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Abstract 

 
The relative power consumed in the WLAN interface of 

a mobile device is rising due to significant improvements 
in the energy efficiency of the other device components. 
The unpredictability of the incoming WLAN traffic limits 
the effectiveness of existing power saving techniques.  

This paper introduces a Power Aware Web Proxy 
(PAWP) architecture designed to schedule incoming web 
traffic into intervals of high and no communication. This 
traffic pattern allows WLAN interfaces to switch to a low 
power state after very short idle intervals. PAWP uses a 
collection of HTTP-level techniques to compensate any 
negative impact that traffic scheduling may have. PAWP 
does not require any client or web server modifications. 

In this paper, we describe our initial experiences with 
a PAWP implementation for 802.11b WLANs. Our 
experiments show savings of more than 50% in the energy 
consumed by the WLAN interface. Finally, our experiences 
give us insights into possible browser improvements when 
power consumption is taken into account. 

 

1. Introduction 
The relative power consumed in the WLAN interface 

of a mobile device is rising due to significant 
improvements in the energy efficiency of the other device 
components, such as processor, memory, display, and 
disk. The relative power consumption of the WLAN 
interface depends on the mobile device and it varies from 
5-10% in high-end laptop computers to more than 50% in 
PDAs [6]. The actual amount of energy consumed for 
wireless communication depends on the client applications 
and their usage pattern, and on the actual WLAN 
technology. In particular, active web browsing and 
multimedia streaming are characterized by high energy 
consumption in the WLAN interface.  

In this paper we focus on the popular 802.11 WLAN 
technology. The 802.11 specifications define two power 
management modes: active mode and power save mode. 
The client device is configured to switch the WLAN 

interface to power save mode during idle intervals, when it 
consumes 5 to 50 times less power than when active. 
Typically, the timeout value is set to 100 msecs. 

The hard-to-predict nature of incoming traffic prevents 
using a lower timeout value without affecting application 
performance and interactivity. The comprehensive 
solution, which minimizes the energy used for wireless 
communication with no or limited impact on 
communication performance, requires perfect knowledge 
of the application traffic patterns, wired and wireless 
network configurations and conditions, and user 
preferences.  

This paper describes a practical solution to the above 
problem for web browsing. Namely, we introduce PAWP, 
a Power Aware Web Proxy architecture that schedules the 
traffic directed to the wireless client into alternating 
intervals of high and no communication; in this process, 
the proxy takes into account the configuration of the client 
WLAN interface. The architecture does not require any 
modifications of the applications on the client device or 
remote server.  

Our solution reduces the power consumed by the client 
WLAN interface because the interface can be configured 
to switch to a low power state after a much shorter delay. 
The same amount of data is transferred to the client device 
over approximately the same time interval but using a 
traffic pattern that allows the client WLAN interface to be 
powered-off for a larger fraction of the download time. To 
compensate for any increases in user-perceived latencies 
that traffic scheduling may induce, PAWP takes advantage 
of the information available at the application level by 
parsing downloaded documents and optimistically 
prefetching any embedded objects.  The wireless device 
does not incur any penalty since prefetching is done by the 
proxy across the wired LAN/WAN.  

PAWP is designed for environments where the 
application-level transfer rates between the client and the 
proxy are substantially higher than between the client and 
the origin web server (no-proxy configurations), i.e., 
where the data rates across the WLAN are higher than 
across the Internet. Our experiments demonstrate that the 



   

lower the aggregate data rate of a web site, the higher the 
energy savings are.  

In this paper, we discuss the main challenges we faced 
and some of the lessons we learned. We present 
experiments with popular new sites, such as CNN, NY 
Times, and BBC, e-commerce sites, such as Amazon, eBay, 
Chase, Citibank, and American Express, and professional 
organization sites, such as SIGMOBILE. The total number 
of objects in these pages ranges from 25 to 84 and the total 
size ranges from 42K and 535K bytes. We use one of the 
most complex web pages we found, NY Times, to identify 
the impact that various PAWP features have on client 
energy consumption and user-perceived latency.  

We use IE 6.0 and Mozilla 1.4 to evaluate our solution; 
we collect HTTP traces using IBM’s PageDetailer [16] 
and also measure of the energy consumed by the WLAN 
interface. Energy reductions vary between 9% and 61% 
and depend on the structure of the downloaded page and 
on the state of the network. Our experiments demonstrate 
that reductions in the energy consumed by the WLAN 
interface previously achieved for long transfers, such as 
multimedia streams [6], are possible for web pages 
consisting of a large number of embedded objects.  

Scheduling incoming traffic into intervals of high and 
no communication can benefit future system-level 
techniques that coordinate the power management of 
multiple subsystems, such as processor and display 
subsystems.  Initially introduced for watch-size devices 
[13], such techniques have been recently extended to small 
PDAs [3]. We expect similar techniques to be applied to 
larger client devices, such as sub-notebooks, and to be 
extended to managing additional subsystems, such as 
system memory and the WLAN interface.  

