
Fast Estimation of Fractal Dimension and Correlation
Integral on Stream Data

Angeline Wong
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

alwong@andrew.cmu.edu

Leejay Wu
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

lw2j@cs.cmu.edu

Phillip B. Gibbons
Intel Research Pittsburgh

417 South Craig Street, Suite 300
Pittsburgh, PA 15213

phillip.b.gibbons@intel.com

ABSTRACT
Given a cloud of N points in an E-dimensional space, we often
need to estimate the intrinsic dimensionality D of this cloud. For
example, a set of points in 3-dimensional space all following
along a straight line has intrinsic (or fractal) dimensionality D=1.
Non-integer fractal dimensionality appears pervasively in nature.

In this paper we give a very fast method to estimate the fractal
dimensionality of the points in a data stream. Algorithms to
estimate the fractal dimension exist, from the straightforward
quadratic algorithm, to the faster O(NlogN) or even O(N)
algorithms that use the so-called box-counting method. However,
these algorithms require Ω(N) space, and hence are ill-suited to
semi-infinite streams of data. In this paper we propose an
algorithm, based on a “tug-of-war” idea, which computes the
fractal dimension in a single pass over the dataset using only
constant memory. Experimental results on synthetic and real
world data sets demonstrate the effectiveness of our algorithm.

Categories and Subject Descriptors
G.1.2 [Numerical Analysis]: Approximation – wavelets and
fractals, linear approximation, special function approximations;
F.1.2 [Computation by Abstract Devices]: Modes of
Computation – online computation, probabilistic computation;
E.2 [Data Storage Representations]: hash-table representations;
E.1 [Data Structures]: arrays; G.3 [Probability and Statistics]:
correlation and regression analysis; I.5.5 [Pattern Recognition]:
Implementation – interactive systems.

General Terms
Algorithms, Theory, Design, Measurement, Performance,
Reliability, Verification, Experimentation.

Keywords
Approximation algorithms, Databases, Randomized algorithms,
Fractal dimension, Box counting.

1. INTRODUCTION
The fractal dimension of a set of points is an important measure
of the intrinsic dimensionality of the points. It has been shown to
facilitate selectivity estimation, range queries [7,15], nearest-
neighbor queries [3,4,13], and similarity searches [3], and can be
used in dimensionality reduction [17] and outlier detection [14].
It also assists the characterization of workloads [12] such as disk
requests [18], processor utilization, or network traffic [6,9,18];
and the modeling of random walks, such as stock indexes over
time. The fractal dimension also aids in shape classification
problems, such as preliminarily diagnosing cancerous masses
[5,10].

The development of fast approximate algorithms to calculate
fractal dimensions has reduced the computational complexity of
estimating fractal dimensions from O(N2), where N is the number
of points in the dataset, to linear O(N) [17]. However, the
memory costs have remained at θ(N). This makes these previous
algorithms ill-suited for semi-infinite streams of data, which have
been attracting increasing interest thanks to network monitoring
and sensor settings [2,8]. In this paper, we propose an algorithm,
Tug-of-War, which combines O(N) time and O(1) space costs, and
we provide an experimental study of its effectiveness in estimating
fractal dimensions. In the next section, we describe in greater
detail fractals, fractal dimensionality and current algorithms for
computing that measure. Following the background comes our
description of Tug-of-War, and then our experimental results.

2. BACKGROUND AND DEFINITION OF
FRACTALS AND FRACTAL DIMENSIONS
Suppose we have a self-similar dataset of N points ai in

Eℜ ,
such as the Sierpinski Triangle (Figure 1(a)). What is its intrinsic
dimensionality? While with ordinary Euclidian point sets such as
uniform lines, planes, and solids, the intrinsic dimensionality
would be the corresponding obvious integer (e.g., D=1 for Figure
1(b)), for real point sets a fractional dimension – or fractal
dimension – may better quantify the intrinsic dimensionality.
Non-integer fractal dimensionality appears pervasively in nature:
the periphery of clouds and rain patches (D=1.3), coast-lines
(D=1.1 to 1.58 for Norway), the surface of mammalian brains
(D=2.6-2.7), river basins, the bark of trees, stock prices and
random walks (D=1.5), the human respiratory system (D=2.9), the
cardiovascular system (D=3) [11,16], the boundary of malignant
and benign tumors [5], and much, much more. The “correlation”

fractal dimension D2 for a point-set that shows self-similarity in
the range of scales (r1, r2) is defined as follows:

),(
)log(

log

21

2

2 rrr
r

p
D i

i

∈
∂

∂
≡

∑

where pi is the occupancy of, or number of points contained in,
the i-th cell when the E-dimensional address space is divided into
(hyper)-cubic grid cells of side r [3]. The method we propose
approximates this correlation fractal dimension D2.

