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ABSTRACT

Existing axis scaling and dimensionality methods focus on
preserving structure, usually determined via the Euclidean
distance. In other words, they inherently assume that the
Euclidean distance is already correct. We instead propose a
novel nonlinear approach driven by an information-theoretic
viewpoint, which we show is also strongly linked to intrinsic
dimensionality, or degrees of freedom; and uniformity. Non-
linear transformations based on common probability distri-
butions, combined with information-driven selection, simul-
taneously reduce the number of dimensions required and
increase the value of those we retain. Experiments on real
data confirm that this approach reveals correlations, finds
novel attributes, and scales well.

1. INTRODUCTION

The assumption that the Euclidean distance is already
acceptable is inherent in most other scaling problems. We
instead focus on determining what is, in fact, a good distance
function for data; isomorphically, what space is appropriate
for data. Motivating this problem are situations such as the
following.

Consider Figure 1, which shows one data set presented in
two different sets of scales. The exact scaling methods used
need not be specified; suffice it to say that in both cases,
the original data could be determined precisely given the
methods, and that any mathematical rules learned in either
space could be transformed to rules in the original space.

Version (b) shows a strong linear relationship between the
axes, while finding any such rule for (a) would be difficult.
(b) is also far less dominated by outliers. Not coincidentally,
the axes of (b) appear much more uniformly distributed. For
these reasons, (b) is a better data space. Traditional scaling
methods would have preserved the structure of (a), thus re-
taining a bad distance function. Distance functions, in turn,
are critical to many problems. Trustworthy, well-grounded
distance functions are absolutely vital — and most algorithms
simply assume that this problem has already been solved.
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1.1 Intuition

Intuition leads us to three major aspects to bad scaling
— skew, or lack of uniformity, along an axis; badly matched
ranges between attributes; and redundant expression of hid-
den factors in the attribute set.

One issue is skew, the opposite of uniformity. In a uni-
form distribution, distances are simple to interpret; whereas
skewed distributions often indicate nonlinearities or severe
outliers. Second, it may well be desirable for attributes
to have similar ranges. Vastly dissimilar ranges may re-
sult in one attribute looking like noise compared to another.
Third, redundancy is undesirable. The impact of redun-
dancy on performance and storage is obvious. Its impact on
correctness may not be. Consider that a standard Euclidean
distance which sees the same basic, underlying distance in
ten attributes will take that same distance into account ten
times, thus giving it excessive weight.

Mismatched ranges are simply handled with affine normal-
ization schemes. Redundancy can be dealt with by dropping
attributes, but only if redundancy can be identified. Skew
can only be dealt with via nonlinear transformations — and
again, must first be measured. Finding this measure lies at
the heart of the problem.

1.2 Informal specification

Given a set of n vectors in R™, produce through invertible
transformations and dimensionality reduction a second set
of n vectors in R™ , with m’ < m, with increased uniformity,
well-matched ranges, and less redundancy. The underlying
problem, of course, is figuring out how to measure uniformity
and redundancy.

2. THE IMPORTANCE OF SCALING

This section illustrates the possible benefits of nonlinear
scaling, even when applied in a very simple fashion, as com-
pared to the more complex methods elaborated upon later.
Here, we’ll see that using nonlinear scaling can help in rule-
finding.

Figure 2 shows corresponding raw and logarithmic plots
for two player statistics for the NBA 1991-1992 season, the
number of games played versus the number of field goals
made. Linear regression is dubious at first with a correla-
tion coefficient of 0.7569, but after discarding eight vectors
corresponding to players who scored zero in either statistic
and applying the natural logarithm to the rest, the following
rule holds with a greatly improved correlation coefficient of
0.9109:
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Figure 1: Two versions of the same data. Which is better for data mining? Why?

In f = 1.5080 * In g — 1.0032 (1)

or, approximately, f = g5, where f is the number of
field goals and g the number of games. Nonlinear scaling has
thus revealed a superlinear rule, for which there is a plausible
explanation — more skilled basketball players are more likely
to get more playing time, and thus more opportunities to
score, and vice versa. If we has relied only on linear scaling,
we might have been misled by the 0.7569 correlation on the
raw data.

3. RELATED WORK

Other methods of interest include linear projection meth-
ods such as principal components [15], FastMap [11] and
independent components analysis [12, 13]; robust distance
estimators [16]; local methods such as mapping and man-
ifolds [17], [18], [22] and others [8]. Principal components
has also been extended via principal curves [9] and nonlin-
ear kernels [19].

The SPARTAN [1] algorithm lossily compresses data via
feature selection plus CART trees [5] with the retained at-
tributes as possible inputs [1]. Neural networks have also
been used for dimensionality reduction and reconstruction
[10].

