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ABSTRACT 
Given a cloud of N points in an E-dimensional space, we often 
need to estimate the intrinsic dimensionality D of this cloud.  For 
example, a set of points in 3-dimensional space all following 
along a straight line has intrinsic (or fractal) dimensionality D=1.  
Non-integer fractal dimensionality appears pervasively in nature. 

In this paper we give a very fast method to estimate the fractal 
dimensionality of the points in a data stream. Algorithms to 
estimate the fractal dimension exist, from the straightforward 
quadratic algorithm, to the faster O(NlogN) or even O(N) 
algorithms that use the so-called box-counting method. However, 
these algorithms require Ω(N) space, and hence are ill-suited to 
semi-infinite streams of data.   In this paper we propose an 
algorithm, based on a “tug-of-war” idea, which computes the 
fractal dimension in a single pass over the dataset using only 
constant memory.  Experimental results on synthetic and real 
world data sets demonstrate the effectiveness of our algorithm.   

Categories and Subject Descriptors 
G.1.2 [Numerical Analysis]: Approximation – wavelets and 
fractals, linear approximation, special function approximations; 
F.1.2 [Computation by Abstract Devices]: Modes of 
Computation – online computation, probabilistic computation; 
E.2 [Data Storage Representations]: hash-table representations; 
E.1 [Data Structures]: arrays; G.3 [Probability and Statistics]: 
correlation and regression analysis; I.5.5 [Pattern Recognition]: 
Implementation – interactive systems. 

General Terms 
Algorithms, Theory, Design, Measurement, Performance, 
Reliability, Verification, Experimentation. 

Keywords 
Approximation algorithms, Databases, Randomized algorithms, 
Fractal dimension, Box counting. 

1. INTRODUCTION 
The fractal dimension of a set of points is an important measure 
of the intrinsic dimensionality of the points.  It has been shown to 
facilitate selectivity estimation, range queries [7,15], nearest-
neighbor queries [3,4,13], and similarity searches [3], and can be 
used in dimensionality reduction [17] and outlier detection [14].  
It also assists the characterization of workloads [12] such as disk 
requests [18], processor utilization, or network traffic [6,9,18]; 
and the modeling of random walks, such as stock indexes over 
time.  The fractal dimension also aids in shape classification 
problems, such as preliminarily diagnosing cancerous masses 
[5,10].   

The development of fast approximate algorithms to calculate 
fractal dimensions has reduced the computational complexity of 
estimating fractal dimensions from O(N2), where N is the number 
of points in the dataset, to linear O(N) [17].  However, the 
memory costs have remained at θ(N).  This makes these previous 
algorithms ill-suited for semi-infinite streams of data, which have 
been attracting increasing interest thanks to network monitoring 
and sensor settings [2,8].  In this paper, we propose an algorithm, 
Tug-of-War, which combines O(N) time and O(1) space costs, and 
we provide an experimental study of its effectiveness in estimating 
fractal dimensions.  In the next section, we describe in greater 
detail fractals, fractal dimensionality and current algorithms for 
computing that measure.  Following the background comes our 
description of Tug-of-War, and then our experimental results. 

2. BACKGROUND AND DEFINITION OF 
FRACTALS AND FRACTAL DIMENSIONS 
Suppose we have a self-similar dataset of N points ai in 

Eℜ , 
such as the Sierpinski Triangle (Figure 1(a)).  What is its intrinsic 
dimensionality?  While with ordinary Euclidian point sets such as 
uniform lines, planes, and solids, the intrinsic dimensionality 
would be the corresponding obvious integer (e.g., D=1 for Figure 
1(b)), for real point sets a fractional dimension – or fractal 
dimension – may better quantify the intrinsic dimensionality.  
Non-integer fractal dimensionality appears pervasively in nature: 
the periphery of clouds and rain patches (D=1.3), coast-lines 
(D=1.1 to 1.58 for Norway), the surface of mammalian brains 
(D=2.6-2.7), river basins, the bark of trees, stock prices and 
random walks (D=1.5), the human respiratory system (D=2.9), the 
cardiovascular system (D=3) [11,16], the boundary of malignant 
and benign tumors [5], and much, much more.  The “correlation” 

 

 



fractal dimension D2 for a point-set that shows self-similarity in 
the range of scales (r1, r2) is defined as follows: 
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where pi is the occupancy of, or number of points contained in, 
the i-th cell when the E-dimensional address space is divided into 
(hyper)-cubic grid cells of side r [3].  The method we propose 
approximates this correlation fractal dimension D2. 

