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Abstract

The relative power consumed in the WLAN interface of
a mobile device is rising due to significant improvements
in the energy efficiency of the other device components.
The unpredictability of the incoming WLAN traffic limits
the effectiveness of existing power saving techniques.

This paper introduces a Power Aware Web Proxy
(PAWP) architecture designed to schedule incoming web
traffic into intervals of high and no communication. This
traffic pattern allows WLAN interfaces to switch to a low
power state after very short idle intervals. PAWP uses a
collection of HTTP-level techniques to compensate any
negative impact that traffic scheduling may have. PAWP
does not require any client or web server modifications.

In this paper, we describe our initial experiences with
a PAWP implementation for 802.11b WLANs. Our
experiments show savings of more than 50% in the energy
consumed by the WLAN interface. Finally, our experiences
give us insights into possible browser improvements when
power consumption is taken into account.

1. Introduction

The relative power consumed in the WLAN interface
of a mobile device is rising due to significant
improvements in the energy efficiency of the other device
components, such as processor, memory, display, and
disk. The relative power consumption of the WLAN
interface depends on the mobile device and it varies from
5-10% in high-end laptop computers to more than 50% in
PDAs [6]. The actual amount of energy consumed for
wireless communication depends on the client applications
and their usage pattern, and on the actual WLAN
technology. In particular, active web browsing and
multimedia streaming are characterized by high energy
consumption in the WLAN interface.

In this paper we focus on the popular 802.11 WLAN
technology. The 802.11 specifications define two power
management modes: active mode and power save mode.
The client device is configured to switch the WLAN
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interface to power save mode during idle intervals, when it
consumes 5 to 50 times less power than when active.
Typically, the timeout value is set to 100 msecs.

The hard-to-predict nature of incoming traffic prevents
using a lower timeout value without affecting application
performance and interactivity. The comprehensive
solution, which minimizes the energy used for wireless
communication with no or limited impact on
communication performance, requires perfect knowledge
of the application traffic patterns, wired and wireless
network configurations and conditions, and user
preferences.

This paper describes a practical solution to the above
problem for web browsing. Namely, we introduce PAWP,
a Power Aware Web Proxy architecture that schedules the
traffic directed to the wireless client into alternating
intervals of high and no communication; in this process,
the proxy takes into account the configuration of the client
WLAN interface. The architecture does not require any
modifications of the applications on the client device or
remote server.

Our solution reduces the power consumed by the client
WLAN interface because the interface can be configured
to switch to a low power state after a much shorter delay.
The same amount of data is transferred to the client device
over approximately the same time interval but using a
traffic pattern that allows the client WLAN interface to be
powered-off for a larger fraction of the download time. To
compensate for any increases in user-perceived latencies
that traffic scheduling may induce, PAWP takes advantage
of the information available at the application level by
parsing downloaded documents and optimistically
prefetching any embedded objects. The wireless device
does not incur any penalty since prefetching is done by the
proxy across the wired LAN/WAN.

PAWP is designed for environments where the
application-level transfer rates between the client and the
proxy are substantially higher than between the client and
the origin web server (no-proxy configurations), i.e.,
where the data rates across the WLAN are higher than
across the Internet. Our experiments demonstrate that the



lower the aggregate data rate of a web site, the higher the
energy savings are.

In this paper, we discuss the main challenges we faced
and some of the lessons we learned. We present
experiments with popular new sites, such as CNN, NY
Times, and BBC, e-commerce sites, such as Amazon, eBay,
Chase, Citibank, and American Express, and professional
organization sites, such as SIGMOBILE. The total number
of objects in these pages ranges from 25 to 84 and the total
size ranges from 42K and 535K bytes. We use one of the
most complex web pages we found, NY Times, to identify
the impact that various PAWP features have on client
energy consumption and user-perceived latency.

We use IE 6.0 and Mozilla 1.4 to evaluate our solution;
we collect HTTP traces using IBM’s PageDetailer [16]
and also measure of the energy consumed by the WLAN
interface. Energy reductions vary between 9% and 61%
and depend on the structure of the downloaded page and
on the state of the network. Our experiments demonstrate
that reductions in the energy consumed by the WLAN
interface previously achieved for long transfers, such as
multimedia streams [6], are possible for web pages
consisting of a large number of embedded objects.

Scheduling incoming traffic into intervals of high and
no communication can benefit future system-level
techniques that coordinate the power management of
multiple subsystems, such as processor and display
subsystems. Initially introduced for watch-size devices
[13], such techniques have been recently extended to small
PDAs [3]. We expect similar techniques to be applied to
larger client devices, such as sub-notebooks, and to be
extended to managing additional subsystems, such as
system memory and the WLAN interface.

