10-701 Introduction to Machine Learning (PhD)
Lecture 10: SVMs

Leila Wehbe
Carnegie Mellon University
Machine Learning Department

Slides based on on Tom Mitchell’s
10-701 Spring 2016 material
and Andrew Ng'’s lecture notes at:
http://cs229.stanford.edu/notes/cs229-notes3.pdf

Neural Networks

Choice of activation gate

Linear

flz)== fl@)=1

Can be used to predict continuous values at output.
What happens when you stay linear layers?

Choice of activation gate

Sigmoid

flz) = o(x) = f'(z) = f(=)(1 - f(=))

Outputs between 0 and 1, can be used for probability
Can saturate when very low or very high weights
Contributes to vanishing gradient




Choice of activation gate

Sigmoid
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f(z) = o(x)

Outputs between 0 and 1, can be used for probability
Can saturate
Contributes to vanishing gradient

Choice of activation gate

tanh
f(z) = tanh(z) = & ) ) =1- f(a)?
@rer)

Range -1 to 1

Choice of activation gate

Rectified Linear Unit (ReLu)
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Solve the vanishing gradient problem, but have a problem
that nodes might die when negative value and never
update. Can fix with leaky ReLu

Choice of activation gate

Softmax

hidden

< ) hidden logits
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apple: yes/no?
bear: yes/no?
candy: yes/no?
dog: yes/no?

egg: yes/no?
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Choice of activation gate

Maxpool
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Choice of loss function

MSE
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Choice of loss function

Binary cross-entropy
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Choice of loss function

Binary cross-entropy
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Doesn’t have saturation problem
£ = ylog(o(2)) + (1 — y) log(1 — o(2)).
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Deep Networks

Deep networks: informal term for more recent generation
of neural nets, with features such as:

* more hidden layers
* built from more heterogenous units
— sigmoid, rectilinear, max pooling, LSTM, ...
» shared weights across units (convolutional)
+ with application-specific network architecture

— time series, computer vision, speech recognition, ...
— recurrent networks, max-pooled convolutional layers with
local receptive fields...

* bi-directional units
» pretrained on unlabelled data (auto-encoders)

Impact of Deep Learning
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[Courtesy of R. Salakhutdinov]

Training Networks on Time Series

» Suppose we want to predict next state of world
— and it depends on history of unknown length

— e.g., robot with forward-facing sensors trying to predict next
sensor reading as it moves and turns

— e.g., anticipate the next word in the sentence

Recurrent Networks: Time Series

» Suppose we want to predict next state of world
— and it depends on history of unknown length

— e.g., robot with forward-facing sensors trying to predict next
sensor reading as it moves and turns

* Idea: use hidden layer in network to capture/
remember state history
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Recurrent Networks on Time Series
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Long-Short Term Memory (LSTM) Units

» Threshold unit/subnetwork with memory
— still trainable with gradient descent
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unfolded in time
LSTM-g unit from [Monner & Regia, 2013]
Convolutional Neural Nets for Image Recqgpjiiqg, wlnln)
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Feature Extraction ®(x)
+ specialized architecture: mix different types of units, not il Horizontal
completely connected, motivated by primate visual cortex 2|22 lines
* many shared parameters, stochastic gradient training Al

+ very successfull now many specialized architectures for
vision, speech, translation, ...

By Utkarsh Sinha from: http://aishack.in/tutorials/image-
convolution-examples/
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By Utkarsh Sinha from: http://aishack.in/tutorials/image-
convolution-examples/

Filters learned from data [Le Cun, 1992]
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Feature Extraction ®(x)

See http://cs231n.github.io/understanding-cnn/
And this article on distill.pub:
https://distill.pub/2018/building-blocks/

Feature Representations: Traditionally

Feature Learning
Data
= extraction = algorithm
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[Courtesy of R. Salakhutdinov]

SIFT Textons

Orientation Voting

Normalized patch

Input Image  Gradient Image

[Courtesy, R. Salakhutdinov]




Flux

Audio Features
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Audio Features
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Representation Learning:
Can we automatically learn
these representations?
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SVMs

Find a linear separator with the
largest margin




Find a linear separator with the
largest margin

(i, W) +b0=0

Find a linear separator with the
largest margin

(x5, W) +b>0

<Xi’ W>

Find a linear separator with the

largest margin
9 9 (xy,w)+b=C

Linearly
separable

(xi,w)+b>C

Xi, W) +b =0

(xi, W) +b< =C

Find a linear separator with the

largest margin
(xp,w)+b=1

Linearly SetC=1
separable
(xi, W) +b>1
i, W) +b=0

(x—,w)+b=-1

<Xi,W> +b< -1




Find a linear separator with the
largest margin

Find a linear separator with the
largest margin
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Find a linear separator with the
largest margin
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Find a linear separator with the

largest margin
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The (primal) optimization problem is:

1
mianwH2
w,b

st yi((x,w)y+b)>1, i=1..m

The (primal) optimization problem is:

1
min _ ||wl[?

)

st yi((x,w)+b)>1, i=1,...m

This can be written as:
miil f(w,b)

st. g(w,b) <0, i=1,...m

Where  f(w,b) = ||w|?

and  g(w,b) =1—y;((x;, W) +b)
are both convex functions
of our parameters w and b

Lagrangian

We can write the Lagrangian of:
min EHWHQ

b 2

st yi((xi,w)4+0)>1, i=1,...m

as: L(w,b,a)= f(w,b) + i%’gi(W b)
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