2.1 Survey of Methods for Estimating Fractal 
Dimensions 
The following subsections give a brief explanation of two salient 
methods for computing D2    fractal dimensions.  Pair-counting 
provides an exact way to calculate fractal dimensions, but needs 
to enumerate all O(N2) pairs, driving research to find faster 
algorithms.  Box-counting incurs only O(N) computational cost, 
but sacrifices accuracy. 

2.1.1 Pair-counting 
Pair-counting calculates how many pairs are within a given 
distance of each other.  The average number of neighbors within a 
given radius r, Cr, is exactly the total number of pairs within 
distance r of each other, divided by the number of points N in the 
set: 

average # neighbors (≤ r) = (total # pairs (≤ r))/N 

Self-similar sets obey a power-law relationship  

Cr proportional to rD2  [3] 

within limits – below or above certain radii, a finite set must 
necessarily stray from strict adherence to that law. Therefore, the 
fractal dimension can be computed as the slope of the linear 
relationship between log(Cr) and log(r).  We can also compute the 
correlation between those two quantities within the region of radii 
where the set is in fact linear or nearly so; this correlation then 
serves as a measure of reliability and self-similarity. 

Computing the quantity D2 exactly requires determining the 
distance between every two points.  While the distances need not 
be stored (we may keep counters for each and every distance r one 
intends to use), they must be computed at least once to produce an 
exact answer.  This O(N2) computational cost proves prohibitive 

for realistically large data sets.    Consequently, one compromises 
on accuracy to gain performance. 

2.1.2 Box-counting 
The practical box-counting algorithm provides one such 
compromise [3,16,17].  This algorithm derives its name from the 
imposition of nested hypercube grids over the data, followed by 
counting the occupancy of each grid cell [3], thus focusing on 
individual points instead of on pairs.  The sum of squared 
occupancies S2(r) for a particular grid side length r is defined as: 

∑≡
i

iCrS 2
2 )( , where Ci is the count of points in the ith cell.   

Substituting these counts for the pair counts in the same power-
law relationship estimates the fractal dimension.  Given sufficient 
space to store all the counters simultaneously, all counts can be 
computed in a single pass over the data.  Even if performing one 
pass per radius to minimize storage cost, the computational cost is 
still only linear with respect to N [17].   However, even this 
algorithm still has a storage complexity of θ(N), as every datum 
might end up in its own cell given a sufficiently small radius. 

3. PROPOSED METHOD: TUG-OF-WAR 
Accepting an O(N) computational cost seems reasonable, as one 
must consider every point at least once unless using sampling or 
similar approaches. However, we can drastically reduce the 
storage cost to the point where it proves constant with respect to 
N.  Our proposed method provides such space-efficient 
performance without sacrificing an O(N) runtime performance, 
returning reasonably accurate results while permitting 
computation to occur within the confines of a single pass over the 
data. 

3.1 Preliminaries 
Given a set of grid-cell identifiers, we want to estimate the sum of 
squared occupancies S2(r) for a range of grid sides r and do so in a 
single pass through the data while using a small, fixed amount of 
memory.  Theorem 2.2 of [1] describes a space-efficient, 
randomized algorithm to estimate the second moment, F2 (which 
is S2(r) for a given grid side r), given a sequence A = (a1,…, aN) of 
members of a set M, in a single pass, performing a constant 
number of arithmetic and finite field operations.  The algorithm 
generates a set of random, four-wise independent binary hash 
functions hij that are used to compute a value Z, the square of 
which (Z2) approximates F2.  Z2 is the median of s2 random 
variables Y1, Y2, …, Ys2.  Each Yi is the average of s1 random 
variables Xij : 1 ≤ j ≤ s1, where the Xij are derived as follows: In 
one pass over the data, for each data value v, add 1 to Xij if hij(v) = 
1 and otherwise subtract 1 from Xij [1].  This technique is also 
referred to as taking a random sketch of the data [8]. 

The theorem also provides probably approximately correct (PAC) 
bounds for computing F2 using the specified algorithm.  For any 

positive integral values of s1 and s2, let λ = √(16/s1) and ε = 

)/(1 )2/( 2se .  Then, the probability that the estimated moment 

deviates from the true moment F2 by more than (λ*F2) is at most 
ε [1].  When s1 = 30 and s2 = 5, λ = 0.73 and ε = 0.082. 