Today’s processors are capable of processing large
amounts of data in very small intervals and can go back to
sleep intermittently. As a result, system-level techniques
for power management can be used effectively not only
during idle periods but also during periods of /ight usage,
such as web browsing or text editing. In fact, processors
go to sleep in between user key strokes on a fast PC [10]
and new technologies, such as bistable displays [25], are
rapidly evolving to allow displays to be powered off
immediately while retaining content. For system-level
power management to be effective, mobile devices must
be protected from random packet arrivals, i.e., from
network interrupts. Therefore, proper scheduling of
incoming WLAN traffic increases the applicability of such
system-level techniques for power management.

Our solution has applicability beyond web browsing.
First, other client applications, such as media players and
email clients, and higher-level protocols, such as Web
Services, use HTTP. Second, applications not using
HTTP, such as the Notes mail client, can use the two main
elements of the PAWP architecture, i.e., scheduling
incoming traffic using an application-level proxy and
using application semantics to compensate for any
negative effects traffic scheduling may have, to reduce the

power consumption of the WLAN interface and to
improve application performance. For better performance,
the resulting PAxP proxies can be integrated with the
firewall, thereby avoiding multiple handling of incoming
packets.

The paper is organized as follows: Section 2 provides
an overview the power-management features available in
802.11 LANS. Sections 3 and 4 describe the architecture
and the current implementation of the WLAN proxy.
Section 5 discusses several experiments using the WLAN
proxy. Section 6 is a brief survey of the related work. The
last section describes possible extensions of this work.

2. Power management in 802.11 LANs

This section provides a brief overview of the power-
management features of an 802.11 client interface, or
station, in an infrastructure network. Only features
relevant to networks using the distributed coordination
function are described. For a complete description of
power management in 802.11 networks, see [17].

The power management mode of a station can be either
active mode or power save mode. The power state of a
station can be either Awake, when the station is fully
powered, or Doze, when the station consumes very little
power but it is not able to receive or transmit frames. In
active mode, the station is in the Awake state. In power
save mode, the station is typically in Doze state but it
transitions to Awake state to listen for select beacons,
which are broadcasted every 102.4 ms by the wireless
access point. The station selects how often it wakes up to
listen to beacons when it associates with the access point.
The transition between modes is always initiated by the
station and requires a successful frame exchange with the
access point. Therefore, the access point is always aware
of the power management mode and beacon periodicity of
each station in the LAN. The access point uses this
information when communicating with stations which are
in power save mode, as described next.

The access point buffers all pending traffic for the
stations known to be in power save mode and identifies
these stations in the appropriate beacons. When a station
detects that frames are pending in the access point, the
station may switch to active mode. Otherwise, it sends a
poll message to the access point. If the beacon frame
shows that more than one station has pending traffic, the
poll message is sent after a short random delay; otherwise
it is sent immediately. The station remains in the Awake
state until it receives the response to its poll.

The access point’s response to the poll is either the
next pending frame or an ACK frame, which signals that
the access point delays the transmission of the pending
frame and assumes the responsibility for initiating its
delivery. The station must ACK every received frame. If
the More Data field of the frame indicates additional
pending frames, the station may send another poll frame.
Otherwise, the station returns to Doze power state.



The driver of the client interface can change the power
mode of the client station. The station may switch from
power save mode to active mode after receiving the first
data frame from the access point, or after sending a data
frame to the access point. An example of transitioning
from power save mode to active mode and back is shown
in Figure 1. The station will switch back to power save
mode after no frames are received or transmitted for a
predetermined interval, shown as Typeou. Switching from
active mode to power save mode delays receiving any
frames until after the next beacon is received.
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Figure 1. Power consumption of WLAN interface

Switching from power save mode to active mode to
receive frames is very advantageous from a performance
standpoint, because in the active mode the access point
will forward data frames to the client as soon as they come
in, while in the power save mode it must queue them up
and wait for the client to wake up. Unfortunately, in order
to absorb variations in packet delivery, the client must stay
Awake while waiting for more data, which wastes power.
Thus, from an energy standpoint, it is never advantageous
to transition into the active mode except if it is known, or
highly expected, that data will be coming in at a high rate.

Client-side only solutions are restricted by the
limitations in predicting the next frame arrival time and by
the limitations imposed by the 802.11 specifications. This
work overcomes these limitations by using a proxy to
schedule incoming traffic for the WLAN in a manner that
accounts for client-side configuration.

