10-701 Introduction to Machine Learning (PhD) Lecture 10: SVMs

Leila Wehbe Carnegie Mellon University Machine Learning Department

Slides based on on Tom Mitchell's 10-701 Spring 2016 material and Andrew Ng's lecture notes at: http://cs229.stanford.edu/notes/cs229-notes3.pdf

Neural Networks

Choice of activation gate

Linear

$$f(x) = x$$

$$f'(x) = 1$$

Can be used to predict continuous values at output. What happens when you stay linear layers?

Choice of activation gate

Sigmoid

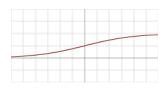
$$f(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$$
 $f'(x) = f(x)(1 - f(x))$

$$f'(x) = f(x)(1 - f(x))$$

Outputs between 0 and 1, can be used for probability Can saturate when very low or very high weights Contributes to vanishing gradient

Choice of activation gate

Sigmoid



f'(x)

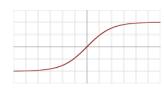
$$f(x)=\sigma(x)=rac{1}{1+e^{-x}}$$

$$f'(x) = f(x)(1 - f(x))$$

Outputs between 0 and 1, can be used for probability Can saturate Contributes to vanishing gradient

Choice of activation gate

tanh



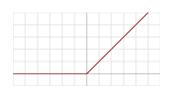
$$f(x) = anh(x) = rac{(e^x - e^{-x})}{(e^x + e^{-x})} \qquad \qquad f'(x) = 1 - f(x)^2$$

$$f'(x) = 1 - f(x)^2$$

Range -1 to 1

Choice of activation gate

Rectified Linear Unit (ReLu)



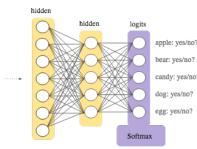
$$f(x) = egin{cases} 0 & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases} \qquad f'(x) = egin{cases} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$$

$$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x > 0 \end{cases}$$

Solve the vanishing gradient problem, but have a problem that nodes might die when negative value and never update. Can fix with leaky ReLu

Choice of activation gate

Softmax

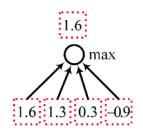


$$f_i(ec{x}) = rac{e^{x_i}}{\sum_{j=1}^J e^{x_j}}$$

$$rac{\partial f_i(ec{x})}{\partial x_j} = f_i(ec{x})(\delta_{ij} - f_j(ec{x}))$$

Choice of activation gate

Maxpool



$$f(\vec{x}) = \max_i x_i$$

$$rac{\partial f}{\partial x_j} = \left\{egin{array}{ll} 1 & ext{for } j = rgmax \, x_i \ 0 & ext{for } j
eq rgmax \, x_i \end{array}
ight.$$

Choice of loss function

MSE

$$\mathcal{L} = rac{1}{n} \sum_{i=1}^n (y^{(i)} - \hat{y}^{(i)})^2$$

12

$$\mathcal{L} = \sum_{i=1}^n (y^{(i)} - \hat{y}^{(i)})^2$$

Choice of loss function

Binary cross-entropy

$$\mathcal{L} = -rac{1}{n} \sum_{i=1}^n \left[y^{(i)} \log(\hat{y}^{(i)}) + (1-y^{(i)}) \log(1-\hat{y}^{(i)})
ight]$$

Multiclass:
$$-\frac{1}{n} \sum_{n} \sum_{k} y_{nk} \log f_k(\boldsymbol{x}_n)$$

Choice of loss function

Binary cross-entropy

$$\mathcal{L} = -rac{1}{n} \sum_{i=1}^n \left[y^{(i)} \log(\hat{y}^{(i)}) + (1-y^{(i)}) \log(1-\hat{y}^{(i)})
ight]$$

Doesn't have saturation problem

$$\mathcal{L} = y \log(\sigma(\mathbf{z})) + (1 - y) \log(1 - \sigma(\mathbf{z})),$$

$$rac{\partial \mathcal{L}}{\partial oldsymbol{ heta}} = (y - \sigma(\mathbf{z})) \cdot \mathbf{x}$$

Deep Networks

Deep networks: informal term for more recent generation of neural nets, with features such as:

- more hidden layers
- · built from more heterogenous units
 - sigmoid, rectilinear, max pooling, LSTM, ...
- shared weights across units (convolutional)
- with application-specific network architecture
 - time series, computer vision, speech recognition, ...
 - recurrent networks, max-pooled convolutional layers with local receptive fields...
- · bi-directional units
- pretrained on unlabelled data (auto-encoders)
- ...