Today’s processors are capable of processing large 
amounts of data in very small intervals and can go back to 
sleep intermittently. As a result, system-level techniques 
for power management can be used effectively not only 
during idle periods but also during periods of light usage, 
such as web browsing or text editing. In fact, processors 
go to sleep in between user key strokes on a fast PC [10] 
and new technologies, such as bistable displays [25], are 
rapidly evolving to allow displays to be powered off 
immediately while retaining content. For system-level 
power management to be effective, mobile devices must 
be protected from random packet arrivals, i.e., from 
network interrupts. Therefore, proper scheduling of 
incoming WLAN traffic increases the applicability of such 
system-level techniques for power management.  

Our solution has applicability beyond web browsing. 
First, other client applications, such as media players and 
email clients, and higher-level protocols, such as Web 
Services, use HTTP. Second, applications not using 
HTTP, such as the Notes mail client, can use the two main 
elements of the PAWP architecture, i.e., scheduling 
incoming traffic using an application-level proxy and 
using application semantics to compensate for any 
negative effects traffic scheduling may have, to reduce the 

power consumption of the WLAN interface and to 
improve application performance. For better performance, 
the resulting PAxP proxies can be integrated with the 
firewall, thereby avoiding multiple handling of incoming 
packets. 

 The paper is organized as follows: Section 2 provides 
an overview the power-management features available in 
802.11 LANs. Sections 3 and 4 describe the architecture 
and the current implementation of the WLAN proxy. 
Section 5 discusses several experiments using the WLAN 
proxy. Section 6 is a brief survey of the related work. The 
last section describes possible extensions of this work.  

2. Power management in 802.11 LANs 
This section provides a brief overview of the power-

management features of an 802.11 client interface, or 
station, in an infrastructure network. Only features 
relevant to networks using the distributed coordination 
function are described. For a complete description of 
power management in 802.11 networks, see [17].  

The power management mode of a station can be either 
active mode or power save mode. The power state of a 
station can be either Awake, when the station is fully 
powered, or Doze, when the station consumes very little 
power but it is not able to receive or transmit frames. In 
active mode, the station is in the Awake state. In power 
save mode, the station is typically in Doze state but it 
transitions to Awake state to listen for select beacons, 
which are broadcasted every 102.4 ms by the wireless 
access point. The station selects how often it wakes up to 
listen to beacons when it associates with the access point. 
The transition between modes is always initiated by the 
station and requires a successful frame exchange with the 
access point. Therefore, the access point is always aware 
of the power management mode and beacon periodicity of 
each station in the LAN. The access point uses this 
information when communicating with stations which are 
in power save mode, as described next. 

The access point buffers all pending traffic for the 
stations known to be in power save mode and identifies 
these stations in the appropriate beacons. When a station 
detects that frames are pending in the access point, the 
station may switch to active mode. Otherwise, it sends a 
poll message to the access point. If the beacon frame 
shows that more than one station has pending traffic, the 
poll message is sent after a short random delay; otherwise 
it is sent immediately. The station remains in the Awake 
state until it receives the response to its poll.  

The access point’s response to the poll is either the 
next pending frame or an ACK frame, which signals that 
the access point delays the transmission of the pending 
frame and assumes the responsibility for initiating its 
delivery. The station must ACK every received frame. If 
the More Data field of the frame indicates additional 
pending frames, the station may send another poll frame. 
Otherwise, the station returns to Doze power state. 



   

The driver of the client interface can change the power 
mode of the client station. The station may switch from 
power save mode to active mode after receiving the first 
data frame from the access point, or after sending a data 
frame to the access point. An example of transitioning 
from power save mode to active mode and back is shown 
in Figure 1. The station will switch back to power save 
mode after no frames are received or transmitted for a 
predetermined interval, shown as Ttimeout. Switching from 
active mode to power save mode delays receiving any 
frames until after the next beacon is received. 

beacons

file transfer

Ttimeout

active modepower save mode

Figure 1. Power consumption of WLAN interface 

Switching from power save mode to active mode to 
receive frames is very advantageous from a performance 
standpoint, because in the active mode the access point 
will forward data frames to the client as soon as they come 
in, while in the power save mode it must queue them up 
and wait for the client to wake up. Unfortunately, in order 
to absorb variations in packet delivery, the client must stay 
Awake while waiting for more data, which wastes power. 
Thus, from an energy standpoint, it is never advantageous 
to transition into the active mode except if it is known, or 
highly expected, that data will be coming in at a high rate.  

Client-side only solutions are restricted by the 
limitations in predicting the next frame arrival time and by 
the limitations imposed by the 802.11 specifications. This 
work overcomes these limitations by using a proxy to 
schedule incoming traffic for the WLAN in a manner that 
accounts for client-side configuration. 