3. Architecture

The PAWP architecture is designed to capture WLAN
web traffic and to schedule it into alternating bursts of
high and no activity. The proxy buffers the downloaded
content until there is enough data to justify the overhead of
switching the client WLAN interface to active mode or
until no additional data is expected. Once a data transfer is
initiated, all the buffered data is forwarded at the
maximum speed allowed by the WLAN conditions. The
proxy does not change the forwarded content. In contrast
to web caching proxies, this architecture discards the
forwarded objects immediately. For  improved
performance, PAWP should be integrated with the firewall
protecting the WLAN or with the optional caching proxy
(see Figure 2).
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Figure 2. Typical usage setting for PAWP
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The PAWP architecture has four major components,
which are shown in Figure 3: the client-side module, the
server-side module, the decision module, and the global
state module (the blackboard). The client-side module
processes HTTP requests from the WLAN clients. If the
requested object was already prefetched (with the correct
cookie), then the client-side module builds the response
immediately and it requests permission to send the object
back to the client. Otherwise, the request is added to the
global data structures in the blackboard module. The
server side-module handles remote servers: establishes and
manages TCP connections, constructs HTTP requests, and
adds HTTP responses to the blackboard. In addition, this
module parses text/html responses that are not
compressed, generates prefetch requests for all the
embedded objects, and adds them to the blackboard. Every
time the client- or server-side modules change the state of
the blackboard, the decision module is activated. The
decision module determines when a client request is
forwarded to the server, when a response can be returned
to a client, when to reuse a TCP connection, etc. The
decision module acts as the proxy’s oracle and its
behavior is controlled by an extensible set of rules.
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Figure 3. PAWP architecture



In network configurations where the WLAN device is
connected directly to the Internet, TCP packets arrive at
the client in an unpredictable pattern due to the
transmission delays between client and web servers and
their impact on the TCP packet flow. The primary
objective of the PAWP architecture is to introduce a
certain degree of predictability in the incoming HTTP
traffic that the client device can take advantage of.
Furthermore, as the client device initiates additional
requests upon receiving data, the scheduling of incoming
traffic impacts the outgoing traffic as well. PAWP
schedules the WLAN traffic by turning TCP transfers
between client and proxy on and off, using an extensive
collection of HTTP-dependent rules. The proxy effectively
indicates to the WLAN client that in most situations, a
short time interval, such as ten milliseconds, of no
incoming traffic signals a longer interval of network
inactivity. As a result, the client device can become more
energy efficient by switching to power save mode after
much shorter delays than previously possible.

The set of rules determining when data should be
released to the client is complex and expected to evolve.
These rules take into account client configuration and the
status of the WLAN. They are expected to evolve with the
HTTP-related standards and with our understanding of the
complex interactions between 802.11, TCP and HTTP.
Our current rules are described in the next section.

To create traffic bursts, the proxy has to delay
forwarding of downloaded content, which increases user-
perceived latency. PAWP uses several techniques to
compensate for these increases. The proxy parses
downloaded HTML documents and aggressively
prefetches all the embedded objects in the page. As a
result of prefetching, many of the subsequent client
requests are served immediately, without incurring the
delay of accessing the origin server. In addition, PAWP
benefits from splitting the TCP connections between the
WLAN client and servers.

The PAWP architecture has to address several
challenges. First, the proxy must correctly handle HTTP
cookies. All client cookies are forwarded and ‘Set-Cookie’
operations are recorded locally, for later use. Objects
prefetched without the proper cookie information are
discarded. To lower the likelihood of incorrect prefetches,
the architecture includes a mechanism for downloading
client cookies into the proxy and for sharing cookies
between related proxy installations. Second, the proxy has
to be efficient in prefetching the embedded objects. For
instance, PAWP attempts to prefetch objects in the order
they are expected to be requested by client. In addition,
when the client device caches web objects, a large fraction
of the client requests are “conditional GETs” and the
proxy uses prefetched objects to handle these requests
correctly. Because of client caches, some prefetched
objects are never requested and they are discarded after a
several tens of seconds. Typical PAWP configurations aim
at avoiding any increases in user-perceived latencies while

scheduling traffic for the maximum power savings in the
WLAN interface. The next section describes the current
proxy prototype.

4. Implementation

In this section, we describe the current PAWP
implementation. Our prototype runs on a separate server,
i.e., the implementation is not integrated with any of the
network elements shown in Figure 2. The implementation
is heavily multithreaded and it uses some open source
code, mainly from the GNU wget project [9].

The client-side module consists of one thread for each
client connection. Upon receiving a valid request, a client
thread searches the blackboard for the requested object. If
the object is found, the client thread constructs the
response and attempts to send it back to the client. No data
is sent to the client without permission from the decision
module. If the object is not found but there is a pending
prefetch for it with the same cookies as in the client
request, if any, the thread blocks waiting for the prefetch
to complete. If neither the object nor a pending prefetch
request for the object is found, the client request is added
to the blackboard and the thread blocks. Note that only
objects prefetched with the same cookies as in the client
request, if any, are considered valid. The proxy keeps
client connections open unless HTTP semantics require
their closing.