2.1 Survey of Methods for Estimating Fractal
Dimensions
The following subsections give a brief explanation of two salient
methods for computing D2 fractal dimensions. Pair-counting
provides an exact way to calculate fractal dimensions, but needs
to enumerate all O(N2) pairs, driving research to find faster
algorithms. Box-counting incurs only O(N) computational cost,
but sacrifices accuracy.

2.1.1 Pair-counting
Pair-counting calculates how many pairs are within a given
distance of each other. The average number of neighbors within a
given radius r, Cr, is exactly the total number of pairs within
distance r of each other, divided by the number of points N in the
set:

average # neighbors (≤ r) = (total # pairs (≤ r))/N

Self-similar sets obey a power-law relationship

Cr proportional to rD2 [3]

within limits – below or above certain radii, a finite set must
necessarily stray from strict adherence to that law. Therefore, the
fractal dimension can be computed as the slope of the linear
relationship between log(Cr) and log(r). We can also compute the
correlation between those two quantities within the region of radii
where the set is in fact linear or nearly so; this correlation then
serves as a measure of reliability and self-similarity.

Computing the quantity D2 exactly requires determining the
distance between every two points. While the distances need not
be stored (we may keep counters for each and every distance r one
intends to use), they must be computed at least once to produce an
exact answer. This O(N2) computational cost proves prohibitive

for realistically large data sets. Consequently, one compromises
on accuracy to gain performance.

2.1.2 Box-counting
The practical box-counting algorithm provides one such
compromise [3,16,17]. This algorithm derives its name from the
imposition of nested hypercube grids over the data, followed by
counting the occupancy of each grid cell [3], thus focusing on
individual points instead of on pairs. The sum of squared
occupancies S2(r) for a particular grid side length r is defined as:

∑≡
i

iCrS 2
2)(, where Ci is the count of points in the ith cell.

Substituting these counts for the pair counts in the same power-
law relationship estimates the fractal dimension. Given sufficient
space to store all the counters simultaneously, all counts can be
computed in a single pass over the data. Even if performing one
pass per radius to minimize storage cost, the computational cost is
still only linear with respect to N [17]. However, even this
algorithm still has a storage complexity of θ(N), as every datum
might end up in its own cell given a sufficiently small radius.

3. PROPOSED METHOD: TUG-OF-WAR
Accepting an O(N) computational cost seems reasonable, as one
must consider every point at least once unless using sampling or
similar approaches. However, we can drastically reduce the
storage cost to the point where it proves constant with respect to
N. Our proposed method provides such space-efficient
performance without sacrificing an O(N) runtime performance,
returning reasonably accurate results while permitting
computation to occur within the confines of a single pass over the
data.

3.1 Preliminaries
Given a set of grid-cell identifiers, we want to estimate the sum of
squared occupancies S2(r) for a range of grid sides r and do so in a
single pass through the data while using a small, fixed amount of
memory. Theorem 2.2 of [1] describes a space-efficient,
randomized algorithm to estimate the second moment, F2 (which
is S2(r) for a given grid side r), given a sequence A = (a1,…, aN) of
members of a set M, in a single pass, performing a constant
number of arithmetic and finite field operations. The algorithm
generates a set of random, four-wise independent binary hash
functions hij that are used to compute a value Z, the square of
which (Z2) approximates F2. Z2 is the median of s2 random
variables Y1, Y2, …, Ys2. Each Yi is the average of s1 random
variables Xij : 1 ≤ j ≤ s1, where the Xij are derived as follows: In
one pass over the data, for each data value v, add 1 to Xij if hij(v) =
1 and otherwise subtract 1 from Xij [1]. This technique is also
referred to as taking a random sketch of the data [8].

