

1

1 On leave at Carnegie Mellon University. This research has been funded by FAPESP (São Paulo State Foundation for Research
Support - Brazil, under Grants 98/05556/5 and 98/0559-7).

2 This material is based upon work supported by the National Science Foundation under Grants No. IRI-9625428, DMS-9873442,
IIS-9817496, and IIS-9910606. Additional funding was provided by donations from NEC and Intel. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

Fast feature selection using fractal dimension

 Caetano Traina Jr.1 Agma Traina1 Leejay Wu 2 Christos Faloutsos2

1 Department of Computer Science and Statistics - University of São Paulo at São Carlos - Brazil
2 Department of Computer Science - Carnegie Mellon University - USA

{ agma | caetano | lw2j | christos} @cs.cmu.edu

Abstract
Dimensionality curse and dimensionality reduction are two issues that have retained high interest

for data mining, machine learning, multimedia indexing, and clustering. We present a fast, scalable
algorithm to quickly select the most important attributes (dimensions) for a given set of n-dimensional
vectors. In contrast to older methods, our method has the following desirable properties: (a) it does not
do rotation of attributes, thus leading to easy interpretation of the resulting attributes; (b) it can spot
attributes that have nonlinear correlations; (c) it requires a constant number of passes over the dataset;
(d) it gives a good estimate on how many attributes we should keep.

The idea is to use the ‘ fractal’ dimension of a dataset as a good approximation of its intrinsic
dimension, and to drop attributes that do not affect it. We applied our method on real and synthetic
datasets, where it gave fast and good results.

1 - Introduction and Motivation

When managing the increasing volume of data which is generated by the organizations, a question which

frequently arises is: “what part of this data is really relevant to be kept?” . Notice that usually the

relations of the database have many attributes which are correlated with the others.

Attribute selection is a classic goal, as well as battling the “dimensionality curse”

[Berchtold_1998] [Pagel_2000]. A careful chosen subset of attributes improves the performance and

efficacy of a variety of algorithms. This is particularly true with redundant data, as many datasets can

largely be well-approximated in fewer dimensions. This can also be seen as a way to compress data, as

only the attributes which maintain the essential characteristics of the data are kept [Fayyad_1998].

In this paper we introduce a novel technique that can discover how many attributes are significant

to characterize a dataset. We also present a fast, scalable algorithm to quickly select the most significant

attributes of a dataset. In contrast to other methods, such as Singular Value Decomposition (SVD)

[Faloutsos_1996], our method has the following desirable properties:

(a) it does not rotate attributes, leading to easy interpretation of the resulting attributes;

(b) it can spot attributes that have nonlinear and even non-polynomial correlations;

(c) it is linear on the number of objects in the dataset;

2

(d) it gives a good estimate on how many attributes we should keep.

The main idea is to use the ‘ fractal’ dimension of the dataset, and to drop attributes which do

not affect it. The fractal dimension (D) is relatively unaffected by redundant attributes, and our

algorithm can compute it in linear time with respect to the number of objects. Thus, we propose a kind

of backward-elimination algorithm to take advantage of the fast D computation. This algorithm

sequentially removes attributes which contribute minimally to D.

The remainder of the paper is structured as follows. In the next section, we present a brief

survey on the related techniques. Section 3 introduces the concepts needed to understand the proposed

method. Section 4 presents the fractal dimension algorithm developed as well as the datasets used in

the experiments. Section 5 gives the proposed method for attribute selection. Section 6 discusses the

experiments and evaluation of the proposed method. Section 7 gives the conclusions of this paper.

2 - Survey

Numerous selection methods have been studied, including genetic algorithms; sequential feature

selection algorithms such as forwards, backwards and bidirectional sequential searches; and feature

weighting [Aha_1995] [Scherf_1997] [Vafaie_1993]. A recent survey on attribute selection using

machine learning techniques is presented in [Blum_1997].

The singular value decomposition (SVD) technique provides another way of reducing the

dimensionality of data by generating an ordered set of additional axes [Faloutsos_1996]. However, this

is not attribute selection, but instead axis generation as SVD returns vectors that do not need to

correspond to the original attributes. These vectors may be inappropriate for assorted situations, such

as those involving the presentation of data for human understanding; tasks where accessing additional

attributes may be expensive; and when creating a training set to derive a classifier.

