Course outcomes

What you should know

• Review of all the previous lectures with expected outcomes from each lecture

Lecture 1

• MLE and MAP for coin flips: estimate the probability Θ of a coin landing on heads
 • MLE:
 • Notion of likelihood function
 • Setting up the objective function
 • Verifying the function is concave
 • Maximizing the objective function

Lecture 1

• MAP:
 • Notion of prior and posterior functions, and their relationship with the likelihood through Bayes rule.
 • Using the Beta prior
 • Setting up the objective function
 • Verifying the function is concave
 • Maximizing the objective function
 • How does the prior affect the final outcome? How can it be interpreted in terms of additional throws?
Lecture 2

- Familiarity with the notion of conjugate priors:
 - In the coin flip MAP example, the beta distribution is the *conjugate prior* of the Bernoulli likelihood function. We also call the prior and the posterior *conjugate priors*
- Probability review:
 - Probability distribution functions (PDF) for continuous variables
 - Expectation, Variance
 - Joint distributions, chain rule, Bayes rule.

Lecture 3

- Decision rules
 - Bayes decision rule
 - Bayes error/unavoidable error
 - Definition of generative and discriminative classifiers
- KNN:
 - How to use KNN?
 - Training error vs test error.
 - How to pick K by cross-validation (what is cross-validation)
 - Behavior of the algorithm when K is small and when K is large, in terms of model complexity and risk of overfitting.
 - Behavior of the algorithm when K=1
 - What does overfitting mean?

Lecture 4

- Linear regression
 - Mean squared error statement and derivation
 - Probabilistic statement and derivation, and equivalence of the two solutions (from homework)
- Ridge regression
 - Mean squared error and ridge penalty statement and derivation
 - Probabilistic statement and derivation, and equivalence of the two solutions (from homework)
- Lasso regression:
 - What does it enforce, how do the learned parameters change with increased penalty?

Lecture 4

- Bias variance tradeoff:
 - The expected loss when the model is correctly specified can be decomposed into the sum of three components: bias^2, variance and noise (no need to memorize the derivation from class)
 - You need to know how to compute the bias of an estimator, and what it corresponds to
 - You need to know how to compute the variance of an estimator, and what it corresponds to
Lecture 5 - Naive Bayes

- Conditional independence assumption of naive bayes. How does it help with learning less parameters?
- Naive Bayes Algorithm with binary X and Y:
 - How is it specified?
 - How to train it?
 - How many parameters does it require for the user to learn?
 - How to use with for prediction?
 - What is chance performance?
 - What happens when the Xs are not conditionally independent? What happens when some of the variables are irrelevant?

Lecture 5 - Naive Bayes

- Naive bayes for text classification:
 - What is the bag of word model?
 - How to formulate it?
 - How to learn it?
 - How to deal with words what we never encounter? What kind of prior can we use?
 - Gaussian naive bayes (GNB):
 - What are the assumptions behind GNB?
 - How does it account for continuous variables?

Lecture 6 - Logistic Regression

- Logistic regression:
 - Logistic regression outputs the probability of Y given X.
 - How is the problem setup?
 - It doesn’t have an analytical solution so gradient descent/gradient descent has to be used to learn the weights, depending on the formulation of the problem
 - What is block gradient descent? What is stochastic gradient descent? What are their characteristics?
 - What is the learning rate? What are the drawbacks/benefits of a large learning rate or a small learning rate?

Lecture 6 - Logistic Regression

- Logistic regression:
 - Without regularization, the logistic regression problem is ill specified and the magnitude of the weights will tend to infinity as the probability of the training labels is maximized. Regularization offers a tradeoff between weight size and training error
 - How many parameters need to be estimated?
 - Logistic regression (LR) vs GNB:
 - If the variances learned for each X_i are made to be equal across classes, GNB learns a linear decision boundary.
 - GNB converges faster to its asymptotic error
 - If the variances are equal across classes and if the X_is are conditionally independent given Y then GNB and LR perform similarly.
 - GNB might perform worse than LR if the data is not conditionally independent but it is not always easy to predict
Lecture 7 - Decision trees

• How to use a decision tree to make predictions
• Entropy, conditional entropy and information gain statements.
• How to use information gain to greedily build a tree (using ID3). This approach optimizes the length of the tree to obtain short trees.
• How to interpret train error / test error plots. What does overfitting correspond to mathematically/graphically?

Lecture 8 - Perceptron and NN

• The perceptron algorithm:
 • Statement, how to train it, how to use it to predict
 • The effect of a misclassified positive sample in training: changes the training prediction in the positive direction.
 • The effect of a misclassified negative sample in training: changes the training prediction in the negative direction.
 • The notion of margin and of a linearly separable training set.

Lecture 9 - Neural Networks

• Neural networks:
 • Stacking layers with non-linear activations allows us to learn complex decision boundaries
 • Sigmoid functions are used instead of sign functions because they are differentiable. They however introduce problems such as the vanishing gradient problem.
 • The steps required to train a neural network: (We saw this in detail in HW and in class)
 • Including how to use back-propagation to estimate the gradient at every parameter of the network.

• Different tricks can be used to optimize neural networks, leading to a large array of decision involving the number of layers, the number of nodes, the choice of different activation gates or of different loss functions.

• Neural networks can be used in order to learn transformations of input data such as images and sounds into a space in which they are characterized by features that are important for the task at hand. This is referred to as representation learning.
Lecture 10/11 - SVMs

- Separable training set - linear SVMs:
 - Problem statement
 - Writing down the Lagrangian then the dual formulation and the solution of the dual problem.
 - How to use a trained SVM to make predictions. What decision boundaries are learned?
 - The dual formulation lets us see that the algorithm relies on the dot product of new test points with the support vectors.