Impact of Deep Learning

• Speech Recognition

Computer Vision

Recommender Systems

- Language Understanding
- Drug Discovery and Medical Image Analysis

[Courtesy of R. Salakhutdinov]

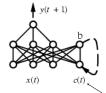
Training Networks on Time Series

- Suppose we want to predict next state of world
 - and it depends on history of unknown length
 - e.g., robot with forward-facing sensors trying to predict next sensor reading as it moves and turns
 - e.g., anticipate the next word in the sentence

Recurrent Networks: Time Series

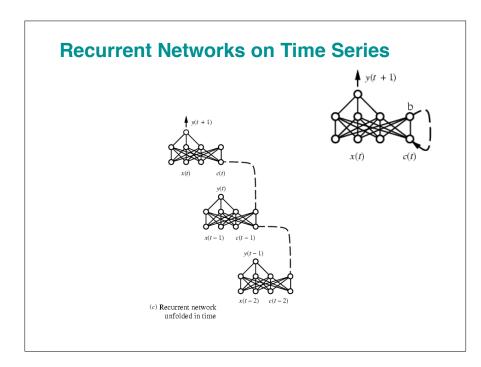
- Suppose we want to predict next state of world
 - and it depends on history of unknown length
 - e.g., robot with forward-facing sensors trying to predict next sensor reading as it moves and turns
- Idea: use hidden layer in network to capture/ remember state history

(a) Feedforward network



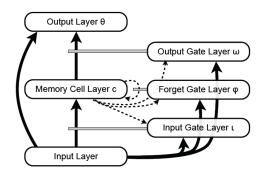
(b) Recurrent network

context/histor



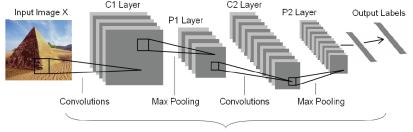
Long-Short Term Memory (LSTM) Units

- · Threshold unit/subnetwork with memory
 - still trainable with gradient descent



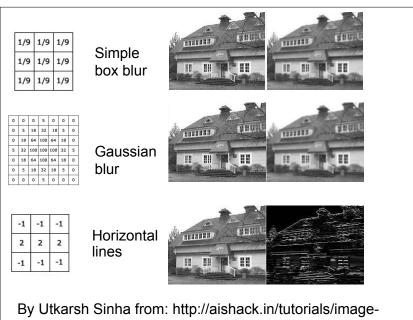
LSTM-g unit from [Monner & Regia, 2013]

Convolutional Neural Nets for Image Recognition

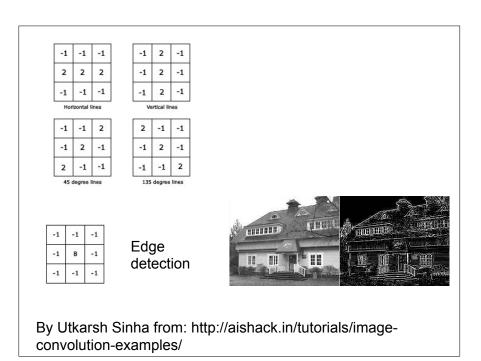


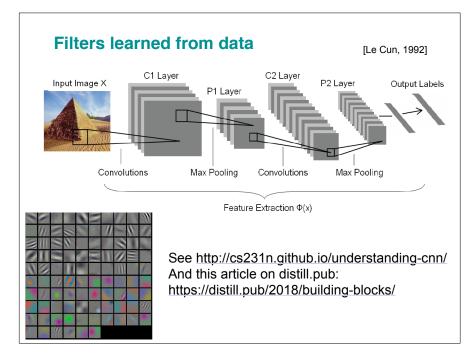
Feature Extraction $\Phi(x)$

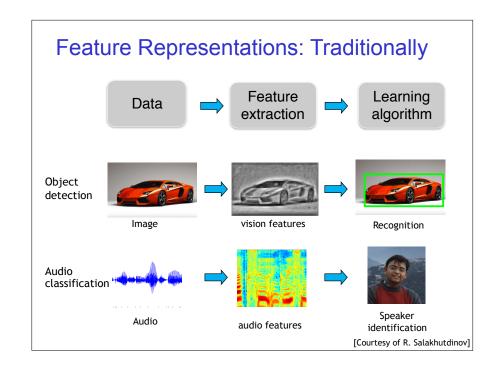
- specialized architecture: mix different types of units, not completely connected, motivated by primate visual cortex
- many shared parameters, stochastic gradient training
- · very successful! now many specialized architectures for vision, speech, translation, ...