A common research challenge in attribute selection methods so far is the exponential growth of

computing time required [Blum_1997]. Indeed the induction methods proposed so far had super-linear

or exponential computational complexity [Langley_1997], as is the case with nearest neighbors, learning

decision trees [John_1994] [Kira_1992], and Bayesian Networks [Singh_1995]. Notice that these

approaches are highly sensitive to both the number of irrelevant or redundant features present in the

dataset, and to the size of the dataset, avoiding the use of samples [Langley_1997].

Fractal dimension has been a useful tool for the analysis of spatial access methods [Belussi_1995]

[Kamel_1994], indexing [Böhm_2000], join selectivity estimation [Faloutsos_2000], and analysis of

metric trees [Traina_2000]. However, to the best of the knowledge of the authors, it was never used

to attribute selection.

3

Symbols Definitions

E embedding dimension
(Euclidean dimensionality)

D fractal dimension
(intrinsic dimensionality)

N number of points in the dataset

Cr,i count (‘occupancies’) of points in the i-th grid cell
of side r

r side of the grid cell

S(r) total of occupancies for a specific grid cell side r

R number of sides r to plot S(r)

 Table 1- Definition of symbols

3 - Fundamental Concepts

The most common way to store data is through tables with as many columns as there are features

represented in the data, and as many lines as there are data elements. In this paper we are calling these

tables as datasets, the features as attributes, and the data elements (or objects) as points in the space of

features. In this way, a dataset is seen as points in an E-dimensional space, where E is the number of

attributes.

We are especially interested in datasets which describe complex data, usually composed of

numerical attributes. Features extracted

from images are well-known examples of

high-dimensional datasets which are used

in content-based image retrieval systems.

For these datasets, it is difficult to

choose the set of attributes that can be

assigned as keys of the dataset. In this

way, if one is interested in creating an

index structure for the dataset the whole

set of attributes needs to be considered.

This leads to the previously mentioned

dimensionality curse.

3.1 - ‘Embedding’ and ‘ intr insic dimensionality’

Our objective in this paper is to find a subset of the attributes that can be discarded when creating

indexes or applying data mining techniques over the data, without compromising the results. Attributes

that can be calculated from others are immediate candidates to discard, if the way to calculate them is

known. However, in general, this correlation is not known. Thus, our objective turns into detection of

correlations between attributes in a dataset, and how many redundant attributes the dataset has. This

leads to the definition of the embedding and intrinsic dimensions.

Definition 1 - The embedding dimension E of a dataset is the dimension of its address space. In other

words, it is the number of attributes of the dataset.

The dataset can represent a spatial object that has a dimension lower than the space where it is

embedded. For example, a line has an intrinsic dimensionality one, regardless if it is in a higher

dimensional space.

Definition 2 - The intrinsic dimension of a dataset is the dimension of the spatial object represented by

4

Figure 1 - Recursive construction of the Sierpinsky triangle.

D

C

r
r r r

r i
i

2

2

1 2≡ ∈
∑∂

∂

log

log
, [,]

,

the dataset, regardless of the space where it is embedded.

Conceptually, if a dataset has all of its variables independent from the others, then its intrinsic

dimension is the embedding dimension. However, whenever there is a correlation between two or more

variables, the intrinsic dimensionality of the dataset is reduced accordingly. For example, each

polynomial correlation (linear, quadratic, etc.) reduces the intrinsic dimension by a unit. Other types

of correlations can reduce the intrinsic dimension by different amount, even by fractional amounts, as

we will show later.

Usually the embedding dimensionality of the dataset hides the actual characteristics of the

dataset, and in general correlations between the variables in real datasets are not known and even the

existence of correlations is not known either. This motivated us to look for a technique that allows one

to find the intrinsic dimension of the dataset even when the existence of correlations is not identified.

Knowing its intrinsic dimension, it is possible to decide how many attributes are in fact required to

characterize a dataset.

