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Abstract


We describe the FALCON system for handling multimedia queries with relevance feedback. FALCON
distinguishes itself in its ability to handle even disjunctive queries on metric spaces. Our experiments
show that it performs well on both real and synthetic data in terms of precision/recall, speed of conver-
gence, individual query speed, and scalability. Moreover, it can easily take advantage of off-the-shelf
spatial- and metric- access methods.


1 Introduction
Interactive multimedia databases such as Informedia [2, 15] present an intriguing challenge. Museum kiosks,
public media archives, and similar systems require simple interfaces; museum patrons should not need to learn
a query language simply to navigate a catalogue of major exhibits. The obvious user-friendly solution is “query
by example”, augmented by relevance-feedback with which users iteratively improve the specification of their
queries.


One well-known relevance feedback mechanism is that of Rocchio [10, 1]. It is a basic single-query-point
method, in that it produces contiguous hyperspherical isosurfaces in feature spaces centered aroundonequery
point. To derive its query point, it linearly combines:


� The query point derived from the last iteration.


� A weighted centroid of the documents already judged relevant.


� A weighted centroid of the documents already judged irrelevant. This term receives a negative weight.


Thus, it takes into account relevance feedback, and therefore should gravitate towards positive examples,
away from negative ones. Setting the weights for the three components may require some experimentation.


Two more single-query-point systems include MindReader [7], and MARS [11, 9, 12, 13]. MindReader
computes the Mahalanobis distance function using the matrix of known positive instances. Since this involves
matrix inversion, it can require a significant number of instances when the dimensionality is high. The Maha-
lanobis space allows MindReader to derive arbitrary hyperelliptical isosurfaces around multiple query points;
these isosurfaces can then be refined when the user adds or removes examples from the desired set. MARS
takes a more traditional approach in which similarities are computed between known positive instances and
candidates, and linearly then combined using user-specified weights.
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Figure 1: The FALCON relevance-feedback loop, (a) designed for interactive use, and (b) modified for auto-
mated performance testing.


PicHunter [4, 5] provides a Bayesian approach to finding a particular image. At each iteration, a user selects
zero or more of the presented images. This binary feedback is the only input it uses to develop a probabilistic
model as to which image is the target. PicHunter distinguishes itself in another aspect; it explicitly tries to
minimize the number of subsequent iterations by taking into account expected information gain when choosing
which examples to present to the user, rather than simply always presenting those thought to be closest to the
target.


2 Proposed System: FALCON
Herein we describe the FALCON system. Like the aforementioned systems, it incorporates user feedback in
order to iteratively improve its internal representation of the query concept. The feedback loop is illustrated in
Figure 1(a); Figure 1(b) shows a variation used for non-interactive use during testing, where feedback comes
from pregenerated labels rather than a user. This latter variation will be discussed further with the rest of the
evaluation methodology.


FALCON maintains a current “good set”G consisting of objects that have been labeled by the user as good
examples. Where it differs is in how it usesG to rank candidate objects.


For this, FALCON uses a distance-combining function we call “aggregate dissimilarity”. Givend, a pairwise
distance function the internals of which do not concern us;m distinct good objectsgi; � a tuning parameter we
discuss below; andx, any given candidate, the aggregate dissimilarity ofxwith respect toG is defined as follows.


(DG(x))
� =


(
0 if (� < 0)


V
9i d(x; gi) = 0


1


m �
Pm


i=1 d(x; gi)
� otherwise


(1)


Weights can be included as follows, with weightwi corresponding to good objectgi:


(DG (x))
� =


1Pm
i=1wi


�
mX
i=1


wi(d(x; gi))
� (2)


2.1 Properties ofDG
SinceDG is used to measure the probable relevance of objects to return to the user, the exact behavior ofDG is
clearly important. The tunable parameter� has significant effects on the isosurfaces generated byDG , as listed
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Figure 2: Sample contours with two values of�. Both are based on the sameG – three points chosen from one
circular region, two from another.


below.


� DG handles disjunctive queries well when� < 0. If � = �1, thenDG is analogous to a fuzzy OR, in
that it results in the minimum distance. With� 2 (�1; 0), all distances are taken into account but the
bias is towards the lesser ones. Thus, it can generate contours such as shown in Figure 2(a), derived from
a disjunctiveG consisting of five points from two disjoint circular regions.
Disjunctive queries are important, because many queries that may appear simple to people are disjunctive.
One such simple query would be for stocks whose trends resemble V’s or inverted V’s, which might be
useful for a short-term market-timer. Any system that represented queries via a single convex region will
fail to capture the nature of the query, no matter how many positive or negative examples were specified.


� Positive values of� generate fuzzy ANDs. The extreme value of� = 1 results inDG using only the
maximum distance, while values of� 2 (0;1) account for all distances but bias towards the higher ones.
As a consequence, a negative� is a more natural choice for the greater flexibility via accepting disjunctive
queries.


� DG is undefined at� = 0.