Figure 1. Theoretical fractals: (a) 5000 points of the 
Sierpinski Triangle, (b) a line in 3D spage 
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3.2 Proposed Algorithm 
Our Tug-of-War algorithm efficiently approximates the pair 
counts by extending this algorithm to compute F2 for multi-
dimensional points and for a range of grid sides r.  Let s1 be an 

integer positively correlated with how much accuracy we 
require, while s2 similarly influences confidence. 

Now suppose we have a self-similar dataset M of N points ai in 
Eℜ , from which we can form a sequence A = (a1, a2,…, aN).  

Since each point ai is E-dimensional, we can expand each ai to 
form a sequence A’ = (a11,..., a1E, a21,…, aNE) of members of M, 
with each member expressed as a sequence of its coordinates.  
The members of M will still be processed in a single pass.  Then, 
for each radius, we generate s1s2 random four-wise independent 
hash functions of the form  

qdxcxbxaresult
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where the coefficients a,b,c,d are random primes, ensuring that 
the polynomial is irreducible [1], and the inputs will be xij = 
aij/r with  j from 1 to E.  For each radius, we maintain one 
counter for each of the hash functions, which will give us |R| = 
|{r}| groups of s1s2 random variables from which to calculate |R| 
values of Z2.   After each result is calculated, it is mapped to –1 or 
1 according to its parity.  This value is then added to the counter 
corresponding to the hash function and radius used.  The final 
estimate for the second moment for each radius is Z2, the median 
of s2 values, each of which is the mean of s1 squares of the values 
held in the counters.  Since F2 = S2(r), these estimates give the 
sum of squared occupancies from which we can compute the 
fractal dimension. 

3.3 Computational and Memory Complexities 
The computational complexity of the Tug-of-War method is linear 
in the size N of the database or current data stream.  The runtime 
is dependent on N, the embedding dimensionality of the E, the 
number of radii |R| = |{r}|, the accuracy parameter s1, and the 
confidence parameter s2.  E, |R|, s1, and s2 are independent of N, 
so the runtime complexity of the Tug-of-War method is 
O(E*N*r*s1*s2), or O(N) with respect to N. 

The Tug-of-War method utilizes an amount of memory constant 
with respect to N.  This amount is determined by the parameters 
|R|, s1, and s2, which correspond to the number of radii, accuracy 
variables, and confidence intervals used, but is independent of the 
size of the database, N.  

The implemented four-wise independent hash functions each use 
four hash keys, and one hash function is used for each of the 
s2*s1*|R| counters.  Thus the amount of memory required for the 
hash keys is 4*s2*s1*|R|*sizeof(int), which is O(s2*s1*|R|), or 
O(1) with respect to N.  The amount required for the counters is 
s2*s1*|R|*sizeof(long), which is also O(s2*s1*|R|), so again O(1) 
with respect to N.  Additional, constant overhead is needed to 
compute the hash values.  The total memory complexity for the 
Tug-of-War method is therefore O(1) with respect to N, but linear 
with respect to |R|, s1, or s2. 

Since all the counters and functions may fit in memory 
simultaneously, the Tug-of-War method can process all the data in 

a single pass.  Streams should present no problems, since at any 
point one can economically compute the median of means of the 
counters for each of the radii.  Then, to estimate the appropriate 
partial derivative, we perform a linear regression on the 
logarithms of the per-radius estimates.  None of this scales with 
the number of points previously encountered, so every update 
should have the same reasonable cost. 

4. RESULTS 
In this section, we present empirical verification of the speed and 
accuracy of the Tug-of-War algorithm.  Our C++-based 
implementation was tested on both real world and synthetic data 
on the Linux platform, with 31 different radii, an accuracy 
parameter s1 of 30, and confidence parameter s2 of 5. 

4.1 Quality of the Estimation 
Since the fractal dimensions of Euclidean objects equal their 
Euclidean dimensions, estimating the fractal dimension of a 
diagonal line provides a simple first test.  The test diagonals 
consist of 1000 points with E-dimensional embedding ({x1,..,xE} | 

x ∈ [1..1000]).  The Tug-of-War method estimated D2 fractal 
dimensions 1.045, 1.050, and 1.038 with correlations 0.997, 
0.999, and 0.993 for E = 2, 3, and 4, respectively.   Further 
evidence that the Tug-of-War method performs correctly comes 
from a comparison of the log-log plots produced by this and the 
box-counting methods (Figure 2).  The estimated fractal closely 
matches the theoretical value of 1, the reported correlations 
approach 1, and the critical linear slopes within the log-log plots 
prove nearly identical. 