3.2 - Fractals and Fractal Dimension

A fractal dataset is known by its characteristic

of being self-similar. This means that the data-

set has roughly the same properties for a wide

variation in scale or size, i.e., parts of any size

of the fractal are similar (exactly or statistically)

to the whole fractal. This idea is illustrated in Figure 1, which shows the first three steps to build the

Sierpinsky triangle, a well-known point-set fractal. The Sierpinsky triangle is constructed from an

equilateral triangle ABC, excluding its middle triangle A’B’C’ and recursively repeating this procedure

for each of the resulting smaller triangles. The Sierpinsky triangle is generated after infinite iterations

of this procedure. The Sierpinsky triangle has an infinite perimeter, so it is not a 1-dimensional object.

And it has no area, so it is not a 2-dimensional object. In fact, it has an intrinsic dimension, equal to log

3/log 2=1.58 [Schroeder_1991]. For a real set of points, we measure the fractal dimension with the

box-count plot, which is the basis of the algorithm to be proposed in Section 4.

Definition 3 (Correlation Fractal dimension): Given a dataset that has the self-similarity property in

the range of scales { r1, r2} , its Correlation Fractal dimension D2 for this range is measured as

5

From now on, we will use the correlation fractal dimension D2 as the intrinsic dimension D.

Observation 1 - For Euclidean objects, their fractal dimension corresponds to their Euclidean

dimension, and the fractal dimension of Euclidean objects is always an integer number.

For example, lines, circumferences and all standard curves have D=1; planes, circles, squares and

surfaces have D=2; Euclidian volumes have D=3, and so on. Indeed, a line segment in any n-dimensional

space will always have D=1, as well as a square will always have D=2 even if the points are in a higher-

dimensional space.

Observation 2 - The fractal dimension of a dataset cannot be greater than its embedding dimension.

Many real datasets are fractals [Traina_1999] [Schroeder_1991]. Thus, for these datasets we

can take the advantage of working with their correlation fractal dimension as their intrinsic dimension

D. Table 1 summarizes the symbols used in this paper.

4 - Fractal Dimension Algorithm

This section presents an algorithm to compute the fractal dimension D of any given set of points in any

E-dimensional space. A practical way to estimate D of a spatial dataset is using the box-counting

approach [Schroeder_1991]. Theoretically, this method gives a close approximation of the fractal

dimension, and our experiments showed that it indeed does [Traina_2000] [Traina_1999]. One of the

best published algorithm to calculate D of a dataset is an O(N� log(N)) algorithm, where N is the number

of points in the dataset [Belussi_1995]. However, we developed a new, very fast, O(N) algorithm to

implement it, which will be presented now.

Consider the address space of a point-set in an E-dimensional space, and impose an E-grid with

grid-cells of side r. Focusing on the i-th cell, let Cr,i be the count (‘occupancies’) of points in each cell.

Then, compute the value . The fractal dimension is the derivative of log(S(r)) withS r Cr i
i

() ,=∑ 2

respect to the logarithm of the radius. As we assume self-similar datasets, we expect this derivative

results in a constant value. Thus, we can obtain the fractal dimension D of a dataset plotting S(r) for

different values of the radius r, and calculating the slope of the resulting line.

It is needed to process S(r) for many values of r. To avoid read the dataset again for each value

of the radius, we propose to create a multi-level grid structure, where each level has a radius the half of

the size of the previous level (r=1, 1/2, 1/4, 1/8, etc.). Each level of the structure corresponds to a

different radius, so the depth of the structure is equal to the number of points in the resulting graph. This

structure is created in main memory, so the number of points in the graph is limited by the amount of

main memory available. If this graph is linear for a suitable range of radii, the dataset is a fractal and its

6

Figure 3 - Example of the data structure used for calculating the Sum of
Occupancies of a dataset with 5 points (with three-level resolution).

Figure 2 - Representation of grid cells in 2-
and 3-dimensional space.

fractal dimension D is the slope of the fitting line of this graph.

The proposed algorithm is linear on the number of points in the dataset. The computational

complexity of the algorithm is O(N*E*R), where N is the number of objects in the dataset, E is the

embedding dimensionality, and R is the number of points used to plot the S(r) function. This shows that

the algorithm is scalable to datasets of any size.

 For each given resolution r, only the cells which have at least one already processed point are

maintained, counting the sum of occupancies Cr ,i of this cell. In this way, each new point is directly

associated to a cell in each level, without the need to be compared with the previously read points.

Figure 2 shows the structure used in the algorithm for 2- and 3-dimensional datasets.

