&bWriter connector. Figure 6
does not show such a connection: indeed, in EJB, al
database access is through entity beans. Thedond f

a violation of the specification in Sun’s own exdetp

On an Intel Pentium4® CPU 3GHz with 1GB of

RAM, MDIR took around 30 seconds to compare the

two Acme trees, one with around 330 nodes, and one

with around 390 nodes. In this case, the edit scop-
sisted of over 250 renames and over 50 insert&xAs
pected, THP did not correctly identify any of the
moved view elements in this case.

6. Related Work

Several algorithms have been proposed for differ-
encing hierarchical information, in the contextpob-
gram differencing (e.g., JDIFF [4], Dex [18]) and-d
sign differencing (e.g., UMLDIff [25]). These algo-

i) m ‘\DB
y ol
Customer Cortrllr_Bean o -— @
Tx_Controller_Bean gy m
B
Session Beans Entiy Besns

Figure 6: Documented architecture in Acme: com-
ponents are inside an EJRontainer (thick bor-
der). Session and Entity Beans are grouped.

WAccount tBean_e55d75

%
:l:nunlCnmmHersan_ﬂﬁﬁZ} 3
-3

0

CustomerControllerBean_1feebB55 T}

taSource
TR

0
I

TxControllerSean_61e81f B
o TxBean 433061 |

Figure 7: Recovered architecture in Acme: the
violation of the specification is marked withx.

tions precede all the deletions. Algorithms based o

rithms are based on the assumption that the emtitie tree alignment can detect unbounded deletes [1d] an
they are trying to match are uniquely named andyman can generalize to more than two trees, somethiig no
nodes match exactly. This enables recognizing the u easily done with tree edit distance algorithms. at
changed entities first and using them as landmarks,memory requirements of tree alignment algorithros, f
which makes for efficient algorithms. However, thes the tree sizes and branching factors that are ayjpit
algorithms are unable to match nodes based on-strucour inputs, would be several orders of magnitude

ture alone or based on structure and highly nogueni
semantic information such as entity types. Foraimse,
a heuristic solution with a worst-ca€¢N®) supporting
arbitrary move, copy and glue operations [6] wase

higher than those of MDIRO( 2% N %) whered is the
maximum degree of the tree.

Graph Matching Approaches.As mentioned ear-
lier, exhaustive graph matching algorithms based on

on instances where more than 80% of the nodesvariations of A* [16] do not scale beyond a few doz

matched exactly. As a result, these algorithmsless
suitable for comparing architectural views, as thdy

nodes [10]. More scalable, heuristic-based appemch
such as spectral methods perform poorly when the

perform poorly when all the nodes are renamed, orgraphs are not nearly isomorphic or may occasignall
when most of the renamed nodes are concentrated inmiss the optimal solution [7]. Others, such asSimai-
one area of the tree (e.g., when entire subtremsear larity Flooding Algorithm (SFA) [14] have a low acc
named). This may be atypical when comparing two racy (around 50%), while the accuracy of MDIR is
versions of a given program or a design model (at aabove 90%, on a roughly similar range of graphssize

given level of abstraction), but in our architealur
views, most names are transient or automaticaliy ge
erated. Both THP and MDIR would still work even in
the total absence of semantic information (i.eingis
tree structure only). For instance, in both caseiss,
our inputs had more than half of their nodes remhme
Finally, none of these algorithms offer the ability
manually force or prevent matches. In particulamay
be possible to easily add the ability to preventcimas
to some of them (e.g., JDIFF), but adding the it
force matches could be substantially more comgitat
Tree Alignment vs. Tree Edit. Tree differences
can be represented using tree alignment instead®f
edit distance. Each alignment of trees actuallyrezor
sponds to a restricted tree edit in which all theer-

Furthermore, SFA relies heavily on labels, whick ar
different when the graphs originate from differeiot
mains, even if they express the same relationships:
“while matching of an XML schema against another
XML schema delivers usable results, matching of a
relational schema against an XML schema fails” [14]

Probabilistic matching based on label, region, type
or position information has been proposed [28],that
approach requires training the evidencers. Theoasith
also admit that using a simple greedy search dlgori
does not work in many cases.

Model Transformation. Graph transformation
approaches (see [15] and references therein) tduokle
same problem using a different set of assumptions.
First, in many graph grammars, productions do not



delete vertices and edges, effectively prohibitimger-
tions and deletions, one of our requirements. S#con
graph transformation approaches do not attemphtb f
the optimal transformation including preservingpeo
ties of view elements. Finally, these approacheaato
yet offer easy to usdiff-like tools such as the ones
presented in Sections 4 and 5.

7. Conclusions

In this paper, we presented a novel algorithm for

differencing and merging tree-structured data that
compares favorably to existing algorithms based on

empirical evaluation. We used the tree-to-tree exorr
tion algorithm to compare and merge hierarchical ar
chitectural  views  specifically = component-and-
connector (C&C) architectural views. We then pre-
sented tools that incorporate the algorithm andvslo

how our relaxed assumptions match more closely the

problem domain. Finally, we evaluated the toolsase
studies and showed the practicality of the apprdach
find interesting architectural differences.