The server-side module consists of one thread for each
active request on the blackboard. A request becomes
active after it is associated a server connection by the
decision module’s oracle. First, the oracle attempts to
reuse an existing TCP connection, if one is available, or
create a new one if allowed. The proxy is configured to
open no more connections than the client browser. There
can be more than one pending request for each server
connection when request pipelining is enabled.

Cookie-related information found in the HTTP
response headers is stored locally. Cookies are added to a
prefetch request before it is sent to the server, if present in
the local store. The proxy uses the cookies in the client
request for forwarded requests.

When pipeline response is enabled, the decision
module is informed about a new response as the object is
downloaded, to pipeline it to the client. Otherwise, the
decision module is signaled after the entire object is
downloaded. For prefetched objects without a pending
client request, the decision module is always signaled after
the download completes.

When prefetching embedded objects 1is enabled,
responses containing uncompressed text/html documents
are parsed and for each embedded object, a prefetch
request is added to the blackboard. Parsing is performed as
the document is downloaded, since main pages are
typically large (several tens of KBytes) and they are
received slowly from remote web servers.



The decision module consists of a single thread, called
oracle, which controls the actions of the client and server
modules. For instance, the oracle controls the maximum
number of TCP connections that the proxy can open to
each server and to all web servers. The oracle’s decisions
are based on the information stored on the blackboard by
the two modules. When #raffic scheduling is enabled, the
oracle uses request and response descriptors, the
timestamp of the last request received from, and the
timestamp of the last response sent to each client to decide
when to release data to the client. Otherwise, data is
forwarded to the client immediately.

Figure 4 describes the main rules used for shaping the
traffic. First, data is released to the client if it is available
before the WLAN NIC switches to power save mode,
which is computed as the moment the last client request
was received plus Tiieon- Second, no object is delayed for
more than a maximum amount of time, called MaxDelay
in Figure 4. Third, whenever more than MinObjects are
ready to be sent, they are forwarded to the client;
MinObjects is always smaller or equal to the maximum
number of outstanding requests from the client device.
Finally, if enough data is buffered to justify the overhead
of switching the WLAN to active mode, data is forwarded
even when the other conditions are not satisfied.

Oracle
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Figure 4. Rules for releasing data to the client

When threads are assigned different priorities, all
client threads have the same priority, which is higher than
the priority of the oracle thread; all server threads have the
same priority as well but their priority is lower than the
oracle’s priority. The priority assignment was designed to
support the traffic shaping rules.

5. Experimental results

This section presents the results of our experiments
with using PAWP. First, we describe the experimental
testbed and the tools used for measurements. Second, we
describe several experiments that exercise different
features of the proxy. Third, we present the results of
using the proxy to access several popular web sites. Last,

we compare results from experiments with the same sites
using different browsers.

5.1. Experimental testbed

In all experiments, the client device is an IBM
ThinkPad T20, with a 700 MHz Pentium III CPU and 512
MB of memory, running Windows XP Professional. We
selected this client device because its capabilities are in
between those of a PDA featuring a 400 MHz Intel XScale
processor and those of an ultralight notebook featuring
1000+ MHz Intel or Transmeta processor.

The client browsers used in these experiments are IE
6.0.2600 and Mozilla 1.4. Both are configured to use
HTTP 1.1 in both proxy and no-proxy configurations. In
addition, we enabled request pipelining for Mozilla. For
better repeatability, the browser is started with an empty
cache in all the experiments presented in this section. This
is similar to the methodology used in [12].

The proxy is hosted by a dual-processor 933 MHz
Pentium III with 512 MB of memory running RedHat
Enterprise Linux AS rel. 3. The proxy connects directly to
the Internet through the corporate firewall, i.e., the caching
proxy in Figure 2 does not exist in our testbed.

Client and proxy hosts use the same two DNS servers.
In contrast to Windows XP, the default RedHat Linux
configuration does not cache DNS entries. To provide the
same advantage to PAWP, we added a caching-only DNS
server to the proxy machine.

The WLAN NIC is an Intersil PRISM3 PCMCIA card
and it was selected because of the versatility and
programmability of its ‘power’-related capabilities. The
PRISM 3 interface consumes 848 mW in the Awake state
and 25 mW in the Doze state. This interface switches to
active mode when it detects pending frames in the access
point. The WLAN access point is an Intel PRO/Wireless
2011B and it is on the same FastEthernet LAN as the
proxy. The latency between proxy and the access point is
less than 1 ms.