The coarsest resolution of the space of points

generates 2n cells. In the next level each cell is split into other

2n cells, and so on. Given that the position of each cell in the

space is always known, each cell is represented by: the sum of

occupancies Cr,i in this cell, and the pointers to the cells in the

next level covered by this cell (see Figure 2). This structure

is a kind of a multidimensional “quad-tree” (oct-tree, E-dim-

tree). Figure 3 shows an example of this structure for a

dataset with five points in three levels in a 2-dimensional

space.

Notice that new

cells are added to the

structure on demand. Thus,

only cells occupied by at

least one point are created

(Cr,i>0). This algorithm

processes the set of points

only once, so it is indeed

very fast. Figure 4

summarizes this algorithm.

A s t he gr i d

resolution increases, the number of pointers to empty cells increases as well. Thus, for high-dimensional

datasets it is worthwhile to keep the cells as linked lists instead of arrays. We implemented this structure

as an object in C++, using an array for datasets with the embedding dimension less or equal three, and

using a linked list for datasets with higher dimensionality.

7

Algorithm 1 Compute fractal dimension D of a dataset A (box-count approach)
input: normalized dataset A (N rows, with E dimensions/attributes each)
output: fractal dimension D

Begin
For each desirable grid-size r=1/2j, j= 1, 2, ..., l

For each point of the dataset
Decide which grid cell it falls in (say, the i-th cell)
Increment the count Ci (‘occupancy’)

Compute the sum of occupancies
S(r) =

�
Ci

2

Print the values of log(r) and log(S(r)) generating a plot;
Return the slope of the linear part of the plot as the fractal dimension D of the dataset A.
End

Figure 4 - Correlation fractal dimension algorithm.

Figure 5 - Three-dimensional mappings of the datasets used in the experiments of the proposed method (“FDR”).

4.1 - Datasets used in the exper iments

We used synthetic and real datasets to evaluate our method. Figure 5 shows a mapping in a 3-

dimensional space of the higher-dimensional datasets used in the experiments. This mapping was done

through the FastMap algorithm [Faloutsos_1995]. We used two synthetic datasets built over a

Sierpinsky triangle (9,841 points in a 2D space), adding three more attributes to the dataset in order

to test our method. The synthetic datasets are:
� “Sierpinsky5” (see Figure 5(a)) - The original 2D points of the original dataset (x, y) became

5D points (a=x, b=y, c=a+b, d=a2 + b2, e=a2 - b2). The three latest coordinates included in this

dataset are strongly correlated with the two first coordinates. Thus, the fractal dimension (1.68)

of the new dataset is close to the fractal dimension of the original Sierpinsky triangle.
� “Hybrid5” (see Figure 5(b)) - The original 2D points of the Sierpinksy triangle (x, y) became

5D points (a=x, b=y, c=f(a,b), d=random1, e=random2). As the two latest coordinates include

random noise to the dataset the fractal dimension of this dataset is equal to 3.62, basically the

dimensionality of the Sierpinsky (1.58) plus the dimensionality of a square in 2D (2.00). The

third variable (‘c’) is non-linearly depending on the others. It is obtained by the algorithm during

the Sierpinsky triangle generation.

8

Figure 6 - Fractal dimension of synthetic datasets embedded in 2- and 3-dimensional spaces. (a) Line; (b) Square; (c)
Sierpinsky triangle.

Figure7 - Fractal dimension of real datasets. (a) ‘Currency’ dataset; (b) ‘Eigenfaces’ dataset.

 Also two real datasets were used to evaluate our proposed method. Here are the datasets:
� “Currency” (see Figure 5(c)) - This is a 6-dimensional dataset, presenting the normalized

exchange rate of currencies based on Canadian Dollar. The data was collected from 01/02/87

until 01/28/97. This resulted in N=2,561 observations made on working days. Each attribute

corresponds to a currency (a = Hong Kong Dollar, b = Japanese Yen, c = American Dollar, d

= German Mark, e = French Franc, f =British Pound).
� “Eigenfaces” (see Figure 5(d)) - a dataset of 11,900 face vectors given by the Informedia

p r o j ec t

[Wactlar_

1996] at

Carnegie

M e l l o n

University.