3. Architecture 
The PAWP architecture is designed to capture WLAN 

web traffic and to schedule it into alternating bursts of 
high and no activity. The proxy buffers the downloaded 
content until there is enough data to justify the overhead of 
switching the client WLAN interface to active mode or 
until no additional data is expected. Once a data transfer is 
initiated, all the buffered data is forwarded at the 
maximum speed allowed by the WLAN conditions. The 
proxy does not change the forwarded content. In contrast 
to web caching proxies, this architecture discards the 
forwarded objects immediately. For improved 
performance, PAWP should be integrated with the firewall 
protecting the WLAN or with the optional caching proxy 
(see Figure 2).  
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Figure 2.  Typical usage setting for PAWP 

The PAWP architecture has four major components, 
which are shown in Figure 3: the client-side module, the 
server-side module, the decision module, and the global 
state module (the blackboard). The client-side module 
processes HTTP requests from the WLAN clients. If the 
requested object was already prefetched (with the correct 
cookie), then the client-side module builds the response 
immediately and it requests permission to send the object 
back to the client. Otherwise, the request is added to the 
global data structures in the blackboard module. The 
server side-module handles remote servers: establishes and 
manages TCP connections, constructs HTTP requests, and 
adds HTTP responses to the blackboard. In addition, this 
module parses text/html responses that are not 
compressed, generates prefetch requests for all the 
embedded objects, and adds them to the blackboard. Every 
time the client- or server-side modules change the state of 
the blackboard, the decision module is activated. The 
decision module determines when a client request is 
forwarded to the server, when a response can be returned 
to a client, when to reuse a TCP connection, etc. The 
decision module acts as the proxy’s oracle and its 
behavior is controlled by an extensible set of rules.  
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Figure 3.  PAWP  architecture 



   

In network configurations where the WLAN device is 
connected directly to the Internet, TCP packets arrive at 
the client in an unpredictable pattern due to the 
transmission delays between client and web servers and 
their impact on the TCP packet flow. The primary 
objective of the PAWP architecture is to introduce a 
certain degree of predictability in the incoming HTTP 
traffic that the client device can take advantage of. 
Furthermore, as the client device initiates additional 
requests upon receiving data, the scheduling of incoming 
traffic impacts the outgoing traffic as well. PAWP 
schedules the WLAN traffic by turning TCP transfers 
between client and proxy on and off, using an extensive 
collection of HTTP-dependent rules. The proxy effectively 
indicates to the WLAN client that in most situations, a 
short time interval, such as ten milliseconds, of no 
incoming traffic signals a longer interval of network 
inactivity. As a result, the client device can become more 
energy efficient by switching to power save mode after 
much shorter delays than previously possible. 

The set of rules determining when data should be 
released to the client is complex and expected to evolve. 
These rules take into account client configuration and the 
status of the WLAN. They are expected to evolve with the 
HTTP-related standards and with our understanding of the 
complex interactions between 802.11, TCP and HTTP. 
Our current rules are described in the next section. 

To create traffic bursts, the proxy has to delay 
forwarding of downloaded content, which increases user-
perceived latency. PAWP uses several techniques to 
compensate for these increases. The proxy parses 
downloaded HTML documents and aggressively 
prefetches all the embedded objects in the page. As a 
result of prefetching, many of the subsequent client 
requests are served immediately, without incurring the 
delay of accessing the origin server. In addition, PAWP 
benefits from splitting the TCP connections between the 
WLAN client and servers. 

The PAWP architecture has to address several 
challenges. First, the proxy must correctly handle HTTP 
cookies. All client cookies are forwarded and ‘Set-Cookie’ 
operations are recorded locally, for later use. Objects 
prefetched without the proper cookie information are 
discarded. To lower the likelihood of incorrect prefetches, 
the architecture includes a mechanism for downloading 
client cookies into the proxy and for sharing cookies 
between related proxy installations. Second, the proxy has 
to be efficient in prefetching the embedded objects. For 
instance, PAWP attempts to prefetch objects in the order 
they are expected to be requested by client. In addition, 
when the client device caches web objects, a large fraction 
of the client requests are “conditional GETs” and the 
proxy uses prefetched objects to handle these requests 
correctly. Because of client caches, some prefetched 
objects are never requested and they are discarded after a 
several tens of seconds. Typical PAWP configurations aim 
at avoiding any increases in user-perceived latencies while 

scheduling traffic for the maximum power savings in the 
WLAN interface. The next section describes the current 
proxy prototype. 

4. Implementation 
In this section, we describe the current PAWP 

implementation. Our prototype runs on a separate server, 
i.e., the implementation is not integrated with any of the 
network elements shown in Figure 2. The implementation 
is heavily multithreaded and it uses some open source 
code, mainly from the GNU wget project [9]. 

 The client-side module consists of one thread for each 
client connection. Upon receiving a valid request, a client 
thread searches the blackboard for the requested object. If 
the object is found, the client thread constructs the 
response and attempts to send it back to the client. No data 
is sent to the client without permission from the decision 
module. If the object is not found but there is a pending 
prefetch for it with the same cookies as in the client 
request, if any, the thread blocks waiting for the prefetch 
to complete. If neither the object nor a pending prefetch 
request for the object is found, the client request is added 
to the blackboard and the thread blocks. Note that only 
objects prefetched with the same cookies as in the client 
request, if any, are considered valid. The proxy keeps 
client connections open unless HTTP semantics require 
their closing.  