The client device uses two configurations for the
WLAN interface. In both configurations, the interface
listens to every beacon sent by the access point, i.e., every
102.4 msecs. In the first configuration, typical for this
interface, the driver switches the interface to power save
mode after 100 ms of inactivity. This configuration is used
only in the experiments when the device is connected
directly to the Internet. In the second configuration, the
driver switches the interface to power save mode after
only 10 ms of inactivity (Tjmeon). This timeout value is
used in experiments with and without proxy.

The proxy releases data immediately in the first 10 ms
(Tiimeows) after receiving a request and does not delay any
object for more than 500 ms (MaxDelay). As typical
retrieval latencies are higher than 10 ms, the proxy
releases data in the first 10 ms after receiving a request
only if the requested object or a fraction of it has already
been received as a result of an earlier prefetch; in addition,



immediately after receiving a request, the proxy can
release (part of) the response to a previous request from
the same client. The proxy handles object fragments only
when configured to pipeline responses. In addition, the
proxy releases data if two (MinObjects) or more objects
are waiting to be sent to the client, or if the cumulative
size of the waiting objects or object fragments exceeds
4KB (MinBytes).

For each experiment, we collect HTTP protocol traces
on the client device using PageDetailer [16] and power
measurements using the experimental testbed shown in
Figure 6. To verify measurement accuracy, we correlate
the two sets of measurements.

PageDetailer displays information on each web page
that has been opened since it was started. This information
includes the amount of time it took to open the page, the
total size of the page, the number of items comprising the
page, and detailed information on each of these items. For
each of them, PageDetailer lists the type (e.g., text,
picture, java script, etc.), the amount of time it took to
retrieve and display the item, the size of the item and the
HTTP headers of the request and response message. Most
important for our work, PageDetailer displays the
download time of each item as a horizontal bar, scaled and
proportional to the time it has taken to load the complete
page, working from left to right. The horizontal bar is
divided into separate activities, which are displayed in
different colors: yellow for the connection setup time, blue
for the response time, i.e., the time between when the
HTTP request is sent until the first segment of the
response is received, and green for the time needed to
receive the additional data needed to fulfill the request. In
a B&W image, yellow, blue and green translate into light
gray, black and dark gray, respectively.
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download time. In contrast, in the PAWP experiments,
connection setup times are negligible. Similarly, object
download times are small due to the high bandwidth
transfers between client and proxy. When using the proxy,
the download time is dominated by the response times
(blue). The proxy performs traffic scheduling by
controlling response and download times.

Figure 6 shows the power measurement testbed. The
oscilloscope is used to sample the instantancous power
consumption of the WLAN interface. The sampled data is
then sent to the data collection PC, which runs an
oscilloscope application, thus enabling us to analyze the
dynamic power consumption of the WLAN interface. The
PC also collects data from the programmable Digital
Multimeter to compute the average power consumption.
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Figure 6. Testbed for power measurements

5.2. Proxy configuration

PAWP has several features that can be enabled or
disabled independently: traffic shaping, prefetching of
embedded objects, response pipelining, and request
pipelining, and assigning different thread priorities. In
these experiments, when response pipelining is enabled,
the oracle is signaled for every 4KB of data received. For
request pipelining, the maximum number of pending
requests per connection is set to four.

Table 1. Costs and benefits of proxy features

NY Times (www.nytimes.com)

Download

Energy [s]

Download
Time [s]

240kB/77
Direct (no proxy) 270 875
Proxy: all features disabled 2.46 8.95
Proxy: scheduling, prefetching 2.38 8.05

Proxy: scheduling, prefetching,

o 2.15 7.54
request & response pipelining

Proxy: all features on 1.94 6.99

Figure 5. PageDetailer screenshot

Figure 5 shows a PageDetailer screenshot after the
download of the NY Times main page. In this experiment,
the client device connects directly to the Internet. The
connection setup times (yellow) and the object download
times (green) represent a large fraction of the total

The experiments presented in this section attempt to
quantify the impact of some of these features on the proxy
performance. The first set of experiments uses no proxy.
The second set uses PAWP with all the features disabled.
In the third set of experiments, traffic scheduling and
prefetching of embedded objects are enabled. In the fourth
set of experiments, request and response pipelining are
enabled as well. In the fifth set of experiments, all the
proxy features are enabled, i.e., in addition to the features



enabled for the previous set of experiments, the client,
server, and oracle threads are assigned different priorities.
For these experiments, we use the main page of the NY
Times, which varies between 190kB and 270 kB and uses
between 45 and 80 embedded objects. The results of the
experiments are summarized in Table 1. The experiments
show that each set of features contributes to the reduction
of download latency and energy. However, these results
are preliminary since they are based on only one page.