The theorem also provides probably approximately correct (PAC)
bounds for computing F2 using the specified algorithm. For any

positive integral values of s1 and s2, let λ = √(16/s1) and ε =

)/(1)2/(2se . Then, the probability that the estimated moment

deviates from the true moment F2 by more than (λ*F2) is at most
ε [1]. When s1 = 30 and s2 = 5, λ = 0.73 and ε = 0.082.

Figure 1. Theoretical fractals: (a) 5000 points of the
Sierpinski Triangle, (b) a line in 3D spage

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Sierpinski Triangle

3D diagonal line

 0
 200

 400
 600

 800
 1000 0

 200

 400

 600

 800

 1000

 0

 200

 400

 600

 800

 1000

3.2 Proposed Algorithm
Our Tug-of-War algorithm efficiently approximates the pair
counts by extending this algorithm to compute F2 for multi-
dimensional points and for a range of grid sides r. Let s1 be an

integer positively correlated with how much accuracy we
require, while s2 similarly influences confidence.

Now suppose we have a self-similar dataset M of N points ai in
Eℜ , from which we can form a sequence A = (a1, a2,…, aN).

Since each point ai is E-dimensional, we can expand each ai to
form a sequence A’ = (a11,..., a1E, a21,…, aNE) of members of M,
with each member expressed as a sequence of its coordinates.
The members of M will still be processed in a single pass. Then,
for each radius, we generate s1s2 random four-wise independent
hash functions of the form

qdxcxbxaresult
j

j
ij

j
ij

j
ij

j mod23∑ +++=

where the coefficients a,b,c,d are random primes, ensuring that
the polynomial is irreducible [1], and the inputs will be xij =
aij/r with j from 1 to E. For each radius, we maintain one
counter for each of the hash functions, which will give us |R| =
|{r}| groups of s1s2 random variables from which to calculate |R|
values of Z2. After each result is calculated, it is mapped to –1 or
1 according to its parity. This value is then added to the counter
corresponding to the hash function and radius used. The final
estimate for the second moment for each radius is Z2, the median
of s2 values, each of which is the mean of s1 squares of the values
held in the counters. Since F2 = S2(r), these estimates give the
sum of squared occupancies from which we can compute the
fractal dimension.

3.3 Computational and Memory Complexities
The computational complexity of the Tug-of-War method is linear
in the size N of the database or current data stream. The runtime
is dependent on N, the embedding dimensionality of the E, the
number of radii |R| = |{r}|, the accuracy parameter s1, and the
confidence parameter s2. E, |R|, s1, and s2 are independent of N,
so the runtime complexity of the Tug-of-War method is
O(E*N*r*s1*s2), or O(N) with respect to N.

The Tug-of-War method utilizes an amount of memory constant
with respect to N. This amount is determined by the parameters
|R|, s1, and s2, which correspond to the number of radii, accuracy
variables, and confidence intervals used, but is independent of the
size of the database, N.

The implemented four-wise independent hash functions each use
four hash keys, and one hash function is used for each of the
s2*s1*|R| counters. Thus the amount of memory required for the
hash keys is 4*s2*s1*|R|*sizeof(int), which is O(s2*s1*|R|), or
O(1) with respect to N. The amount required for the counters is
s2*s1*|R|*sizeof(long), which is also O(s2*s1*|R|), so again O(1)
with respect to N. Additional, constant overhead is needed to
compute the hash values. The total memory complexity for the
Tug-of-War method is therefore O(1) with respect to N, but linear
with respect to |R|, s1, or s2.

Since all the counters and functions may fit in memory
simultaneously, the Tug-of-War method can process all the data in

a single pass. Streams should present no problems, since at any
point one can economically compute the median of means of the
counters for each of the radii. Then, to estimate the appropriate
partial derivative, we perform a linear regression on the
logarithms of the per-radius estimates. None of this scales with
the number of points previously encountered, so every update
should have the same reasonable cost.

4. RESULTS
In this section, we present empirical verification of the speed and
accuracy of the Tug-of-War algorithm. Our C++-based
implementation was tested on both real world and synthetic data
on the Linux platform, with 31 different radii, an accuracy
parameter s1 of 30, and confidence parameter s2 of 5.