The server-side module consists of one thread for each 
active request on the blackboard. A request becomes 
active after it is associated a server connection by the 
decision module’s oracle. First, the oracle attempts to 
reuse an existing TCP connection, if one is available, or 
create a new one if allowed. The proxy is configured to 
open no more connections than the client browser. There 
can be more than one pending request for each server 
connection when request pipelining is enabled. 

 Cookie-related information found in the HTTP 
response headers is stored locally. Cookies are added to a 
prefetch request before it is sent to the server, if present in 
the local store. The proxy uses the cookies in the client 
request for forwarded requests. 

When pipeline response is enabled, the decision 
module is informed about a new response as the object is 
downloaded, to pipeline it to the client. Otherwise, the 
decision module is signaled after the entire object is 
downloaded. For prefetched objects without a pending 
client request, the decision module is always signaled after 
the download completes.   

When prefetching embedded objects is enabled, 
responses containing uncompressed text/html documents 
are parsed and for each embedded object, a prefetch 
request is added to the blackboard. Parsing is performed as 
the document is downloaded, since main pages are 
typically large (several tens of KBytes) and they are 
received slowly from remote web servers.  



   

The decision module consists of a single thread, called 
oracle, which controls the actions of the client and server 
modules. For instance, the oracle controls the maximum 
number of TCP connections that the proxy can open to 
each server and to all web servers. The oracle’s decisions 
are based on the information stored on the blackboard by 
the two modules. When traffic scheduling is enabled, the 
oracle uses request and response descriptors, the 
timestamp of the last request received from, and the 
timestamp of the last response sent to each client to decide 
when to release data to the client. Otherwise, data is 
forwarded to the client immediately.  

Figure 4 describes the main rules used for shaping the 
traffic. First, data is released to the client if it is available 
before the WLAN NIC switches to power save mode, 
which is computed as the moment the last client request 
was received plus Ttimeout. Second, no object is delayed for 
more than a maximum amount of time, called MaxDelay 
in Figure 4. Third, whenever more than MinObjects are 
ready to be sent, they are forwarded to the client; 
MinObjects is always smaller or equal to the maximum 
number of outstanding requests from the client device. 
Finally, if enough data is buffered to justify the overhead 
of switching the WLAN to active mode, data is forwarded 
even when the other conditions are not satisfied. 

Oracle

Delay Data Release Release Data

N

N

N

N

Y

Y

Y

Y

CurrentTime – TimeOfLastRequest
< Ttimeout

TotalBytesReceived >= MinBytes

ObjectsReceived >= MinObjects

CurrentTime – TimeOfLastSend
> MaxDelay

 
Figure 4.  Rules for releasing data to the client 

When threads are assigned different priorities, all 
client threads have the same priority, which is higher than 
the priority of the oracle thread; all server threads have the 
same priority as well but their priority is lower than the 
oracle’s priority. The priority assignment was designed to 
support the traffic shaping rules. 

5. Experimental results 
This section presents the results of our experiments 

with using PAWP. First, we describe the experimental 
testbed and the tools used for measurements. Second, we 
describe several experiments that exercise different 
features of the proxy. Third, we present the results of 
using the proxy to access several popular web sites. Last, 

we compare results from experiments with the same sites 
using different browsers. 

5.1. Experimental testbed 
In all experiments, the client device is an IBM 

ThinkPad T20, with a 700 MHz Pentium III CPU and 512 
MB of memory, running Windows XP Professional. We 
selected this client device because its capabilities are in 
between those of a PDA featuring a 400 MHz Intel XScale 
processor and those of an ultralight notebook featuring 
1000+ MHz Intel or Transmeta processor.  

The client browsers used in these experiments are IE 
6.0.2600 and Mozilla 1.4. Both are configured to use 
HTTP 1.1 in both proxy and no-proxy configurations. In 
addition, we enabled request pipelining for Mozilla. For 
better repeatability, the browser is started with an empty 
cache in all the experiments presented in this section. This 
is similar to the methodology used in [12].  

The proxy is hosted by a dual-processor 933 MHz 
Pentium III with 512 MB of memory running RedHat 
Enterprise Linux AS rel. 3. The proxy connects directly to 
the Internet through the corporate firewall, i.e., the caching 
proxy in Figure 2 does not exist in our testbed. 

Client and proxy hosts use the same two DNS servers. 
In contrast to Windows XP, the default RedHat Linux 
configuration does not cache DNS entries. To provide the 
same advantage to PAWP, we added a caching-only DNS 
server to the proxy machine.   