5.3.Proxy performance

This section describes experiments with downloading
the main page of several popular sites. We selected the
main pages because, in most cases, they are larger and
more complex than pages for individual articles, products,
or subdomains; the difference in size is due mainly to the
additional embedded objects. A typical NYTimes article is
between 168kB and 210 kB and uses between 28 and 56
objects. In addition, interactions with news and e-
commerce sites always start with the main page. Table 2
summarizes the results of experiments with the IE
browser. For each site, the total size of the page and the
total number of objects, which include main page,
embedded objects and pop-up ads, are given, as listed by
PageDetailer. In these experiments, all the PAWP features
analyzed in the previous section are enabled. Although our
selection is biased towards more complex web pages, we
believe that the wide range of page sizes and embedded
objects used in these experiments make the results in
Table 2 representative for a large range of web pages.

Table 2. Proxy performance with IE

‘Direct’ experiments, the WLAN interface is configured to
received beacons from the access point every 102.4 ms (as
in the ‘Proxy’ experiments) but the timeout parameter
(Ttimeour) 18 increased to 100 ms, which is the typical value
seen in commercial WLAN cards.

The results are computed by taking the average of
seven experiments. The experiments were run in the
evening, and all the experiments using the same site were
run in a batch, alternating ‘Direct’” and ‘Proxy’
experiments to minimize the effect of changing loads on
web servers or in the Internet. Each batch of experiments
takes approximately 15 minutes to complete.

In these experiments we report the total energy
consumed by the card to perform the download, as
download times are different. In all the experiments, using
PAWP reduces download energy by up to 55%. Note that
in contrast to IE, PAWP implements request pipelining.

In addition to the two sets of downloads summarized in
Table 2, we run experiments with the WLAN interface
configured as in the ‘Proxy’ experiments, i.e., using a
10ms timeout, but with the client device configured for
direct access to the Internet. In these experiments,
download times were between 25% and 60% higher than
in the ‘Proxy’ experiments while the energy reductions
were negligible. This demonstrates that reducing the
timeout of the WLAN interface alone, without scheduling
the traffic, does not yield any practical power benefits.

Table 3. Proxy performance with Mozilla
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cnn Direct 3.30 4.63 54.3
252kB/84 Proxy 1.37 (-59%) 3.88 (-16%)
nytimes Direct 3.29 6.85 233
190kB/45 Proxy 1.11 (-66%) 3.20 (-53%)
washingtonpost Direct 4.99 7.34 44.4
504kB/67 Proxy 2.20 (-56%) 7.01 (-5%)
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cnn Direct 2.47 8.13 34.6
281kB/84 Proxy 2.25 (-9%) 7.33 (-10%)
nytimes Direct 2.36 8.17 30.1
253kB/76 Proxy 1.89 (-22%) 5.78 (-29%)
washingtonpost Direct 6.14 9.08 56.0
535kB/73 Proxy 2.83 (-54%) 8.58 (-6%)
americanexpress Direct 2.11 342 12.3
42kB/25 Proxy 0.80 (-61%) 3.05 (-11%)
chase Direct 1.38 5.12 24.4
125kB/31 Proxy 1.10 (-21%) 3.34 (-35%)
ebay Direct 5.77 10.80 104
112kB/74 Proxy | 2.62(-55%) | 10.12 (-6%)
citibank Direct 4.19 15.18 8.9
135kB/51 Proxy 2.51 (-40%) 7.53 (-50%)
amazon Direct 2.69 5.40 16.9
91kB/51 Proxy 1.35 (-50%) 5.38 (0%)
bbc Direct 2.10 3.56 17.1
61kB/31 Proxy 1.05 (-50%) 3.37 (-5%)
sigmobile Direct 0.98 3.24 22.8
74kB/34 Proxy 0.78 (-21%) 2.33 (-28%)

In the ‘Proxy’ experiments, the WLAN interface and
PAWP are configured as previously described. In the

To measure the benefit that request pipelining in the
proxy can provide to browsers that have this feature, we
run experiments for the first three sites (CNN, NYTimes,
and WashingtonPost) using the Mozilla browser. Mozilla
was configured to use request pipelining in both ‘Direct’
and ‘Proxy’ experiments. The proxy was configured to
limit the number of pending requests on a connection to
four, while for Mozilla we use its default configuration
parameters. The results are presented in Table 3.

Experiments with both Mozilla and IE show energy
savings and download time reductions. However, the
results are site dependent. This is partly because the IE and
Mozilla experiments were run on different dates, which
explains the differences in page size and complexity.