� For � = 2, the isosurfaces ofDG become hyperspheres centered on the centroid ofG [16]. This is
reflected in Figure 2(b), which is identical to (a) except for�. DespiteG corresponding to a disjunctive
query,� = 2 yields concave isosurfaces.


In addition, sinceDG never directly uses features, FALCON is not intrinsically restricted to vector spaces;
theoretically, it could be implemented using completely unrestricted spaces and sequential scanning. A more
practical approach would be to use fast indexing structures; later in this paper we present algorithms for range
andk-nearest-neighbor queries inDG space, and these can take advantage of indices that support single-query-
point versions of the same. Metric spaces – where we lack features, but instead have a symmetric distance
function that obeys the triangle inequality – then become feasible with such indices as the M-tree [3] and Slim-
tree [14].


2.2 User Feedback
Now that we have defined one major componentDG , and therefore know how to rank examples, an obvious
question is how FALCON incorporates user feedback.


Consider a givenG and a pre-determined�. These defineDG , and therefore provide a hybrid distance
function for evaluating examples. For any arbitraryk 2 Z+, we can retrieve and present the bestk candidates
to the user based uponDG .


The user may then changeG by selecting one or more candidates to add toG. Likewise, current members of
G can be removed if the user changes his mind. If the weightedDG variation is used, then the user should be
able to alter weights for individual members ofG.
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(a) on the STOCK dataset (b) on the PEN dataset


Figure 3: GUI of FALCON. The top row contains the “good” objects; the bottom row gives the top matches.
The implicit query in (a) is for stock vectors that climbed sharply, then fell, or vice versa; in (b), we seek both
3’s and 6’s. Notice that FALCON handles these disjunctive queries quite well, returning examples of the desired
sets instead of objects that each have slight resemblances to all good objects.


2.3 Algorithms and Scalability
Finding candidates for feedback in an interactive system using a non-trivial database clearly requires fast, scal-
able algorithms. Here, we describe algorithms for performing both range andk-nearest-neighbor queries inDG
space. The latter fits in naturally with the feedback model, and utilizes the former.


Both require range andk-nearest-neighbor queries in the original space, as defined by the pairwise distance
functiond. If d is a distance metric, metric structures such as M-trees [3] and Slim-trees [14] apply; for vector
sets, there are legions of spatial indices with the required properties [6].


Given support for the single-point versions, we can derive versions that operate inDG space using multiple
query points as found inG. These algorithms scale well and are provably correct. For reference, we label these
two algorithms as the “MRQ” (Multiple Range Query) and “k-NN+MRQ” (k-Nearest Neighbor + Multiple
Range Query) algorithms; details and proofs of correctness are in [17] and [16], respectively.


In a nutshell, the MRQ algorithm computes range-queries inDG space by finding the union of standard
range queries with the same desired radius for each of the “good” objectsgi, followed by filtering viaDG .
Similarly, thek-NN+MRQ algorithm uses multiplek-NN queries centered on eachgi. The results are then used
to overestimate theDG distance to thekth neighbor; given this range, it applies the MRQ algorithm and selects
the topk results as ranked byDG .


2.4 Prototype implementation
Figures 3(a) and (b) shows what a user might see. These screenshots show a prototype operating on two data
sets, STOCK and PEN, both described later. The top row of panels showsG, while the bottom row shows an
excerpt from the database in whatever order is current – sorted according to the previous query; or the original
order if no queries have been executed or the system has been reset.


In both cases, the queries are disjunctive; the STOCK example shows a request for stocks with curves
resembling V’s or inverted V’s, while the PEN example requests both 3’s and 6’s.


3 Experiments
In this section, we present empirical support for the FALCON system. There are three obvious questions that
pertain to relevance-feedback systems in general.
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1. In terms of quality, how good are the candidates returned by FALCON?


2. In terms of iterations, how quick does the feedback loop converge?


3. In terms of speed, how scalable is FALCON?


In addition, since FALCON has one free parameter�, we ask whether or not there is an optimal value of�;
and what values of� seem to perform acceptably well.


3.1 Evaluation Methodology
The testing cycle differs from the original flow in two areas, as shown in Figure 1(b).


The first is that feedback is that all instances have already been labeled by a script, rather than a user. Two
major limitations are imposed. One is that only a subset of the data is available for feedback, which should
accelerate convergence — preferably without severely limiting performance. To understand why, consider that
ak-nearest-neighbor query may return a cluster of points close to each other, if such exist. A tight cluster is less
likely to be useful for determining the underlying query concept than an equal number of well-separated points;
and a sample should, in theory, increase the typical separation between candidates.


A second limitation imposed upon automated feedback is that no more than twenty previously unseen in-
stances are selected per iteration. If any of these are positive instances, they get added toG. Otherwise, the
feedback loop terminates.


The second way in which the feedback loop differs is that the method computes precision/recall in order
to quantitatively evaluate performance. For any level of recallr 2 [0; 1], a database of sizen, and a total
of np positive examples, there is a minimum numberne such that the top-rankedt objects among then total
include at leastp = drnpe positive examples. Then, we can say that precision/recall isp


t
at r recall. Tracking


precision/recall at multiple levels of recall over a series of iterations measures speed of convergence.
We also measured wall-clock time required for multi-query-point range andk-nearest-neighbor queries,


which are critical to FALCON’s performance. For reference, these tests were performed on a 400 MHz Intel
Pentium II computer with 128 MB of RAM running Linux.