Each face

w a s

processed

9

Figure 8 - Example of point sets in E=2-dimensional space.
(a) ‘Quarter-circle’ , (b) ‘Line’ , (c) ‘Spike’ .

with the eigenfaces method [Turk_1991], resulting in 16-dimensional vectors.

Now looking at Figure 6, we are able to show that Observation 1 stated previously indeed holds. It can

be seen that the correlation fractal dimension proposed indeed gives the fractal dimension of the datasets

regardless of their embedding dimension. Figure 7 shows the correlation fractal dimension of the real

datasets used in this paper.

5 - Attribute Selection Algorithm

5.1 - Intuition

In this Section we present an approach to

quickly discard some attributes (dimensions)

from the original dataset, taking advantage of

the fractal dimension concept. We stated in

Section 2 that the fractal dimension (D) of a

dataset cannot exceed the embedding dimensionality (E) of the dataset. Moreover, there are � D�
attributes which cannot be determined from the others. Since D � E, there are at least E- 	 D
 attributes

which can be correlated with the others. Correlated attributes contribute to increase the complexity of

any treatment that the dataset must be submitted to, such as spatial indexing in a database, and

knowledge retrieval in data mining processes. Moreover, the correlated attributes can be re-obtained

from the other attributes. Hence, whenever it is possible, such attributes should be detected and dropped

from the dataset.

Definition 4 - Partial fractal dimension (pD) : Given a dataset A with E attributes, this measurement

is obtained through the calculation of the correlation fractal dimension of this dataset excluding

one or more attributes from the dataset.

Figure 8(a) illustrates the intuition behind our approach. This is the ‘Quarter-circle’ dataset, which

points are in E=2 dimensions, and fractal dimension D=1. Notice that, the two attributes x and y are

correlated in a nonlinear way . Also notice that the traditional dimensionality reductiony x= −1 2

method, SVD, only works well for linear correlations. Computing the fractal dimension D=1, gives a

hint that maybe the two attributes are correlated. Thus, the points projected on one axes (say x)

probably will preserve the original distances. The fractal dimensional of the projected points will reveal

to us how well preserved the intrinsic properties of the dataset are. In this specific case, the pD for x

is pD=0.9 which means that the mode of the dataset was kept after projection. Consider also the Figure

8(b) and 8(c) presenting ‘Line’ and ‘Spike’ examples respectively. Again, our approach will correctly

10

Algorithm 2 - Fractal dimensionality reduction (FDR) algorithm
input: dataset A
output: list of attributes in the reverse order of their importance

Begin
1- Compute the fractal dimension D of the whole dataset;
2- Initially set all attributes of the dataset as the significant ones, and the whole fractal

dimension as the current D;
3- While there are significant attributes do:

4- For every significant attribute i, compute the partial fractal dimensions pDi

using all significant attributes excluding attribute i;
5- Sort the partial fractal dimensions pDi obtained in step 4 and select the

attribute a which leads to the minimum difference (current D - pDi);
6- Set the pDi obtained removing attribute a as the current D;
7- Output attribute a and remove it from the set of important attributes;

end

Figure 9 - Fractal dimensionality reduction (FDR) algorithm.

flag attributes x, y for omission, but it will not allow to drop the attribute y in the ‘Spike’ picture.

5.2 - Proposed Algor ithm - “ FDR”

The algorithm to be described uses the approach of backward elimination of the attributes. We named

it as Fractal Dimension Reduction (FDR). The proposed idea is to calculate the correlation fractal

dimension of the whole dataset, and also to calculate its pD dropping one of its E attributes at a time.

Thus, it will result in E partial fractal dimensions. The process continues selecting the attribute that leads

to the minimum difference in the pD to the whole dataset. If this difference is within a small threshold,

we can be confident that this attribute contributes almost nothing to the overall characteristics of the

dataset. Therefore, this attribute can be dropped from the list of important attributes that characterizes

the dataset. The threshold depends on how precise the resulting dataset needs to be to preserve the

characteristics of the original dataset.

The algorithm is iterative, i.e., using the resulting set of attributes, repeat the previous reduction

algorithm, until there are no more attributes to be dropped without changing the previous partial fractal

dimension more than a fixed threshold.