4.1 Quality of the Estimation
Since the fractal dimensions of Euclidean objects equal their
Euclidean dimensions, estimating the fractal dimension of a
diagonal line provides a simple first test. The test diagonals
consist of 1000 points with E-dimensional embedding ({x1,..,xE} |

x ∈ [1..1000]). The Tug-of-War method estimated D2 fractal
dimensions 1.045, 1.050, and 1.038 with correlations 0.997,
0.999, and 0.993 for E = 2, 3, and 4, respectively. Further
evidence that the Tug-of-War method performs correctly comes
from a comparison of the log-log plots produced by this and the
box-counting methods (Figure 2). The estimated fractal closely
matches the theoretical value of 1, the reported correlations
approach 1, and the critical linear slopes within the log-log plots
prove nearly identical.

4.1.1 Synthetic Datasets
Additional testing was performed with more complex fractals to
again compare experimental estimates of the fractal dimension
and theoretical results. The results of two well-known fractals,
the Sierpinski Triangle
and the Koch Snowflake
(Figure 3), are discussed
here.

The Sierpinski5K set
consists of the first 5000

Figure 3. Koch Snowflake

Figure 2. Comparison of box-count and Tug-of-War log-log
plots for diagonal line with E=3

256

1024

4096

16384

65536

262144

1.04858e+06

3.05176e-05 0.000976562 0.03125 0.25 1 2 4 8 16 64 256 1024 4096 32768

P
ai

rs
 (

lo
ga

rit
hm

ic
)

Radius (logarithmic)

Boxcount and Tug-of-War comparison for 3D diagonal line

boxcounts Tug-of-War

points generated through a breadth-first recursive generation of
the Sierpinski triangle. On this set, the Tug-of-War method
estimates D2 as 1.520 with a correlation of 0.999, making it
reasonably close to the theoretical value for the Triangle, log23
≈1.585 [11]. Previously measured D2 for this dataset was 1.587,
using the box-counting method.

The theoretical fractal dimension of the Koch Snowflake is log3 4
≈ 1.262. For a Koch dataset containing 16,385 points, Tug-of-
War produces an estimated D2 of 1.255 and a correlation of 0.999.
A comparison of the box-counting and Tug-of-War log-log plots
(Figure 4(a)) further supports the high quality of the results.

4.1.2 Real Datasets
Real point-sets behave like fractals more than one might expect
[3]. Three such datasets, Montgomery County, MD and Long
Beach County, CA road intersections and an fMRI (Figure 5), are
discussed here.

The Montgomery County and Long Beach County datasets
contain 27,282 and 36,548 points in a plane, respectively. The
05886 fMRI dataset has 144,768 points in three dimensions. The
Tug-of-War method estimates D2 1.557, 1.758, and 2.521 with
correlations 0.996, 0.999, and 0.998 for these datasets,
respectively.

As one might indeed expect due to their non-uniformity, these sets
have intrinsic dimensionalities significantly less than their
embedding dimensionalities [3]. Even discounting the high
correlations and close matches of the box-count and Tug-of-War
plots, the Tug-of-War results agree with previous measurements
(see Figure 6 and Figure 7). While we know of no previous
measurements for the fMRI dataset for comparison, previously
measured D2 for Montgomery County and Long Beach County
datasets were 1.518 and 1.732, respectively [3], using the box-
counting method.

Clearly, Tug-of-War provides excellent performance on both the
synthetic and real world datasets, yielding reasonable estimates
consistent with measurements by other methods.

4.2 Running Time and Memory Consumption
Multiple sets of differing size were generated using the Iterative
Function System. Figure 8 shows the linear relationship of
running time (as the sole user of an Intel® Xeon™ CPU 2.80
GHz processor) to database size, calculated as the product of the
number of points, their embedding dimensionality, and number of
radii used. The Tug-of-War method’s greatest advantage over
other computationally linear algorithms used to estimate fractal
dimensions is that it utilizes a small, constant amount of memory
relative to the size of the database. To compare across algorithms,
we calculated the number of counters necessary for the box-
counting and Tug-of-War methods. Figure 9 shows that the
number of counters for the Tug-of-War method is constant across
all radii and demonstrates that the total number of counters
required to attain a 99.5% level of accuracy and precision (as
measured by the correlation) when processing large databases is
significantly less than that of box-counting.