3.2 Data and Parameters
Five data sets were used, each paired with a different query. Four – two low-dimensional synthetic, two high-
dimensional real – were used to measure precision/recall, convergence speed, and sensitivity to�. Real data
received realistic queries; the two synthetic sets tested non-convex and disjunctive queries, respectively. Regard-
ing � sensitivity, we tested with� 2 f�1;�100;�10;�5;�2; 2; 5g.


The fifth and largest data set was used for scalability testing. For this purpose, most tests used� = �5; a
few range-query tests were run with� = �1, and are labeled accordingly.


2D 50K/RING : The 2D50K data set has 50,000 points in 2-D Cartesian space, uniformly distributed within
the orthogonally-aligned square (-2,-2)-(2,2). The RING query selects points that are between 0.5 and 1.5 units
from the origin as measured by Euclidean distance; 19,734 qualify.


2D 20K/TWO CIRCLES : The 2D 20K data set was generated identically to 2D50K except that it has
only 20,000 points. The TWOCIRCLES query accepted points at most 0.5 units away in Euclidean distance
from either (-1,-1) or (1,1); 1,899 qualified.


PEN/PEN 4: The Handwriting Recognition data set was found at the UCI repository [8]. Each of the 10,992
objects is a 16-dimensional vector corresponding to the scaled Cartesian coordinates of eight pen positions
sampled in time as a test subject wrote a digit. The PEN4 query selects vectors corresponding to handwritten
4’s; 1,144 qualified.


STOCKS/FLAT STOCKS: Fifty-one stocks were arbitrarily chosen and their closing prices obtained for
up to the previous five years. These sequences were split into 1,856 non-overlapping vectors of length 32 and
then subjected to a discrete wavelet transformation. The FLATSTOCKS query accepted stocks with the slope
within [-0.02, 0.02]; 540 qualified. The DWT results from five artificial, perfectly flat price vectors were used
for the firstG.
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Figure 4: Precision/recall over iterations for two of the queries at� = �5.


COVER: The forest cover database came from the UCI repository [8], and includes 581,012 54-dimensional
vectors, with both discrete and continuous attributes. No split was used since the purpose was not to assess query
accuracy, but instead to measure performance of a single multi-point query. Uniform random sampling without
replacement was used to findG’s of varying size.


3.3 Experimental Results
A summary of the results follows; for a more in-depth treatment, see [17, 16].


Values of� Accuracy testing showed that� = �2 and� = �5 were both reasonable values with� = �10
not substantially inferior. With�1, the strict MIN function is too strict; and with positive values, disjunctive
queries such as TWOCIRCLES become impossible. No value was optimal for all sets; intuitively, this makes
sense as there is little reason to expect a global optimum over the space of different queries.


Quality and Convergence Figure 4 shows precision/recall for TWOCIRCLES and FLATSTOCKS with
� = �5. The former completes in seven iterations, with excellent precision-recall; the latter nears its final
values after 8-12 iterations, but marginal gains continue for a total of 25. These results are typical; a fairly low
number of iterations generally resulted in good precision at low levels of recall early, with subsequent iterations
converging for the higher levels of recall.


Figure 5 shows average precision/recall values for at multiple values of� with the four data sets used for
accuracy testing. Averages were computed as the mean of precision at each level of recall from 10% to 100%
at 10% intervals; in cases where 20 iterations were not required due to faster convergence, final values are
presented. Notably, negative values of� yield better results, but otherwise the performance is rather insensitive
to the exact value of�. In addition, average precision on a full database can be respectably high even after only
5 iterations of feedback on a randomly chosen subset.


Scalability Figure 6 shows that thek-NN+MRQ algorithm, when backed by an M-tree, performs very well
compared to sequential scanning as the sample size chosen from COVER is varied from 25,000 to 100,000 andk


goes from 5 to 50. In particular,k-nearest-neighbor performance is not nearly as affected by database cardinality
as is sequential scanning. Clearly, the MRQ algorithm, as a significant part of thek-NN+MRQ algorithm, must
itself scale accordingly.
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Figure 5: Average precision/recall after 5 and 20 iterations.
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Figure 6:k-NN+MRQ performance testing with variable database size and variablek.


4 Conclusions
We have described FALCON, the first relevance feedback system that can handle disjunctive queries in multi-
media databases. In addition, FALCON has the following desirable properties:


� It can be applied to metric datasets, too, in addition to vector ones.


� It reaches good precision and recall, after few iterations. For instance, with all queries,� = �5 yielded at
least 80% precision at 50% recall with 10 iterations.


� When backed by an indexing data structure, it scales well. For instance,k-NN+MRQ with k = 50 on a
100,000-object set was approximately four times as fast as a sequential scan withk = 5 on a 25,000-object
set.
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