One other important difference between IE and
Mozilla is the number of connections between browser
and proxy. IE opens at most two connections while




Mozilla opens up to four. This makes Mozilla more
resilient to downloads of pages with embedded objects
hosted on slow sites. IE performance degrades
dramatically in these situations, as one or both connections
exhibit the head-of-line blocking.
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Figure 7. Dynamic power traces (eBay.com)

To explain the significant energy savings in the
‘Proxy’ experiments, we show in Figure 7 two dynamic
power traces collected with the oscilloscope application.
The traces were collected while downloading eBay.com in
‘Direct’ and ‘Proxy’ experiments, respectively. The traces
represent the entire download process which lasted 8.0
secs and 6.6 secs in the ‘Direct’ and ‘Proxy’ case,
respectively. The contrast in power dynamics is striking.
In the Direct case the WLAN stays in the Awake state
almost continuously due to the long timeout value of 100
msecs. This allows packet inter-arrival times of less than
100 msecs to cause the WLAN to reset its timeout timer
and effectively keep the WLAN in the Awake state for an
unnecessarily long time while waiting for more data. In
the ‘Proxy’ case the timeout value is only 10 msecs, thus
allowing the WLAN to drop out of the Awake state much
faster while the proxy server continues to prefetch more
data. Then the next time the WLAN wakes up, it rapidly
depletes the buffered data in Access Point and quickly
returns back to the Doze state. This behavior may be seen

in the last figure, which shows an expanded view of a
0.85s slice of the power trace.
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Figure 8. Energy consumption vs. throughput

We observed that for most sites, there is a correlation
between energy savings and the download throughput (5"
column in Table 2.) Figure 8 shows that the lower the
application-level throughput is, the larger the energy
savings are. We believe the correlation stems from the fact
that the lower the client-server bandwidth is, the longer is
the packet inter-arrival times and thus the more time the
WLAN idles in the Awake state in the ‘Direct’ case, thus
wasting more energy. This longer inter-arrival time
doesn’t affect the ‘Proxy’ case where the client WLAN
doesn’t “see” these inter-arrival times due to the PAWP
traffic scheduling. The straight line in the figure is a linear
fit to all but one of the IE data points. The exception,
which is the WashingtonPost main page, has an average
object size (7.5kB) much larger than the other sites, which
vary between 3.7kB for Chase and 1.5kB for eBay. We
suspect that the energy savings for pages with larger
objects are less sensitive to throughput because larger
objects require multiple roundtrips to download, which
naturally generate longer packet inter-arrival times. We
plan to investigate this hypothesis in our future work.

To summarize, our results show that a simple
prototype can reduce the energy consumption of the
WLAN interface by more than 50%. Over time we can
expect that improvements in processor power management
and display technologies will modestly increase the total
fraction of power consumed by the wireless subsystem.
Application aware software can leverage processor
frequency  scaling. Other hardware technology
improvements will also reduce the power consumed by the
processor. Displays based on Organic LEDS (OLEDs) are
becoming available in larger sizes and are expected to be
used in mobile computers including laptops. = OLED
displays are expected to consume less power; moreover
their power consumption depends on the number of lit
pixels. This property allows the designer of the user
interface more flexibility in reducing the power consumed
by the display [11]. The advent of longer range wireless
technologies such as 802.16 may increase the power



consumed by the wireless subsystem as well. Therefore
we believe that the technology described in this paper will
be even more applicable in the future.

6. Related work

We believe that our work is the first to take advantage
of the application level knowledge at the proxy server to
reduce the energy consumption of the WLAN interface by
scheduling the traffic directed to the wireless client. Two
categories of work are closely related to ours: research on
using proxy servers to reduce web latency, and research on
reducing the energy consumption of WLAN interfaces.

Proxy servers have been developed for many purposes.
Most commonly, proxies are used for web caching and as
firewall components. Proxies are also used for
transcoding content to better suit the capabilities of mobile
client devices. The idea of pre-fetching web pages to
reduce web latency was previously explored. The authors
of [15] found that local proxy pre-fetching could
significantly reduce web latency and that pre-fetch lead-
time is an important factor in the performance of pre-
fetching. A survey of 14 related studies on web pre-
fetching can be found in [7]. More recently, [4, 21]
propose session-level techniques for using transparent
proxies to reduce browsing latencies over 3G wireless
networks. Our work focuses on reducing the power
consumption of WLAN interfaces by using explicit
proxies to prefetch embedded objects.

Chandra et al. [5, 6] investigate an application-specific
protocol for reducing the network interface power
consumption for streaming media applications. Their
approach is limited to streaming media applications and
requires proxies at both ends of the wireless LAN, while
our approach can be applied to any application that uses
HTTP traffic without any client side modifications.