The WLAN NIC is an Intersil PRISM3 PCMCIA card 
and it was selected because of the versatility and 
programmability of its ‘power’-related capabilities. The 
PRISM 3 interface consumes 848 mW in the Awake state 
and 25 mW in the Doze state. This interface switches to 
active mode when it detects pending frames in the access 
point. The WLAN access point is an Intel PRO/Wireless 
2011B and it is on the same FastEthernet LAN as the 
proxy. The latency between proxy and the access point is 
less than 1 ms.  

The client device uses two configurations for the 
WLAN interface. In both configurations, the interface 
listens to every beacon sent by the access point, i.e., every 
102.4 msecs. In the first configuration, typical for this 
interface, the driver switches the interface to power save 
mode after 100 ms of inactivity. This configuration is used 
only in the experiments when the device is connected 
directly to the Internet. In the second configuration, the 
driver switches the interface to power save mode after 
only 10 ms of inactivity (Ttimeout). This timeout value is 
used in experiments with and without proxy. 

The proxy releases data immediately in the first 10 ms 
(Ttimeout) after receiving a request and does not delay any 
object for more than 500 ms (MaxDelay). As typical 
retrieval latencies are higher than 10 ms, the proxy 
releases data in the first 10 ms after receiving a request 
only if the requested object or a fraction of it has already 
been received as a result of an earlier prefetch; in addition, 



   

immediately after receiving a request, the proxy can 
release (part of) the response to a previous request from 
the same client. The proxy handles object fragments only 
when configured to pipeline responses. In addition, the 
proxy releases data if two (MinObjects) or more objects 
are waiting to be sent to the client, or if the cumulative 
size of the waiting objects or object fragments exceeds 
4KB (MinBytes). 

For each experiment, we collect HTTP protocol traces 
on the client device using PageDetailer [16] and power 
measurements using the experimental testbed shown in 
Figure 6. To verify measurement accuracy, we correlate 
the two sets of measurements. 

PageDetailer displays information on each web page 
that has been opened since it was started. This information 
includes the amount of time it took to open the page, the 
total size of the page, the number of items comprising the 
page, and detailed information on each of these items. For 
each of them, PageDetailer lists the type (e.g., text, 
picture, java script, etc.), the amount of time it took to 
retrieve and display the item, the size of the item and the 
HTTP headers of the request and response message. Most 
important for our work, PageDetailer displays the 
download time of each item as a horizontal bar, scaled and 
proportional to the time it has taken to load the complete 
page, working from left to right. The horizontal bar is 
divided into separate activities, which are displayed in 
different colors: yellow for the connection setup time, blue 
for the response time, i.e., the time between when the 
HTTP request is sent until the first segment of the 
response is received, and green for the time needed to 
receive the additional data needed to fulfill the request. In 
a B&W image, yellow, blue and green translate into light 
gray, black and dark gray, respectively. 

 
Figure 5.  PageDetailer screenshot 
Figure 5 shows a PageDetailer screenshot after the 

download of the NY Times main page. In this experiment, 
the client device connects directly to the Internet. The 
connection setup times (yellow) and the object download 
times (green) represent a large fraction of the total 

download time. In contrast, in the PAWP experiments, 
connection setup times are negligible. Similarly, object 
download times are small due to the high bandwidth 
transfers between client and proxy. When using the proxy, 
the download time is dominated by the response times 
(blue). The proxy performs traffic scheduling by 
controlling response and download times.  

Figure 6 shows the power measurement testbed. The 
oscilloscope is used to sample the instantaneous power 
consumption of the WLAN interface. The sampled data is 
then sent to the data collection PC, which runs an 
oscilloscope application, thus enabling us to analyze the 
dynamic power consumption of the WLAN interface. The 
PC also collects data from the programmable Digital 
Multimeter to compute the average power consumption. 

Intersil PRISM3
PC Card R=0.53

Vdd=3.3V

Digital
Multimeter
(HP3458A)

Data 
collection

PC

Oscilloscope 
(VellemanPCS64i)

+ VR -
Wireless Client
(IBM ThinkPad
w/ Windows XP)

PC Card Extender

Figure 6.  Testbed for power measurements 

5.2.  Proxy configuration 
PAWP has several features that can be enabled or 

disabled independently: traffic shaping, prefetching of 
embedded objects, response pipelining, and request 
pipelining, and assigning different thread priorities. In 
these experiments, when response pipelining is enabled, 
the oracle is signaled for every 4KB of data received. For 
request pipelining, the maximum number of pending 
requests per connection is set to four. 

Table 1. Costs and benefits of proxy features 
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The experiments presented in this section attempt to 
quantify the impact of some of these features on the proxy 
performance. The first set of experiments uses no proxy. 
The second set uses PAWP with all the features disabled. 
In the third set of experiments, traffic scheduling and 
prefetching of embedded objects are enabled. In the fourth 
set of experiments, request and response pipelining are 
enabled as well. In the fifth set of experiments, all the 
proxy features are enabled, i.e., in addition to the features 



   

enabled for the previous set of experiments, the client, 
server, and oracle threads are assigned different priorities. 
For these experiments, we use the main page of the NY 
Times, which varies between 190kB and 270 kB and uses 
between 45 and 80 embedded objects.  The results of the 
experiments are summarized in Table 1. The experiments 
show that each set of features contributes to the reduction 
of download latency and energy. However, these results 
are preliminary since they are based on only one page. 