The above listed methods suffer variously from complex-
ity; the need for human intervention such as choosing ker-
nels; the goal of preserving versus improving structure; and
a host of other issues. The system presented in this pa-
per instead relies on a different approach firmly grounded in
information theory.

3.1 Shannon information

Shannon information [21], also known as entropy, provides
a way to quantify the intuitive concept of information. The
formulas

H(z) =~ 3 pilog, i @

where p; corresponds to a probability of a discrete out-
come %, and

H(z) = / — f (@) log, f(z)dz 3)

where f(x) is the probability density function (PDF) eval-
uated at z, measure the entropy of a random variable z.
The second form is also known as differential entropy. In
each case, entropy corresponds to the theoretical minimum
expected number of bits required to transmit individual in-
stances of the random variable.

4. PROPOSED METHOD

While entropy may seem a logical choice for measuring
redundancy or uniformity, there are multiple problems with
using either of Equations 2 or 3 as a heuristic for determining
which scaling method is preferable. The most serious is
that continuous data requires either discretization, which is
parameter-sensitive; or differential entropy, which requires a
probability density function.

Consider a series of discretizations with steadily reduced
granularity. For self-similar sets, the amount of entropy in-
creases linearly with the number of bits of precision, within
limits. Obviously, for a finite point set, there are minimum
and maximum amounts of precision beyond which all avail-
able information has either been revealed or discarded. This
rate of increase is the marginal information content.

This metric is critical because it objectively compares dif-
ferent spaces in a theoretically well-ground manner, while
complying with an intuition that we want to make every bit
count by maximizing the information efficiency of our data.

4.1 Fractal dimension

This metric is also related to the fractal dimension — in
particular, the D; fractal dimension [3, 23]

D, = 3E¢ Di,r 108, Dir (4)
Olog,r

where p;,, is the fraction of pairs of vectors within distance
r of each other. Suppose we normalize continuous data so
it fits within a unit hypercube. Then, for any given radius
r discretize it by dividing that unit hypercube into smaller
hypercubes of side length r along each dimension. Let H,
be the entropy of the discretized version with respect to side

length r. Then,

H,(z) = — Zpi,r log, pi,r (5)
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Figure 2: Games played versus field goals scored by players in the NBA 1991-1992 season, (a) raw and (b)

scaled, with least-squares linear regression.

As per [20], we can replace 4 with:

_ —0H,(x)

Dy = Olog, T ©)

log, r is the number of bits of precision per attribute.
Hence, D; is the derivative of information with respect to
precision, or the marginal information content.

The D; fractal dimension is but one of a series of general-
ized fractal dimensions [3], all of which can be estimated in
time that scales linearly with cardinality and dimensionality.
They have been used as estimators for intrinsic dimension-
ality [2], another concept which intuitively corresponds to
the number of degrees of freedom present within data. That
a single number corresponds to both marginal information
and to degrees of freedom reinforces our belief that this is a
suitable measure for the goodness of a given scale.

4.2 Complete problem definition

Given the MIC metric for uniformity and redundancy, we
may now formally define the problem.

Version 1: Axis Scaling. Given a set of n vectors in R™,
produce through invertible transformations a second set of
n vectors in R™, with maximal MIC.

Version 2: Scaling and Reduction. Identical to Version 1,
except that we reduce to R™ where m’ < m. This means
that need to retain only independent, high-information at-
tributes.

m’ may be chosen in two different ways.

1. m’ is supplied by the user.
2. m/ is inferred from the data.

We focus on axis scaling and dimensionality reduction
with implicitly specified m'.

4.3 Transformations

Now that we have established MIC as the logical met-
ric, we describe how we create attribute spaces to com-
pare. For computational and implementation reasons, we
constrain our search to the space of transformation meth-
ods in which transformations are applied to individual at-
tributes and without rotation. The MIC will determine the
value of different combinations.

Recall that we wish to address skew, mismatched ranges,
and redundancy. The first of these problems dictate that
we use nonlinear transformations. The second is solvable
via simple affine transformations if not already dealt with
via nonlinear ones. The third is a bit orthogonal, and is
instead handled through dropping attributes.

Below we describe the transformations we chose. This
framework by no means requires the same choices we made,
nor excludes other invertible transformations; where domain
knowledge makes possible better guesses, we would suggest
using them. The goal of uniformizing data clearly points
towards using cumulative distribution functions (CDFs) of
real-world distributions. We thus chose the CDFs of uni-
form, normal, gamma, lognormal and Pareto distributions,
all of which have have common, actual real-world applica-
tions [14]. In addition, we allow a natural logarithm trans-
formation, composed with an affine normalization method
to alter the range to [0, 1] — the same as that of CDF's.