If there are two or more attributes correlated, this algorithm will sequentially drop attributes

using this correlation, until only the number of attributes that corresponds to independent attributes

remain. For example, if there are three attributes { a, b, c} , where the third is a function of the previous

two, e.g., c=a+b, any of the three attributes can be dropped, because the others can be used to derive

the one dropped. However, if there is no other correlation linking the remaining attributes, then no other

attribute could be dropped without mischaracterizing the dataset. Figure 9 presents the algorithm used

to generated the classification of the attributes which are presented ordered by their significance. That

11

Figure 10 - Wall-clock time (in seconds) needed to obtain
the fractal dimension of varying sized datasets. The
curves show the datasets with 2, 4, 8, and 16 dimensions.

Dataset Number
of Points

N

Embedding
dimensionality

E

Intrinsic
Dimensionality

D

time
(in seconds)

‘Sierpinsky5’ 9.841 5 1.597 6.24

‘Hybrid5’ 9,841 5 3.627 7.03

‘Eigenfaces’ 11,900 16 4.250 132.82

‘Currency’ 2,561 6 1.980 2.54
 Table 2 - Wall-clock time (in seconds) spent to run the backward-selection algorithm on
 the datasets presented. A summarization of the datasets is also given.

is, the first attribute to be dropped is the least important attribute, the second attribute dropped is the

second most important attribute and so on.

6 - Experiments and Evaluation

We did experiments to answer the following questions:

(1) How scalable are the proposed algorithms?

(2) How many attributes should be kept in order to reduce the dimensionality of the dataset?

The following sections will clarify these points. The experiments and measurements were taken on a 450

MHz Pentium II machine with 128 Mbytes of RAM under Windows NT4.0. All the proposed

algorithms were implemented in C++ language.

6.1 - Scalability of the proposed method

The algorithm developed to obtain the correlation

fractal dimension is linear over the number of points

in the dataset, i.e., O(N). The embedding

dimensionality E of the dataset is a constant involved

in the process as well as the maximum resolution of

the grid l (i.e., the number of grid sizes), then the

complexity of our algorithm is O(N*R*E).

However, E and l are small values, R is typically

equal 20 (value used in our experiments). These

values are much smaller than the number of points in

the datasets, which are in order of thousands. Figure

10 shows the wall-clock time required to get the fractal dimension against the size of the dataset. The

datasets have varying number of points in 2, 4, 8 and 16-dimensional spaces generating 20 grid sizes for

each of which. Figure 10 showns that the execution time of this algorithm is linear on the number of

points in the dataset.

The algorithm

developed to select the

attributes of a dataset

by their significance is

very fast. Instead of

the super-linear time

over the size of the

12

dataset (N) being analyzed, as it is needed by the machine learning techniques [Blum_1997] our FDR

algorithm is linear on N (number of objects) and quadratic on the embedding dimensionality (E) of the

dataset. Table 2 shows the wall-clock time needed to generate the classification of the attributes for the

datasets we presented in this paper. Table 2 also summarizes the meaningful information of the datasets.

6.2 - Dimensionality reduction using fractal dimension

Figure 11 presents the graphs generated by the FDR algorithm on the test datasets. Figure 11(a) shows

the graph of the pD of the ‘Sierpinsky5’ dataset when its attributes are sequentially dropped. From this

plot, it can be seen that just two attributes are enough to characterize this dataset. Our algorithm drops

c=a+b, e=a2-b2 and a attributes, holding b and d=a2+b2, with a resulting partial fractal dimension

pD=1.568 (versus a whole pD=1.597). Notice that knowing b and d=a2+b2, a and all other attributes

can be recalculated.

Figure 11(b) presents the same plot of the pD for the ‘Hybrid5’ dataset when its attributes are

sequentially dropped. Looking at this plot it can be seen that four attributes are needed to characterize

this dataset. Just the c=f(a+b) attribute can be dropped, as every other attribute contributes with a

significant portion of D. This is correct, as the attributes a and b correspond to the original Sierpinsky

triangle points, and the attributes d and e depend on random numbers, which are independent variables

and cannot be obtained from the other attributes. Also, as ‘Hybrid5’ dataset has D=3.62 it is expected

four attributes to remain.