5.3. Proxy performance 
This section describes experiments with downloading 

the main page of several popular sites. We selected the 
main pages because, in most cases, they are larger and 
more complex than pages for individual articles, products, 
or subdomains; the difference in size is due mainly to the 
additional embedded objects. A typical NYTimes article is 
between 168kB and 210 kB and uses between 28 and 56 
objects. In addition, interactions with news and e-
commerce sites always start with the main page. Table 2 
summarizes the results of experiments with the IE 
browser. For each site, the total size of the page and the 
total number of objects, which include main page, 
embedded objects and pop-up ads, are given, as listed by 
PageDetailer. In these experiments, all the PAWP features 
analyzed in the previous section are enabled. Although our 
selection is biased towards more complex web pages, we 
believe that the wide range of page sizes and embedded 
objects used in these experiments make the results in 
Table 2 representative for a large range of web pages.  

Table 2. Proxy performance with IE 
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2.83 (-54%) 

9.08 
8.58 (-6%) 

56.0 

americanexpress 
42kB/25 

Direct 
Proxy 

2.11 
0.80 (-61%) 

3.42 
3.05 (-11%) 

12.3 

chase   
125kB/31 

Direct 
Proxy 

1.38 
1.10 (-21%) 

5.12 
3.34 (-35%) 

24.4 

ebay   
112kB/74 

Direct 
Proxy 

5.77 
2.62 (-55%) 

10.80 
10.12 (-6%) 

10.4 

citibank  
135kB/51 

Direct 
Proxy 

4.19 
2.51 (-40%) 

15.18 
7.53 (-50%)  

8.9 

amazon   
91kB/51 

Direct 
Proxy 

2.69 
1.35 (-50%) 

5.40 
5.38 (0%) 

16.9 

bbc   
61kB/31 

Direct 
Proxy 

2.10 
1.05 (-50%) 

3.56 
3.37 (-5%) 

17.1 

sigmobile 
74kB/34 

Direct 
Proxy 

0.98 
0.78 (-21%) 

3.24 
2.33 (-28%) 

22.8 

In the ‘Proxy’ experiments, the WLAN interface and 
PAWP are configured as previously described. In the 

‘Direct’ experiments, the WLAN interface is configured to 
received beacons from the access point every 102.4 ms (as 
in the ‘Proxy’ experiments) but the timeout parameter 
(Ttimeout) is increased to  100 ms, which is the typical value 
seen in commercial WLAN cards.   

The results are computed by taking the average of 
seven experiments. The experiments were run in the 
evening, and all the experiments using the same site were 
run in a batch, alternating ‘Direct’ and ‘Proxy’ 
experiments to minimize the effect of changing loads on 
web servers or in the Internet. Each batch of experiments 
takes approximately 15 minutes to complete. 

In these experiments we report the total energy 
consumed by the card to perform the download, as 
download times are different. In all the experiments, using 
PAWP reduces download energy by up to 55%. Note that 
in contrast to IE, PAWP implements request pipelining.  

In addition to the two sets of downloads summarized in 
Table 2, we run experiments with the WLAN interface 
configured as in the ‘Proxy’ experiments, i.e., using a 
10ms timeout, but with the client device configured for 
direct access to the Internet. In these experiments, 
download times were between 25% and 60% higher than 
in the ‘Proxy’ experiments while the energy reductions 
were negligible. This demonstrates that reducing the 
timeout of the WLAN interface alone, without scheduling 
the traffic, does not yield any practical power benefits.  

Table 3. Proxy performance with Mozilla 
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cnn   
252kB/84 

Direct 
Proxy 

3.30 
1.37 (-59%) 

4.63 
3.88 (-16%) 

54.3 

nytimes 
190kB/45 

Direct 
Proxy 

3.29 
1.11 (-66%) 

6.85 
3.20 (-53%) 

23.3 

washingtonpost 
504kB/67 

Direct 
Proxy 

4.99 
2.20 (-56%) 

7.34 
7.01 (-5%) 

44.4 

To measure the benefit that request pipelining in the 
proxy can provide to browsers that have this feature, we 
run experiments for the first three sites (CNN, NYTimes, 
and WashingtonPost) using the Mozilla browser. Mozilla 
was configured to use request pipelining in both ‘Direct’ 
and ‘Proxy’ experiments. The proxy was configured to 
limit the number of pending requests on a connection to 
four, while for Mozilla we use its default configuration 
parameters.  The results are presented in Table 3.  

Experiments with both Mozilla and IE show energy 
savings and download time reductions. However, the 
results are site dependent. This is partly because the IE and 
Mozilla experiments were run on different dates, which 
explains the differences in page size and complexity.  