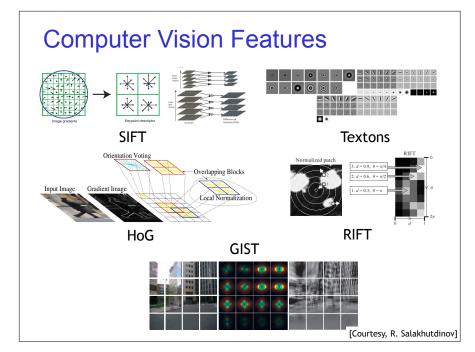


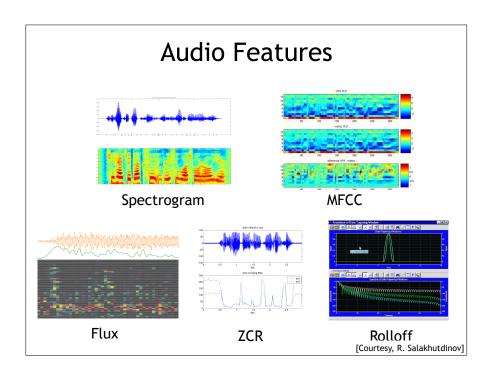
convolution-examples/

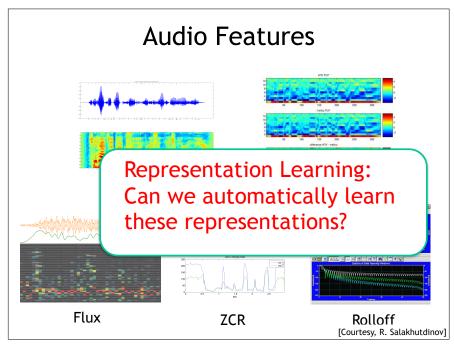


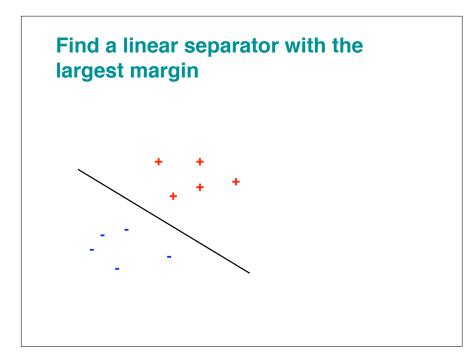


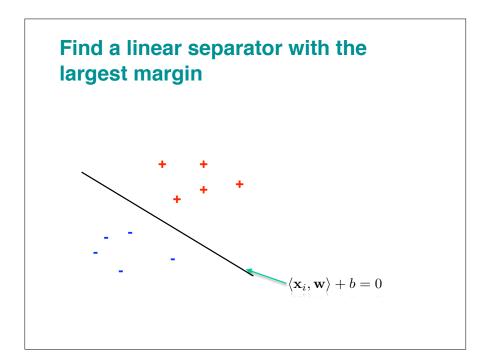


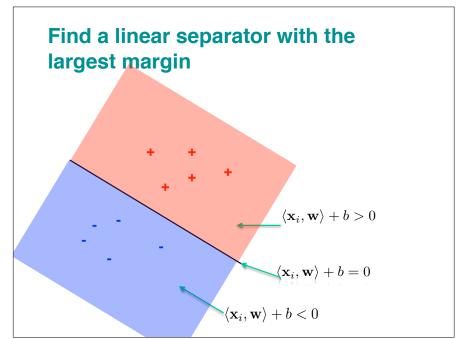


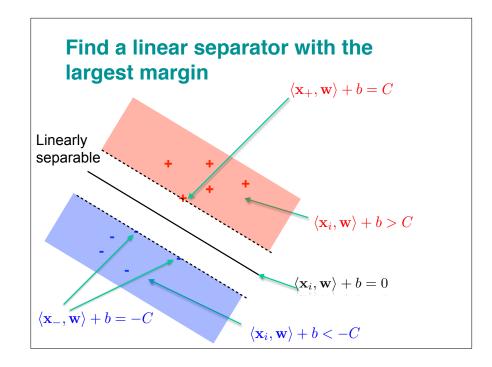






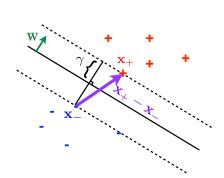








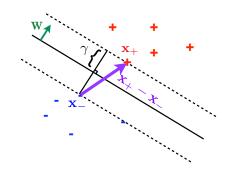
Find a linear separator with the largest margin



$$2\gamma = \frac{\langle \mathbf{x}_{+} - \mathbf{x}_{-}, \mathbf{w} \rangle}{||\mathbf{w}||}$$
$$\gamma = \frac{1}{2} \frac{\langle \mathbf{x}_{+} - \mathbf{x}_{-}, \mathbf{w} \rangle}{||\mathbf{w}||}$$

Find a linear separator with the largest margin

$$\arg\max_{\mathbf{w},b} \gamma = \arg\max_{\mathbf{w},b} \frac{1}{2} \frac{\langle \mathbf{x}_{+} - \mathbf{x}_{-}, \mathbf{w} \rangle}{||\mathbf{w}||}$$



Find a linear separator with the largest margin

$$\arg \max_{\mathbf{w},b} \gamma = \arg \max_{\mathbf{w},b} \frac{1}{2} \frac{\langle \mathbf{x}_{+} - \mathbf{x}_{-}, \mathbf{w} \rangle}{||\mathbf{w}||}$$

$$= \arg \max_{\mathbf{w},b} \frac{1}{2} \frac{\langle \mathbf{x}_{+}, \mathbf{w} \rangle - \langle \mathbf{x}_{-}, \mathbf{w} \rangle}{||\mathbf{w}||}$$

$$\downarrow^{\gamma} \qquad \qquad \downarrow^{\mathbf{x}_{+}} \qquad \qquad \downarrow^{$$

Find a linear separator with the largest margin

$$\arg \max_{\mathbf{w},b} \gamma = \arg \max_{\mathbf{w},b} \frac{1}{2} \frac{1 - b - (-1 - b)}{||\mathbf{w}||}$$