Figure 11(c) shows the plot of the pD of the ‘Eigenfaces’ dataset when its attributes are

sequentially dropped. From this plot, we can see that, from the original 16 attributes, just five are

enough to characterize this dataset { b, d, f, a, e} . The resulting partial fractal dimension with five

attributes is 3.815, and the whole partial fractal dimension is 4.207 (that is, eleven attributes contribute

only 0.392 to the whole fractal dimension).

Figure 11(d) shows the plot of the pD of the ‘Currency’ dataset when its attributes are

sequentially dropped. It shows that the Hong Kong Dollar is the only currency that can be immediately

dropped. This is correct, as we know that the Hong Kong Dollar is linked to the American Dollar, so

there is some strong correlation between both currencies. The other currencies have more independent

behaviors, as their contribution to the whole fractal dimension is a value between 0.16 and 0.68.

The following observations can now be made:

Observation 3 - The intrinsic dimensionality gives a lower bound of the number of attributes needed

to keep the essential characteristics of the dataset.

This means that at least the number of attributes equal to the ceiling function on D needs to remain.

13

Figure 11 - Plots of the number of attributes dropped versus the partial fractal dimensions for the following datasets:
(a) ‘Sierpinsky5’ (b) ‘Hybrid5’ (c) ‘Eigenfaces’ (d) ‘Currency’ .

Observation 4 - The most independent attributes are saved to the end of the process.

As this occurs (by the construction of the algorithm), the process can stop early, when the minimum

number of attributes is achieved.

6.3 - Discussion

Intuitively the attribute selection could be performed in backward or forward direction. If there is only

polynomial correlation between the attributes, both backward or forward selection works well.

However, when there is a fractal correlation between the attributes (such as the x and y coordinates in

the Sierpinsky triangle), the experiments showed that the backward selection works better.

The fractal dimension D is a guide to know when to stop the backward selection algorithm FDR.

Indeed, � D� is the minimum number of attributes that must be in the resulting set. This is due to the fact

these D� attributes preserve the essential characteristics of the dataset.

7 - Conclusions

The main contribution of this paper is the proposal of a novel approach in feature selection and

14

dimensionality reduction, using the concept of fractal dimension. This approach leads to a method to

reduce the dimensionality of spatial datasets and it has the following properties:

• it can detect the hidden correlations which exist in the dataset, spotting how many attributes

strongly affect the behavior of the dataset regarding index and retrieval operations.

• it can show the attributes that have nonlinear and even non-polynomial correlations, where the

traditional SVD method fails;

• it provides a small subset of attributes that can represent the whole dataset.

• it is scalable on the number N of elements in the dataset - O(N). This is a striking advantage over

methods from Machine Learning field [Blum_1997] which are super-linear on the number of

objects N.

• it can be applied to high-dimensional datasets as well.

• it does not rotate the address space of the dataset. Thus, it leads to easy interpretation of the

resulting attributes.

Other contributions are:

• the detailed design of the single pass algorithm to compute the correlation fractal dimension of any

spatial dataset. This algorithm is O(N) thus scaling up for arbitrary size datasets. This algorithm

works in main memory, but the amount of memory available limits only the resolution of results,

and not the size or dimension of the dataset.

• the quick backward attribute reduction algorithm. As it uses the quick algorithm to calculate the

fractal dimension, it is also linear on the size of the dataset. Moreover, it can quickly compute

the meaningful attributes (seconds), in contrast to current methods that take hours or days to

give answers.

• experiments on synthetic and real datasets, showing the effectiveness and speed of the results.

References

[Aha_1995] D. W. Aha and R. L. Bankert, “A Comparative Evaluation of Sequential Feature Selection
Algorithms,” in Proceedings of the Fifth Intl. Workshop on Artificial Intelligence and Statistics, Ft.
Lauderdale, FL, 1995.

[Belussi_1995] A. Belussi and C. Faloutsos, “Estimating the Selectivity of Spatial Queries Using the
‘Correlation' Fractal Dimension,” in 21th Intl. Conf. on Very Large Data Bases (VLDB), Zurich,
Switzerland, 1995.

[Berchtold_1998] S. Berchtold, C. Böhm, H.-P. Kriegel, “The Pyramid-Tree: Breaking the Curse of
Dimensionality,” in ACM SIGMOD Intl. Conf. on Management of Data, Seattle, Washington, 1998.