One other important difference between IE and 
Mozilla is the number of connections between browser 
and proxy. IE opens at most two connections while 



   

Mozilla opens up to four. This makes Mozilla more 
resilient to downloads of pages with embedded objects 
hosted on slow sites. IE performance degrades 
dramatically in these situations, as one or both connections 
exhibit the head-of-line blocking.  
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Figure 7.  Dynamic power traces (eBay.com) 

To explain the significant energy savings in the 
‘Proxy’ experiments, we show in Figure 7 two dynamic 
power traces collected with the oscilloscope application. 
The traces were collected while downloading eBay.com in 
‘Direct’ and ‘Proxy’ experiments, respectively. The traces 
represent the entire download process which lasted 8.0 
secs and 6.6 secs in the ‘Direct’ and ‘Proxy’ case, 
respectively. The contrast in power dynamics is striking. 
In the Direct case the WLAN stays in the Awake state 
almost continuously due to the long timeout value of 100 
msecs. This allows packet inter-arrival times of less than 
100 msecs to cause the WLAN to reset its timeout timer 
and effectively keep the WLAN in the Awake state for an 
unnecessarily long time while waiting for more data. In 
the ‘Proxy’ case the timeout value is only 10 msecs, thus 
allowing the WLAN to drop out of the Awake state much 
faster while the proxy server continues to prefetch more 
data. Then the next time the WLAN wakes up, it rapidly 
depletes the buffered data in Access Point and quickly 
returns back to the Doze state. This behavior may be seen 

in the last figure, which shows an expanded view of a 
0.85s slice of the power trace. 
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Figure 8.  Energy consumption vs. throughput 

We observed that for most sites, there is a correlation 
between energy savings and the download throughput (5th 
column in Table 2.) Figure 8 shows that the lower the 
application-level throughput is, the larger the energy 
savings are. We believe the correlation stems from the fact 
that the lower the client-server bandwidth is, the longer is 
the packet inter-arrival times and thus the more time the 
WLAN idles in the Awake state in the ‘Direct’ case, thus 
wasting more energy. This longer inter-arrival time 
doesn’t affect the ‘Proxy’ case where the client WLAN 
doesn’t “see” these inter-arrival times due to the PAWP 
traffic scheduling. The straight line in the figure is a linear 
fit to all but one of the IE data points. The exception, 
which is the WashingtonPost main page, has an average 
object size (7.5kB) much larger than the other sites, which 
vary between 3.7kB for Chase and 1.5kB for eBay. We 
suspect that the energy savings for pages with larger 
objects are less sensitive to throughput because larger 
objects require multiple roundtrips to download, which 
naturally generate longer packet inter-arrival times. We 
plan to investigate this hypothesis in our future work. 

To summarize, our results show that a simple 
prototype can reduce the energy consumption of the 
WLAN interface by more than 50%. Over time we can 
expect that improvements in processor power management 
and display technologies will modestly increase the total 
fraction of power consumed by the wireless subsystem.  
Application aware software can leverage processor 
frequency scaling. Other hardware technology 
improvements will also reduce the power consumed by the 
processor.  Displays based on Organic LEDS (OLEDs) are 
becoming available in larger sizes and are expected to be 
used in mobile computers including laptops.   OLED 
displays are expected to consume less power; moreover 
their power consumption depends on the number of lit 
pixels.  This property allows the designer of the user 
interface more flexibility in reducing the power consumed 
by the display [11].  The advent of longer range wireless 
technologies such as 802.16 may increase the power 



   

consumed by the wireless subsystem as well.  Therefore 
we believe that the technology described in this paper will 
be even more applicable in the future. 

6. Related work 
We believe that our work is the first to take advantage 

of the application level knowledge at the proxy server to 
reduce the energy consumption of the WLAN interface by 
scheduling the traffic directed to the wireless client.  Two 
categories of work are closely related to ours: research on 
using proxy servers to reduce web latency, and research on 
reducing the energy consumption of WLAN interfaces.   

Proxy servers have been developed for many purposes.  
Most commonly, proxies are used for web caching and as 
firewall components.  Proxies are also used for 
transcoding content to better suit the capabilities of mobile 
client devices.  The idea of pre-fetching web pages to 
reduce web latency was previously explored.  The authors 
of [15] found that local proxy pre-fetching could 
significantly reduce web latency and that pre-fetch lead-
time is an important factor in the performance of pre-
fetching. A survey of 14 related studies on web pre-
fetching can be found in [7]. More recently, [4, 21] 
propose session-level techniques for using transparent 
proxies to reduce browsing latencies over 3G wireless 
networks. Our work focuses on reducing the power 
consumption of WLAN interfaces by using explicit 
proxies to prefetch embedded objects. 

Chandra et al. [5, 6] investigate an application-specific 
protocol for reducing the network interface power 
consumption for streaming media applications. Their 
approach is limited to streaming media applications and 
requires proxies at both ends of the wireless LAN, while 
our approach can be applied to any application that uses 
HTTP traffic without any client side modifications. 

