Liang Xiong's Homepage

 

 

Xiong, Liang

Email:

Curriculum vitae


PhD student

Machine Learning Department & Auton Lab,
Carnegie Mellon University,
Pittsburgh, PA 15213


Advisor

Jeff Schneider


Former Advisors

Changshui Zhang
Nanyuan Zhao


Announcement

Code for direct robust matrix factorization (DRMF) added.

Code for non-parametric divergence estimation added.

Research

Now my research interest is learning from data that are organized by groups: text, ratings, photons, image patches, galaxy clusters, particles, and so on.

Publications

  1. Liang Xiong, Barnabas Poczos, Jeff Schneider, Efficient Learning on Point Sts, ICDM 2013.
  2. Liang Xiong, Jieyue Li, Robert F. Murphy, Jeff Schneider, Protein Subcellular Location Pattern Classification in Cellular Images Using Latent Discriminative Models, ISMB 2012.
  3. Barnabas Poczos, Liang Xiong, Dougal Sutherland, Jeff Schneider, Nonparametric Kernel Estimators for Image Classification, CVPR 2012. [pdf] [code]
  4. Scott F. Daniel, Andrew Connolly, Jeff Schneider, Jake Vanderplas, Liang Xiong, Classification of Stellar Spectra with LLE, Astronomical Journal, 142, 203. [pdf]
  5. Liang Xiong, Xi Chen, Jeff Schneider, Direct Robust Matrix Factorization for Anomaly Detection, IEEE International Conference on Data Mining (ICDM), 2011. [pdf] [code]
  6. Liang Xiong, Barnabas Poczos, Jeff Schneider, Group Anomaly Detection using Flexible Genre Models, NIPS 11. [pdf]
  7. Barnabas Poczos, Liang Xiong, Jeff Schneider, Nonparametric Divergence Estimation with Applications to Machine Learning on Distributions, Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence 2011 (UAI 11). [pdf] [code]
  8. Liang Xiong, Barnabas Poczos, Jeff Schneider, Hierarchical Probabilistic Models for Group Anomaly Detection, AI and Statistics 2011 (AISTATS 11). [pdf] [code]
  9. Liang Xiong, Xi Chen, Tzu-kuo Huang, Jeff Schneider, and Jaime Carbonell, Temporal Collaborative Filtering with Bayesian Probabilistic Tensor Factorization, SIAM Data Mining 2010 (SDM 10). [pdf] [code]
  10. Liang Xiong, Fei Wang and Changshui Zhang, Guide Manifold Alignment by Relative Comparisons, In: J. Wang ed. Encyclopedia of Data Warehousing and Mining 2nd Edition, Hershey, PA: IGI Publishing.
  11. Liang Xiong, Fei Wang and Changshui Zhang, Multilevel Belief Propagation for Fast Inference on Markov Random Fields, IEEE International Conference on Data Mining 2007 (ICDM'07), Omaha, NE, USA. []
  12. Liang Xiong, Fei Wang and Changshui Zhang, Semi-definite Manifold Alignment, European Conference on Machine Learning 2007 (ECML'07), Warsaw, Poland. []
  13. Liang Xiong, Jianguo Lee and Changshui Zhang, Discriminant Additive Tangent Spaces for Object Recognition. IEEE Conference on Computer Vision and Pattern Recognition 2007 (CVPR'07), Minneapolis, MN, USA. []
Last updated: 2009/12/19