$$= \arg \max_{\mathbf{w},b} \frac{1}{2} \frac{2}{||\mathbf{w}||} = \arg \max_{\mathbf{w},b} \frac{1}{||\mathbf{w}||}$$

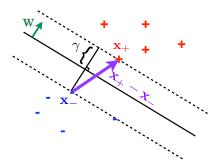
$$= \arg \min_{\mathbf{w},b} ||\mathbf{w}||$$

$$= \arg \min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2$$

The (primal) optimization problem is:

$$\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2$$

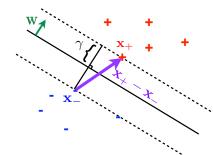
s.t.
$$y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) \ge 1, i = 1, ..., m$$



The (primal) optimization problem is:

$$\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2$$

s.t.
$$y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) \ge 1, i = 1, ..., m$$



This can be written as:

$$\min_{\mathbf{w},b} f(\mathbf{w},b)$$

s.t.
$$g(\mathbf{w}, b) \le 0, i = 1, ..., m$$

Where $f(\mathbf{w}, b) = ||\mathbf{w}||^2$ and $g(\mathbf{w}, b) = 1 - y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b)$ are both convex functions of our parameters w and b

Lagrangian

We can write the Lagrangian of:

$$\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2$$

s.t.
$$y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) \ge 1, \quad i = 1, ..., m$$

s.t.
$$y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) \ge 1$$
, $i = 1, ..., m$
as: $\mathcal{L}(\mathbf{w}, b, \alpha) = f(\mathbf{w}, b) + \sum_{i=1}^{m} \alpha_i g_i(\mathbf{w}, b)$
 $= \frac{1}{2} ||\mathbf{w}||^2 + \sum_i \alpha_i \left(1 - y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b)\right)$

$$g_i(\mathbf{w}, b) = 1 - y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b)$$