0

50

100

150

200

250

300

350

400

450

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07

ru
nn

in
g

tim
e

(w
al

lc
lo

ck
 s

ec
on

ds
)

(number datapoints)*(embedding dimensionality)*(number radii)

running time vs. database size

fMRI 05886

10 15 20 25 30 35 40 45 50 55 10
20

30
40

50
60

70

0
2
4
6
8

10
12
14
16

Figure 5. Real data sets:
(a) Long Beach County, CA (E=2), (b) fMRI 05886 (E=3)

,

Figure 4. Tug-of-War log-log plots for the Koch Snowflake:
(a) comparison with box-counting, (b) plot with linear

approximation

Figure 8: Running time against database size

,

Figure 7. Tug-of-War plots with linear approximations:
(a) Long Beach County, (b) fMRI 05886

Figure 6. Comparison of box-count and Tug-of-War plots:
(a) Long Beach County, (b) fMRI 05886

33.7

33.75

33.8

33.85

33.9

33.95

34

34.05

34.1

-118.35 -118.3 -118.25 -118.2 -118.15 -118.1 -118.05 -118 -117.95 -117.9 -117.85

Long Beach County, CA road intersections

16384

65536

262144

1.04858e+06

4.1943e+06

1.67772e+07

6.71089e+07

2.68435e+08

1.07374e+09

3.05176e-05 0.000488281 0.0078125 0.03125 0.125 0.5 2 8

P
ai

rs
 (

lo
ga

rit
hm

ic
)

Radius (logarithmic)

Tug-of-War plot for Koch Snowflake

boxcounts Tug-of-War

32

1024

32768

1.04858e+06

3.35544e+07

1.07374e+09

3.43597e+10

3.05176e-05 0.000488281 0.0078125 0.03125 0.125 0.5 2 8

P
ai

rs
 (

lo
ga

rit
hm

ic
)

Radius (logarithmic)

Tug-of-War plot for Koch Snowflake

Koch Snowflake Linear approximation

16384

65536

262144

1.04858e+06

4.1943e+06

1.67772e+07

6.71089e+07

2.68435e+08

1.07374e+09

4.29497e+09

3.05176e-05 0.000488281 0.0078125 0.0625 0.25 0.5 1 2 4 8 16

P
ai

rs
 (

lo
ga

rit
hm

ic
)

Radius (logarithmic)

Boxcount and Tug-of-War comparison for Long Beach County, CA

boxcounts Tug-of-War

 1.04858e+06

 4.1943e+06

 1.67772e+07

 6.71089e+07

 2.68435e+08

 1.07374e+09

 4.29497e+09

 1.71799e+10

 6.87195e+10

 0.25 0.5 1 2 4 8 16 32 64 128 256

P
ai

rs
 (

lo
ga

rit
hm

ic
)

Radius (logarithmic)

Boxcount and Tug-of-War comparison for fMRI 05886

boxcounts Tug-of-War

32

1024

32768

1.04858e+06

3.35544e+07

1.07374e+09

3.43597e+10

1.09951e+12

3.05176e-05 0.000488281 0.0078125 0.0625 0.25 0.5 1 2 4 8 16

P
ai

rs
 (

lo
ga

rit
hm

ic
)

Radius (logarithmic)

Tug-of-War plot for Long Beach County, CA

Long Beach County, CA Linear approximation

1024

32768

1.04858e+06

3.35544e+07

1.07374e+09

3.43597e+10

1.09951e+12

3.51844e+13

0.0625 0.25 1 4 16 64 256

P
ai

rs
 (

lo
ga

rit
hm

ic
)

Radius (logarithmic)

Tug-of-War plot for 05886 fMRI

05886 fMRI Linear approximation

5. CONCLUSIONS
The Tug-of-War method is a very fast and space-efficient
approximation algorithm for accurately estimating the correlation
fractal dimension. Its key features are: it handles multi-
dimensional data; it requires but a single pass through the data; it
has a computational complexity of O(N) and a space complexity
of O(1) with respect to N; and, it closely matches the accuracy
yielded by previous algorithms of similar O(N) speed but O(N)
space complexity. Thus we advocate its use for large data sets
and data streams.