Acknowledgments. This work was supported in part by
NASA cooperative agreements NCC-2-1298 and
NNAO5CS30A, NSF grants CCR-0204047 and CCF-
0546550, a 2004 IBM Eclipse Innovation Grant, thenj
Research Office grant number DAAD19-02-1-0389 it
“Perpetually Available and Secure Information Syt
and was performed as a joint research project iat&gfic
Partnership between Carnegie Mellon University aled
Propulsion Laboratory.

8. References

[1] Abi-Antoun, M., Aldrich, J., Nahas, N., SchmeB. and
Garlan, D. Differencing and Merging of ArchitectLixdews.
Technical Report CMU-ISRI-05-128, 2005.

[2] Alanen, M. and Porres, |. Difference and UnmfinMod-
els. In Proc. «UML» 2003, 2003.

[3] Aldrich, J., Chambers, C. and Notkin, D. ArcthdaCon-
necting Software Architecture to Implementation. Rnoc.
International Conference on Software Engineerid§22

[4] Apiwattanapong, T., Orso, A. and Harrold, MAI Dif-
ferencing Algorithm for Object-oriented Programs.Rroc.
Automated Software Engineering, 2004.

[5] Chen, P., Critchlow, M., Garg, A., van der Whasren,
C. and van der Hoek, A. Differencing and Merginghivi an
Evolving Product Line Architecture. In Proc. PFE2B03.
[6] Chawathe, S. and Garcia-Molina, H. Meaningfhiege
detection in structured data. In Proc. ACM SIGMQDB97.
[7] Conte, D., Foggia, P., Sansone, C., Vento, Mirty
years of graph matching in pattern recognition.Idtll J.
Pattern Recognition and Atrtificial Intelligence3(3), 2004.
[8] Dickinson, P.J., Bunke, H., Dadej, A., and KeeM.
Matching graphs with unique node labels. In Patfsmaly-
sis & Applications. 7(3), pp. 243- 254, 2004.

10

[9] Garlan, D., Monroe, R., and Wile, D. Acme: Aitelt-
tural Description of Component-Based Systems. lanéa-
tions of Component-Based Systems, Cambridge Uniyers
Press, 2000.

[10] Hlaoui, A. and Wang, S. A new algorithm foragh
matching with application to content-based imageeal.
In Proc. Joint IAPR Int. Workshops SSPR and SPR220
[11] Jiang, T., Wang, L., and Zhang, K., Alignmeoif
trees— an alternative to tree edit. In Theoreticamputer
Science, 143:137--148, 1995.

[12] Jimenez, A. M. Change Propagation in the MD}:
Model Merging Approach. M.S. Thesis. University of
Queesland, 2005.

[13] Mehra, A., Grundy, J. and Hosking, J. A Geoégkp-
proach to Supporting Diagram Differencing and Meggiln
Proc. Automated Software Engineering, 2005.

[14] Melnik, S., Garcia-Molina, H. and Rahm, E. 8arity
Flooding: A Versatile Graph Matching Algorithm ariid
Application to Schema Matching. In Conference ontaDa
Engineering (ICDE) and Extended Technical Repd922
[15] Mens, T. A taxonomy of model transformationdaits
application to graph transformation technologyPhoc. Int'l
Workshop GraMoT, 2005.

[16] Messmer, B.T. Efficient Graph Matching Algdmihs for
Preprocessed Model Graphs, Ph.D. Thesis, University
Bern, 1996.

[17] Ohst, D., Welle, M., and Kelter, U. Differercbetween
Versions of UML Diagrams. In Proc. FSE, 2003.

[18] Raghavan, S., Rohana, R., Leon, D., Podgufskand
Augustine, V. Dex: a semantic-graph differencingl téor
studying changes in large code bases. In Proc. |CO0UY.
[19] Roshandel, R., van der Hoek, A., Mikic-Raki¢, and
Medvidovic, N. Mae A System Model and Environmeant f
Managing Architectural Evolution. In TOSEM, 2004.

[20] Shasha, D., Zhang, K. Approximate Tree Pathdatch-
ing, in Pattern Matching Algorithms, Apostolico, And
Galil, Z., Eds., Oxford University Press, 1997.

[21] Sun Microsystems. J2EE Tutorials. Duke’s Bank.
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebzhkml

[22] Torsello, A., Hidovic-Rowe, D. and Pelillo, MPoly-
nomial-Time Metrics for Attributed Trees. In IEEEans.
Pattern Analysis and Machine Intelligence, 2005.

[23] Wagner, R.A. and Fischer, M.J. The string tong
correction problem. Journal of the ACM, 21:168--17874.
[24] Wang, Y., Dewitt, D.J. and Cai, J.-Y. X-Diffin Effec-
tive Change Detection Algorithm for XML Documents.
Proc. 19th Intl. Conference Data Enginering (ICDHE)Q3.
[25] Xing, Z. and Stroulia, E. UMLDIff: An Algoritm for
Object-Oriented Design Differencing. In Proc. Autded
Software Engineering, 2005.

[26] Yan, H., Garlan, D., Schmerl, B., Aldrich, and
Kazman, R. DiscoTect: A System for Discovering Atet-
tures from Running Systems. In Proc. ICSE, 2004.

[27] zhang, K., and Jiang, T. Some MAX SNP-hardihss
concerning unordered labeled trees. In InformaRoocess-
ing Letters, 49, pp. 249-254, 1994.

[28] Mandelin, D., Yellin, D. and Kimelman, D. A Besian
Approach to Architectural Model Matching. In Prd€SE,
2006.