Many techniques that reduce the energy consumed by
the WLAN interface can be found in literature. The power
saving mode of IEEE 802.11 is based on the work of
Stemm and Katz [24], which shows that leaving the
WLAN card in sleep mode whenever possible can
dramatically reduce the power consumption of the device.
At the transport level, the “Bounded Slowdown Protocol”
[14] introduces a power saving mode that dynamically
adapts to network activity and guarantees that a
connection’s round trip time does not increase by more
than a preset factor. At the MAC level, Qiao et al. [20]
propose to combine Transmit Power Control and PHY rate
adaptation to pre-compute an optimal rate-power
combination table for a wireless station. Gundlach et al.
[8] describe a transport-level scheduling policy designed
to burst packets to clients. This approach is similar to ours
to the extent that it also enables periodical releasing of
data. However, as our approach employs HTTP-level
information, it is better able to optimize data delivery to
the client. Our approach is capable of handling more

complex situations, such as web pages with a large
number of embedded objects while theirs cannot.

At the system level, Shih et al. [23] introduce a
technique to reduce idle power, which is the power that a
wireless LAN-enabled PDA phone consumes in “standby”
mode. Their approach is to shutdown the device and its
wireless card when the device is not being used. A
secondary, lower-power wakeup mechanism is used to
wakeup the device only when an incoming call is received.
Simunic et al. [22] describe system-level power
management strategies that turn the network interface off
completely during idle periods to reduce its power
consumption. At the application level, Barr and Asanovic
[2] explore the energy efficiency of different compression
and decompression algorithms and show overall energy
reductions when an energy-aware data compression
strategy is applied. The STPM algorithm proposed in [1]
adaptively manages the power consumption of the WLAN
card using knowledge from application, network interface,
and mobile platform. For real-time applications,
Poellabauer and Schwan [19] integrate the power
management of the WLAN interface and processor with
application-level knowledge to increase idle periods and
decrease the number of switches between power modes.

The work presented in [18] employs an idea similar to
ours to manage hard disk power consumption by
suggesting the use of aggressive pre-fetching and the
postponement of non-urgent requests in order to increase
the average length of disk idle phases.

7. Conclusions and future work

In this paper we first described why existing
approaches and work on 802.11 power management do not
sufficiently address power management when network
activity is present. ~We then presented PAWP, a web
proxy that schedules network traffic so that the wireless
interface can be turned off for longer periods of time while
the proxy is prefetching and buffering data on behalf of
the wireless client. The proxy was implemented and a test
bench for making power measurements was created. Our
implementation and experiments validate the concept of a
web proxy for power management. Results on popular
web pages showed reductions of more than 50% in energy
consumed by the WLAN interface.

Our experiments show that a simple approach, which
switches the WLAN interface to power save mode after
shorter timeouts, without proxy support, does not yield
any practical benefits. Implementing a power management
proxy at the HTTP level rather than the TCP level allowed
us to exploit traffic information that is available only in
the application layer. Given the trend of growing number
of applications and middleware based on HTTP, we
believe that application-dependent HTTP proxies for
power management will be an attractive option for
lowering the energy consumed by the WLAN interface.



To our surprise, we also achieve noticeable reductions
in download latency with PAWP. In addition to improving
the user experience, this may enable further energy
savings in other subsystems, such as processor and
display. One can expect the reductions in download
latency to diminish as the internet backbone becomes
faster and browser technology improves. However, we
expect the benefits of improved system predictability to
continue to enable better energy management.

We were also surprised by the impact of browser
technology and web site design on PAWP efficiency. We
believe that our work on PAWP has identified areas for
improvement in browser and web page design. For
instance, pages should be designed to facilitate object
prefetching and web servers should support request
pipelining efficiently, especially for sites targeted towards
mobile clients. Furthermore, the more connections the
browser opens to the proxy, the more resilient the transfers
between the two are.

We plan to interleave disparate http applications and
study the impact of simultaneous applications on the
client. In addition, we plan to experiment with multiple
WLAN clients. As described in Section 2, a station waits a
short random delay before it sends its first poll message to
the base station when frames for multiple stations are
buffered in the base station during the previous beacon
interval. As a result, multiple stations could be idling in
the Awake state. We plan to determine how often this
situation arises and search for a solution, if necessary.
Over time we will study how the requirements on the
PAWP architecture scale to typical enterprises, where
multiple stations connect to a single access point.

PAWP was designed for low latency 802.11-based
WLANSs. Although some of its elements may provide
benefits when used with other wireless technologies, such
as CDMA2000, others may not. Another aspect to pursue
is the benefit of the PAWP architecture for faster wireless
networks such as 802.11g, 802.16, and ultrawide band.
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