6. REFERENCES
[1] N. Alon, Y. Matias, M. Szegedy, The Space Complexity of

Approximating the Frequency Moments, in: Proc. of 28th
ACM Symposium on Theory of Computing (1996) p. 20-29.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom,
Models and Issues in Data Stream Systems, invited paper in:
Proc. of the 2002 ACM Symp. On Principles of Database
Systems (PODS 2002), June 2002.

[3] A. Belussi and C. Faloutsos, Estimating the Selectivity of
Spatial Queries Using the ‘Correlation’ Fractal Dimension,
in: Proc VLDB, Zurich, Switzerland, September 1995. p.
229-310.

[4] S. Berchtold, et al., Fast Similarity Search in Multimedia
Databases, in: SIGMOD Conference, 1997.

[5] C.J. Burdett, et al., Nonlinear Indicators of Malignancy, in
Proc. SPIE 1993 – Biomedical Image Processing and
Biomedical Visualization, February 1-4, 1993. 1905 (part
two of two): p. 853-860.

[6] M. Crovella, A. Bestavros, Self-Similarity in World Wide
Web Traffic, Evidence and Possible Causes, in: Sigmetrics,
1996.

[7] C. Faloutsos, I. Kamel, Beyond Uniformity and
Independence: Analysis of R-trees Using the Concept of
Fractal Dimension, in: Proc. ACM SIGACT-SIGMOD-
SIGART PODS, Minneapolis, MN, May 24-26, 1994.

[8] M. N. Garofalakis, J. Gehrke, R. Rastogi, Querying and
Mining Data Streams: You Only Get One Look. A Tutorial,
SIGMOD Conference 2002: 635.

[9] W. Leland, M. Taqqu, W. Willinger, D. Wilson, On the Self-
Similar Nature of Ethernet Traffic (extended version),
IEEE/ACM Transactions on Networking, vol. 2., p. 1-15,
February 1994.

[10] H. Li, K. Liu, S. Lo, Fractal Modeling and Segmentation
for the Enhancement of Microcalcifications in Digital
Mammograms, IEEE Transactions on Medical Imaging, vol.
16, pp. 785-798, 1997.

[11] B. Mandelbrot, Fractal Geometry of Nature, W.H. Freeman,
New York, 1977.

[12] D. Menascé, B. Abrahão, D. Barbará, V. Almeida, F.
Ribeiro, Fractal Characterization of Web Workloads, in:
Proc. of Eleventh International World Wide Web
Conference, Honolulu, Hawaii, 2002.

[13] B.-U. Pagel, F. Korn, C. Faloutsos, Deflating the
Dimensionality Curse Using Multiple Fractal Dimensions,
in: ICDE 2000, San Diego, CA.

[14] S. Papadimitriou, H. Kitawaga, P. Gibbons, C. Faloutsos,
LOCI: Fast Outlier Detection Using the Local Correlation
Integral, in: ICDE 2003, Bangalore, India, March 5-8, 2003.

[15] A. Papadopoulos, Y. Manolopoulos, Performance of
Nearest Neighbor Queries in R-trees, in: 6th Int. Conf. On
Database Theory (ICDT ’97), Delphi, Greece, Jan 8-10,
1997.

[16] M. Schroeder, Fractals, Chaos, Power Laws: Minutes From
an Infinite Paradise, W.H. Freeman and Company, New
York, 1991.

[17] C. Traina, A. Traina, L. Wu, C. Faloutsos, Fast Feature
Selection Using the Fractal Dimension, in: Proc. of XV
Brazilian Symposium on Databases (SBBD), Paraiba, Brazil,
October 2000.

[18] M. Wang, T. Madhyastha, N. Chang, S. Papadimitriou, C.
Faloutsos, Data Mining Meets Performance Evaluation: Fast
Algorithms for Modeling Bursty Traffic, ICDE, San Jose,
CA, February 2002.

0

5000

10000

15000

20000

25000

30000

35000

40000

3.05176e-05 0.000244141 0.00195312 0.015625 0.0625 0.25 0.5 1 2 4 8

C
ou

nt
er

s

Radius (logarithmic)

number of counters required per radius

Tug-of-War: all datasets
Sierpinski

Long Beach County

Figure 9. Counter requirements for box-counting and Tug-
of-War methods