Additional transformations could be added if one desires.
We note that we specifically reject the quantile transforma-
tion, as the interpolation demands a potentially ridiculous
number of parameters and makes it impossible to meaning-
fully transform rules from transformed space to the origi-
nal space. Multi-attribute transformations are theoretically
possible, but may be too computationally intensive to be
practical.

4.4 Selection

Suppose the data set is A = {a;} where each a; is a contin-
uous attribute. Define the transformation set as T = {t;},
where t; : R — R. Then, each attribute @ may be re-
tained in exactly one transformed version ¢;(a@), or it may
be dropped entirely. This search space scales linearly with
both |T'| and |A|.

We chose forwards-selection search; specifically, a more
flexible variation of what was used before [23]. Our algo-
rithm starts with no attributes retained. At each iteration
the search may add a transformed attribute; greedily drop a
retained transformed attribute and replace it with another;
or stop. Additions and exchanges are constrained so that no
two versions of the same attribute are ever simultaneously
retained. The higher the MIC gain, the better an addition
or exchange. When the best addition matches the best ex-
change, we prefer the exchange as it leaves dimensionality



untouched.

If neither additions nor exchanges produces a reasonable
gain, then the algorithm terminates. In all our tests, we
required a minimum MIC gain of 0.1.

Overall, the time cost is O(tmnk?), with ¢ transforma-
tions, m attributes, n vectors and k retained attributes. Ex-
changes do not impact performance that much, as currently
the drop is greedy and independent of the replacement —
it uses two linear searches, rather than a quadratic search
through the space of jdrop,add; pairs.

5. EXPERIMENTS

Our experiments were conducted with a focus on answer-
ing three questions.

1. What is the impact of our MIC-based selection method
on MIC and overall dimensionality?

2. What about the quality of our chosen attributes?

3. Does our method scale well?

The first question will be easy to answer; we need simply
present before-and-after comparisons of the attribute counts
and MIC values. Likewise, the third presents no particular
difficulties where cardinality is concerned; elapsed time will
suffice. Answering the second requires some explanation.

5.1 Measuring selection quality

Intuitively, the information that dropped attributes pro-
vide should be largely covered by the retained ones. At-
tributes retained early should be more novel than attributes
retained later which should be more novel than dropped at-
tributes.

Consider a retained attribute . The greedy search im-
poses an ordering on retained attributes. Let y and z be the
two previously selected attributes greedily chosen to maxi-
mize relative redundancy R,(zly, 2),

_ H, ("I;) + H’l‘(y: Z) _ HT("I‘" Y, z)

Then, the estimated value of z given y and z is the in-
formation that is not redundant. In absolute terms, this is
R, (z|y, z)H,(x). We can define the normalized form novelty
N (z) as

R, (zly, z)H, (z)
—log, r

No(z) = (8)

A novelty of 0 means that the attribute is completely ex-
plainable in terms of previous attributes — yielding no addi-
tional information — and a novelty of 1 means that it pro-
vided the maximum possible information for that level of
precision.

Non-retained attributes, by which we mean attributes that
are not retained in any transformed form at all, are grouped
by underlying original attribute. We choose the (z,y,z)
triple that maximizes R, (z|y, z) where £ may be any trans-
formed version of the same original attribute, and y and z
are two accepted versions of attributes.

For both retained and non-retained attributes, we set r to
be %, resulting in a 4096 total possible discretized outcomes
per triple. The larger the cardinality of the data, the more
reasonable a smaller, more precise r would be.

| Name | Source | Attrs. | Vecs. | Notes |
baseball MLB ’96 17 365
basketball | NBA ’91-92 45 459 |1
CIA-1992 CIA 2 215 | 2,3
CIA-2001 CIA 2 235 | 24
machine UCI/ML 8 209 | 5,6
page-blocks UCI/ML 11 5473 | 5
synthia synthetic 28 5000 | 1,8
wine UCI/ML 13 178 | 5,7
Note Meaning

1 Has related attributes.

2 Area versus population, in km?.

3 CIA World Factbook 1992[6].

4 CIA World Factbook 2001[7].

5 From the UCI Machine Learning
Repository [4]

6 cpu-performance database, minus
nominal attributes.

7 Minus the class attribute.

8 Generated specifically for this work
as three IID Gaussian variables,
and 25 linear combinations of cubic
polynomials of the Gaussians.

Table 1: Summary of the data used.