- How to show that $k(x,y)$ is a kernel?
 - Mercer theorem or expressing $k(x,y)$ as a dot product of the same feature map of x and y.

Lecture 10/11 - SVMs

- Kernel SVMs:
 - We can use the kernel trick to allow us to efficiently train and use SVMs with non-linear kernels, allowing us to learn complex decision boundaries
 - Common kernels and resulting decision boundaries (from homework)

- Non-separable training set:
 - We can use SVMs with slack variables to learn decision boundaries (homework)

Lecture 12 - Boosting

- Boosting uses weak learners with accuracy above 0.5 percent to derive a strong learner

- Adaboost algorithm:
 - How does it work for prediction / what does it output?
 - How is it trained?
 - It ends up performing surprisingly well in some scenarios. It could suffer from overfitting sometimes, and sometimes the test error keeps improving even when the training error is zero.

Lecture 13/14 Learning Theory

- Notion of the complexity of the hypothesis space H.

- Theory to relate the number of training examples, the complexity of hypothesis space, training error and true error (as well as how training examples are presented).

- Mathematical formulation of overfitting

- The notion of ε-exhausting a version-space

- The notion of VC dimensions and how to derive it with simple classifiers in the case where H is not finite
Lecture 13/14 Learning Theory

With probability $\geq (1 - \delta)$, $(error_{true} - error_{train}) \leq \epsilon$

(1) for all $h \in H$ such that $error_{train} = 0$, $\epsilon = \frac{\ln |H| + \ln(1/\delta)}{m}$

(2) for all $h \in H$

$\epsilon = \frac{\sqrt{\ln |H| + \ln(1/\delta)}}{2m}$

(3) for all $h \in H$

$\epsilon = 8\sqrt{\frac{VC(H)(\ln m + 1) + \ln(8/\delta)}}{2m}$

Lecture 17 - k-Means

- What is clustering in general
- What is the objective of k-Means? What results does such an objective make likely?
- Understanding Lloyd’s Method.
- What is the effect of the initialization on the final results? What are possible failure modes? What are solutions?

Lecture 18 - EM and GMMs

- Probabilistic Expression of a GMM
- Difference between k-Means and GMM solutions
- Using the EM algorithm (how it works in general)
- Adapting the EM algorithm to GMMs
<table>
<thead>
<tr>
<th>Lecture 19-20 - Graphical Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Review of conditional independence and marginal independence</td>
</tr>
<tr>
<td>• Definition of Bayes Nets and how they represent probability distributions. How to derive the joint distribution from looking at a Bayes net. How to read conditional independence relations from a graph.</td>
</tr>
<tr>
<td>• Difference approaches for using a Bayes Net for inference and for learning a Bayes Net.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture 21 - HMMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Understanding the setup of HMMs, what is known (observations) and what underlying latent variable model is assumed</td>
</tr>
<tr>
<td>• Being able to state the Markov assumption (for state transitions) and independence assumptions (for observations conditional on state).</td>
</tr>
<tr>
<td>• Using dynamic programming to calculate the probability of observations given the state transition probability matrix and observation probability matrix.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture 22- SVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The definition of the singular value decomposition: the properties of the 3 matrices in the SVD, eg: singular values are always positive.</td>
</tr>
<tr>
<td>• The interpretation of SVD in terms of providing the best rank k approximation to a matrix in Frobenius norm.</td>
</tr>
<tr>
<td>• Interpreting the singular values, the meaning of an “approximately low rank” matrix.</td>
</tr>
<tr>
<td>• Understand why the SVD is not unique when two singular values are equal (for example the identity matrix does not have a unique SVD)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture 23 - PCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Understand the different purposes of dimensionality reduction: computational, statistical, interpretability, and storage.</td>
</tr>
<tr>
<td>• Deriving PCA in terms of the direction that maximizes variance of the projected data.</td>
</tr>
<tr>
<td>• Deriving PCA in terms of the direction that minimizes reconstruction error.</td>
</tr>
<tr>
<td>• Writing PCA as finding the first eigenvalue and eigenvector of the covariance matrix.</td>
</tr>
<tr>
<td>• Understand the relationship between SVD and the eigenvalue decomposition for square symmetric matrices.</td>
</tr>
</tbody>
</table>
Lecture 24-25 - Reinforcement Learning

- Understand the problem setup of an infinite horizon MDP, in terms of states, rewards, actions, value, discount and so on.
- Be able to state Bellman's equation(s) for the value of the MDP and justify what it means.
- Use Bellman's equation(s) to solve an LP to get the value of each state.
- Derive the value iteration algorithm
- Derive the policy iteration algorithm

Lecture 26-27 - Sources of bias in applied ML

- Understanding the difference between internal and external validity, and different sources of bias and variance in data analysis.
- Comparing classifiers, estimating variance, using error bars.
- Understanding how multiple hypothesis testing or multiple comparisons inflates the error rate, and correcting for it.
- Sampling bias, and how it applies to predicting election outcomes

Lecture 26-27 - Sources of bias in applied ML

- The Kaggle competition “paradox” and overfitting to the validation set.
- What happens when the noise is not independent of the covariates, or of the ground truth.
- Understanding Simpson's paradox, and the UC Berkeley admissions example.
- Other sources of bias: heteroskedastic noise, covariate shift, label shift, non-iid data, etc.