4.1.1 Synthetic Datasets 
Additional testing was performed with more complex fractals to 
again compare experimental estimates of the fractal dimension 
and theoretical results.  The results of two well-known fractals, 
the Sierpinski Triangle 
and the Koch Snowflake 
(Figure 3), are discussed 
here. 

The Sierpinski5K set 
consists of the first 5000 

 

Figure 3. Koch Snowflake 

Figure 2. Comparison of box-count and Tug-of-War log-log 
plots for diagonal line with E=3 
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points generated through a breadth-first recursive generation of 
the Sierpinski triangle.   On this set, the Tug-of-War method 
estimates D2 as 1.520 with a correlation of 0.999, making it 
reasonably close to the theoretical value for the Triangle, log23 
≈1.585 [11].  Previously measured D2 for this dataset was 1.587, 
using the box-counting method. 

The theoretical fractal dimension of the Koch Snowflake is log3 4 
≈ 1.262.  For a Koch dataset containing 16,385 points, Tug-of-
War produces an estimated D2 of 1.255 and a correlation of 0.999.  
A comparison of the box-counting and Tug-of-War log-log plots 
(Figure 4(a)) further supports the high quality of the results.  

4.1.2 Real Datasets 
Real point-sets behave like fractals more than one might expect 
[3].  Three such datasets, Montgomery County, MD and Long 
Beach County, CA road intersections and an fMRI (Figure 5), are 
discussed here. 

The Montgomery County and Long Beach County datasets 
contain 27,282 and 36,548 points in a plane, respectively.  The 
05886 fMRI dataset has 144,768 points in three dimensions.  The 
Tug-of-War method estimates D2 1.557, 1.758, and 2.521 with 
correlations 0.996, 0.999, and 0.998 for these datasets, 
respectively. 

As one might indeed expect due to their non-uniformity, these sets 
have intrinsic dimensionalities significantly less than their 
embedding dimensionalities [3].  Even discounting the high 
correlations and close matches of the box-count and Tug-of-War 
plots, the Tug-of-War results agree with previous measurements 
(see Figure 6 and Figure 7).  While we know of no previous 
measurements for the fMRI dataset for comparison, previously 
measured D2 for Montgomery County and Long Beach County 
datasets were 1.518 and 1.732, respectively [3], using the box-
counting method. 

Clearly, Tug-of-War provides excellent performance on both the 
synthetic and real world datasets, yielding reasonable estimates 
consistent with measurements by other methods. 

4.2 Running Time and Memory Consumption 
Multiple sets of differing size were generated using the Iterative 
Function System.  Figure 8 shows the linear relationship of 
running time (as the sole user of an Intel® Xeon™ CPU 2.80 
GHz processor) to database size, calculated as the product of the 
number of points, their embedding dimensionality, and number of 
radii used.  The Tug-of-War method’s greatest advantage over 
other computationally linear algorithms used to estimate fractal 
dimensions is that it utilizes a small, constant amount of memory 
relative to the size of the database.  To compare across algorithms, 
we calculated the number of counters necessary for the box-
counting and Tug-of-War methods.  Figure 9 shows that the 
number of counters for the Tug-of-War method is constant across 
all radii and demonstrates that the total number of counters 
required to attain a 99.5% level of accuracy and precision (as 
measured by the correlation) when processing large databases is 
significantly less than that of box-counting. 
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Figure 5. Real data sets:  
(a) Long Beach County, CA (E=2), (b) fMRI 05886 (E=3) 
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Figure 4. Tug-of-War log-log plots for the Koch Snowflake:   
(a) comparison with box-counting, (b) plot with linear 

approximation 

Figure 8: Running time against database size 
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Figure 7. Tug-of-War plots with linear approximations: 
(a) Long Beach County, (b) fMRI 05886 

Figure 6. Comparison of box-count and Tug-of-War plots: 
(a) Long Beach County, (b) fMRI 05886 
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5. CONCLUSIONS 
The Tug-of-War method is a very fast and space-efficient 
approximation algorithm for accurately estimating the correlation 
fractal dimension.  Its key features are: it handles multi-
dimensional data; it requires but a single pass through the data; it 
has a computational complexity of O(N) and a space complexity 
of O(1) with respect to N; and, it closely matches the accuracy 
yielded by previous algorithms of similar O(N) speed but O(N) 
space complexity.  Thus we advocate its use for large data sets 
and data streams. 
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