Before After

Name Attrs. | MIC [ Attrs. [ MIC
baseball 17 2.0540 6 3.6987
basketball 45 1.6310 8 4.8211
CIA-1992 2 0.3160 2 1.5840
CIA-2001 2 0.2591 2 1.5724
machine 8 0.5858 4 2.1718
page-blocks 11 1.6726 5 3.2933
synthia 28 2.3918 4 3.0966
wine 13 0.9909 4 3.0425

Table 2: Summary of the dimensionality and MIC
changes.

5.2 Data

The data sets used are listed in Table 1. Of these, only
synthia was specifically generated by us subsequent to the
design of the algorithm tested.

5.3 Impact on dimensionality and MIC

Table 2 lists the effects of greedily selecting attributes
from the transformed versions as previously described. In
all cases except for the two-attribute sets — the 1992 and
2001 versions of national area and population from the CIA
World Factbooks — the number of attributes retained was
significantly lower than the number of original attributes.
In addition, in each case the MIC increased, in most cases
significantly. This is possible because MIC-based aims to
improve rather than preserve structure.

5.4 Quality of chosen attributes

Here we present graphs illustrating the novelty estimates
of each additional attribute. Sets in which all attributes
are retained in some form — the two CIA World Factbook
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Figure 3: New information in the baseball data.

sets — are not represented here. For other sets, each graph
is as follows. The z-axis is split into two halves; left of
the vertical line are retained attributes; right, non-retained.
The retained attributes are listed in order of selection, while
the non-retained are sorted in order of decreasing value.

Value on the y-axis is N, “percentage novelty”, which is
the estimated amount of new information they provide ver-
sus previously selected attributes, relative to the theoretical
maximum based on the number of intervals.

Retained attributes may be surprising, but logi-
cal. Figures 3 and 4 show these results. Figure 3 demon-
strates a pattern also found in the basketball and wine sets
(graphs omitted for brevity); the first few selected attributes
are highly novel, but attribute value rapidly decreases until
it levels out — perhaps due to independent noise. In this
particular case, baseball, the first two statistics to be se-
lected, OBA (opponents batting average) and SO (strike-
outs). These choices may be counterintuitive, but when
one realizes that these characterize the offensive skills of the
teams, they are in fact quite logical choices: the offensive
skill of one player has little to do with that of his oppo-
nents, but many of the other attributes such as the number
of hits will obviously be related to either of these two.

Results for the machine set (graph omitted for brevity)
are similar, although the novelty trend levels off more grad-
ually. The first two attributes selected from machine corre-
spond to the published and estimated relative CPU perfor-
mance ratings — the goal attribute and a linear regression
estimate guess, respectively. These attributes are closely re-
lated to the other continuous attributes such as maximum
main memory in kilobytes.

Redundant attributes get rejected. Figure 4 shows
a pattern in page_blocks that is also present for synthia
(graph omitted for brevity), in which there is a significant

gap in value between the selected and non-selected attributes.

The non-selected attributes are chosen reasonably. For in-

stance, the most redundant attribute in page _blocks, wb_trans,

is actually completely redundant since it is the ratio between
two of the retained attributes, blackpix and mean_tr.

5.5 Scalability

In addition to testing the quality of results, we also tested
the scalability. The synthetic nature of synthia allowed us
to easily and fairly test for scalability with respect to cardi-
nality. We generated variations of synthia with cardinali-
ties of 1000, 2000, 3000 through 10,000. Figure 5 shows time

Upper bounds for attribute novelty - page-blocks. data
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Figure 4: New information in the page-blocks data.
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Figure 5: Performance results. Both the transfor-
mation and scaling phases scale linearly with cardi-
nality.

required for the transformation phase, the selection phase,
and the total of those two. The total clearly scales linearly
with cardinality, as confirmed by a correlation coefficient of
0.9958.

6. DISCUSSION

Consider how our algorithm performed. Our experiments
were performed to answer questions regarding the algorithm’s
effect on MIC and dimensionality; whether or not the algo-
rithm chose informative attributes, and dropped redundant
or low-content ones; and its overall scalability.

First, as shown in Table 2, reducing the embedding dimen-
sionality is compatible with substantial increases in marginal
information content, meaning that with transformations and
selection one expects a greater gain per additional bit of pre-
cision.

Second, as shown in Figures 3 and 4, using MIC as an
attribute selection criterion does appear to prefer attributes
that provide more novel, non-mutual information. This is
desirable as we wish to capture as much information as we
can without succumbing to noise or inefficiently accepting
overly redundant data.

Third, the algorithm scales well. Explicit scalability test-
ing on synthia variants further showed linear scalability
with respect to cardinality. In addition, in real cases it may
be possible to use domain knowledge to trim the transfor-
mation set, which would increase performance significantly.
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