Many techniques that reduce the energy consumed by 
the WLAN interface can be found in literature.  The power 
saving mode of IEEE 802.11 is based on the work of 
Stemm and Katz [24], which shows that leaving the 
WLAN card in sleep mode whenever possible can 
dramatically reduce the power consumption of the device.  
At the transport level, the “Bounded Slowdown Protocol” 
[14] introduces a power saving mode that dynamically 
adapts to network activity and guarantees that a 
connection’s round trip time does not increase by more 
than a preset factor. At the MAC level, Qiao et al. [20] 
propose to combine Transmit Power Control and PHY rate 
adaptation to pre-compute an optimal rate-power 
combination table for a wireless station.  Gundlach et al. 
[8] describe a transport-level scheduling policy designed 
to burst packets to clients.  This approach is similar to ours 
to the extent that it also enables periodical releasing of 
data.  However, as our approach employs HTTP-level 
information, it is better able to optimize data delivery to 
the client. Our approach is capable of handling more 

complex situations, such as web pages with a large 
number of embedded objects while theirs cannot.   

At the system level, Shih et al. [23] introduce a 
technique to reduce idle power, which is the power that a 
wireless LAN-enabled PDA phone consumes in “standby” 
mode.  Their approach is to shutdown the device and its 
wireless card when the device is not being used.  A 
secondary, lower-power wakeup mechanism is used to 
wakeup the device only when an incoming call is received.  
Simunic et al. [22] describe system-level power 
management strategies that turn the network interface off 
completely during idle periods to reduce its power 
consumption.  At the application level, Barr and Asanovic 
[2] explore the energy efficiency of different compression 
and decompression algorithms and show overall energy 
reductions when an energy-aware data compression 
strategy is applied.  The STPM algorithm proposed in [1] 
adaptively manages the power consumption of the WLAN 
card using knowledge from application, network interface, 
and mobile platform. For real-time applications, 
Poellabauer and Schwan [19] integrate the power 
management of the WLAN interface and processor with 
application-level knowledge to increase idle periods and 
decrease the number of switches between power modes. 

The work presented in [18] employs an idea similar to 
ours to manage hard disk power consumption by 
suggesting the use of aggressive pre-fetching and the 
postponement of non-urgent requests in order to increase 
the average length of disk idle phases.   

7. Conclusions and future work 
In this paper we first described why existing 

approaches and work on 802.11 power management do not 
sufficiently address power management when network 
activity is present.   We then presented PAWP, a web 
proxy that schedules network traffic so that the wireless 
interface can be turned off for longer periods of time while 
the proxy is prefetching and buffering data on behalf of 
the wireless client.  The proxy was implemented and a test 
bench for making power measurements was created.  Our 
implementation and experiments validate the concept of a 
web proxy for power management. Results on popular 
web pages showed reductions of more than 50% in energy 
consumed by the WLAN interface.  

Our experiments show that a simple approach, which 
switches the WLAN interface to power save mode after 
shorter timeouts, without proxy support, does not yield 
any practical benefits. Implementing a power management 
proxy at the HTTP level rather than the TCP level allowed 
us to exploit traffic information that is available only in 
the application layer. Given the trend of growing number 
of applications and middleware based on HTTP, we 
believe that application-dependent HTTP proxies for 
power management will be an attractive option for 
lowering the energy consumed by the WLAN interface.   



   

To our surprise, we also achieve noticeable reductions 
in download latency with PAWP.  In addition to improving 
the user experience, this may enable further energy 
savings in other subsystems, such as processor and 
display. One can expect the reductions in download 
latency to diminish as the internet backbone becomes 
faster and browser technology improves. However, we 
expect the benefits of improved system predictability to 
continue to enable better energy management.  

We were also surprised by the impact of browser 
technology and web site design on PAWP efficiency. We 
believe that our work on PAWP has identified areas for 
improvement in browser and web page design. For 
instance, pages should be designed to facilitate object 
prefetching and web servers should support request 
pipelining efficiently, especially for sites targeted towards 
mobile clients. Furthermore, the more connections the 
browser opens to the proxy, the more resilient the transfers 
between the two are.  

We plan to interleave disparate http applications and 
study the impact of simultaneous applications on the 
client. In addition, we plan to experiment with multiple 
WLAN clients. As described in Section 2, a station waits a 
short random delay before it sends its first poll message to 
the base station when frames for multiple stations are 
buffered in the base station during the previous beacon 
interval. As a result, multiple stations could be idling in 
the Awake state. We plan to determine how often this 
situation arises and search for a solution, if necessary. 
Over time we will study how the requirements on the 
PAWP architecture scale to typical enterprises, where 
multiple stations connect to a single access point.  

 PAWP was designed for low latency 802.11-based 
WLANs. Although some of its elements may provide 
benefits when used with other wireless technologies, such 
as CDMA2000, others may not. Another aspect to pursue 
is the benefit of the PAWP architecture for faster wireless 
networks such as 802.11g, 802.16, and ultrawide band. 
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