[Blum_1997] A. L. Blum and P. Langley, “Selection of Relevant Features and Examples in Machine Learning,”
Artificial Inteligence, vol. 97, pp. 245-271, 1997.

[Böhm_2000] C. Böhm and H.-P. Kriegel, “Dynamically Optimizing High-Dimensional Index Structures,” in

15

7th Intl. Conf. on Extending Database Technology (EDBT), Konstanz, Germany, 2000.

[Faloutsos_1996] C. Faloutsos, Searching Multimedia Databases by Content. Boston: Kluwer Academic
Publishers, 1996.

[Faloutsos_1995] C. Faloutsos and K.-I. Lin, “FastMap: A Fast Algorithm for Indexing, Data-Mining and
Visualization of Traditional and Multimedia Datasets,” in ACM SIGMOD Intl. Conf. on Management of
Data, San Jose, California, 1995.

[Faloutsos_2000] C. Faloutsos, B. Seeger, A. J. M. Traina, C. T. Jr., “Spatial Join Selectivity Using Power
Laws,” in to be published in the ACM SIGMOD Intl. Conf. on Management of Data, Dallas, Texas, USA,
2000.

[Fayyad_1998] U. Fayyad, “Mining Databases: Towards Algorithms for Knowledge Discovery,” Bulletin of the
IEEE Technical committee on Data Engineering, vol. 21, pp. 39-48, 1998.

[John_1994] G. H. John, R. Kohavi, K.Pfleger, “ Irrelevant Features and the Subset Selection Problem,” in 11'
Intl. Conf. on Machine Learning, New Brunswick, NJ, USA, 1994.

[Kamel_1994] I. Kamel and C. Faloutsos, “Hilbert R-tree: An Improved R-tree using Fractals,” in 20th
Intl.Conf. on Very Large Data Bases (VLDB), Santiago de Chile, Chile, 1994.

[Kira_1992] K. Kira and L. L. Rendell, “A Practical Approach fo Feature Selection,” in 9‘ Intl. Conf. on
Machine Learning, Aberdeen Scotland, 1992.

[Langley_1997] P. Langley and S. Sage, “Scaling to Domains with many Irrelavant Features,” in Computational
learning theory and natural learning systems, vol. 4, R. Greiner, Ed. Cambridge, MA: MIT Press, 1997.

[Pagel_2000] B.-U. Pagel, F. Korn, C. Faloutsos, “Deflating the Dimensionality Curse Using Multiple Fractal
Dimensions,” in 16th Intl. Conf. on Data Engineering (ICDE), San Diego, CA - USA, 2000.

[Scherf_1997] M. Scherf and W. Brauer, “Feature Selection by Means of a Feature Weighting Approach,”
Technische Universität München, Munich 1997.

[Schroeder_1991] M. Schroeder, Fractals, Chaos, Power Laws, 6 ed. New York: W.H. Freeman and Company,
1991.

[Singh_1995] M. Singh and G. M. Provan, “ A Comparison of Induction Algorithms for Selective and Non-
selective Bayesian Classifiers,” in 12‘ Intl. Conf. on Machine Learning, Lake Tahoe, CA, USA, 1995.

[Traina_1999] C. Traina, A. J. M. Traina, C. Faloutsos, “Distance Exponent: A New Comcept for Selectivity
Estimation in Metric Trees,” Carnegie Mellon University, Pittsburgh, PA CMU-CS-99-110, March 1, 1999
1999.

[Traina_2000] C. Traina, A. J. M. Traina, C. Faloutsos, “ Distance Exponent: a New Concept for Selectivity
Estimation in Metric Trees,” in IEEE Intl. Conf. on Data Engineering (ICDE), San Diego - CA, 2000.

[Turk_1991] M. Turk and A. Pentland, “Eigenfaces for Recognition,” Journal of Cognitive Neuroscience, vol.
3, pp. 71-86, 1991.

[Vafaie_1993] H. Vafaie and K. A. D. Jong, “Robust Feature Selection Algorithms,” in Intl. Conf. onTools with
AI, Boston, MA, 1993.

[Wactlar_1996] H. D. Wactlar, T. Kanade, M. A. Smith, S. M. Stevens, “ Intelligent Access to Digital Video:
Informedia Project,” IEEE Computer, vol. 29, pp. 46-52, 1996.

