
KLEM: A Method for Predicting User Interaction Time and
System Energy Consumption during Application Design

Lu Luo and Daniel P. Siewiorek†

School of Computer Science and †Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213 USA
{luluo, dps}@cs.cmu.edu

Abstract

The impact of user interactions on the electric
energy consumption of a portable computer system
and on user efficiency is often not obtainable until
after the software application is implemented and
deployed on a specific hardware platform. In this
paper, we present the Keystroke-Level Energy Model
(KLEM), a method that can predict the user time and
system energy consumption it will take to perform an
interactive task at run time during the phase of
application design. KLEM is based on the Keystroke-
Level Model (KLM), a psychological theory of human
cognitive and motor capabilities that can predict
execution time for a skilled user. We first create a
design storyboard and define a set of tasks whose
KLMs are to be constructed. We then construct KLEM
of each task by correlating system activities to the user
actions modeled in the corresponding KLM. We obtain
the energy profiles of system activities from running a
set of user interaction benchmarks on the target
hardware platform. To verify KLEM, we conducted a
user study of 10 participants on executing an
information query task using eight different methods.
The user time and system energy of the participants
were measured on two popular handheld platforms: a
Windows Mobile iPaq and a Palm OS Tungsten. Our
experimental results show that KLEM has an average
prediction error of 5.6% and 8.8% on user time, and
4.4% and 8.4% on energy consumption on the two
platforms, respectively.

1. Introduction

Human users today have a wide variety of methods
to interact with handheld and wearable systems. These
systems, enabling the user to access information
ubiquitously, are characterized by their small form

factors with novel, heterogeneous user interaction
modalities. While the current state-of-the-art in
interface devices for portable systems include pen-
based touch screen and hardware buttons, wearable
computers add head-mounted displays, touch pads,
trackballs, and Gyroscopic or Twiddler mice. Speech
recognition, position sensing, and eye tracking are also
becoming common input modalities. In the future,
stereographic audio and visual output will be coupled
with 3D virtual reality information [17]. This
heterogeneity of interaction modalities makes it
difficult to predict and make decisions on important
run time performance attributes at earlier design stages
before the application is actually implemented,
deployed, and user-tested.

Energy consumption has been one of the most
important design considerations for handheld and
wearable systems. Most tasks performed on handheld
and wearable systems are highly interactive. The
unavailability of software application during design
time and the large amount of time and effort needed to
conduct user studies are substantial barriers to
achieving accurate prediction of how the user would
actually interact with the computer and of the resulting
user time and system energy consumption.

In this paper, we present the Keystroke-Level
Energy Model (KLEM), a quantitative analysis method
to address the problems stated above. Our approach is
based on the Keystroke-Level Model (KLM), a
cognitive modeling technique that predicts the time it
takes a user to perform a task with a given method on
an interactive computer system [4]. In KLM, task
execution time is estimated by listing the sequence of
elementary perceptual, motor or cognitive actions, i.e.,
operators, and then summing the times of the
individual operators. KLM aggregates all perceptual
and cognitive function into a single value for an entire
task, using a heuristic. KLM has been used for almost

three decades by Human-Computer Interaction (HCI)
practitioners as a reliable and valid means of modeling
human performance. In a previous work [15], we have
shown that KLM can be used to produce accurate task
execution time prediction on handheld systems. We
now extend KLM into KLEM, which integrates the
contextual system energy consumption information
with the user interaction model of KLM, and predicts
both system energy consumption and user interaction
time.

The rest of the paper is organized as follows. In
Section 2, we discuss the related work on user
interface and software energy consumption. In Section
3, we introduce background information on KLM and
explain why it is a suitable approach to energy
estimation at design time. In Section 4, we explain the
process of constructing KLEM. In Section 5, we
describe the experimental setup for the task time and
energy measurements. In Section 6, we present and
discuss the results of a user study, and verify the
KLEM predictions against the user study results.
Finally we conclude the paper and propose future work
in Section 7.

This paper makes two major contributions: first, a
methodology based on well-established HCI theory
and practices is introduced to make design-time
prediction on interactive task energy consumption;
second, the energy efficiency of different user
interaction methods on the same task is compared and
analyzed. We show when using different interaction
modalities, the energy consumption can vary by a
factor of three in achieving the same user goal.

2. Related Work

Research that recognizes the significance of human
interaction and user interface design on user
performance and system energy consumption is
relatively new. Most existing approaches focus on run-
time energy management techniques rather than
design-time energy prediction. The user interface
events for dynamic voltage scaling were discussed in
[14]. Techniques were proposed to aggressively
power-manage the system during user idle periods
based on user-delay predictions [21]. Low power
techniques for interface devices such as displays were
reported in [7], [8], [11], and [16].

An emulation-based energy model for the Palm OS
was given in [3] to characterize system energy
consumption, a. The limitation of this approach is that
an emulator running on a PC can only accept desktop
mouse events, which do not reflect the real pen and
key user interface behaviors on the Palm device,

especially when applications are used interactively.
There has been a large body of research focusing on
characterizing and modeling energy consumption of
individual hardware components, embedded operating
system and software [2, 9, 18, 19]. Those approaches
either failed to provide higher level views of system
energy behavior, or lacked the generality to be applied
on consumer platforms and applications.

The only existing work that is closely related is the
characterization of energy consumption of different
graphical user interface (GUI) features on handheld
computers presented by Zhong et al [20, 21, 22]. They
pointed out the importance of idle time and user
productivity in system energy efficiency, and
suggested several energy efficient GUI design
techniques in [13]. Another work of theirs
characterized the energy requirements and overheads
imposed by various human sensory and speed limits
[22], but did not provide a comprehensive way to
understand how these human aspects could be
integrated during the actual user interactions.

3. Why Keystroke-Level Model

The form factors of handheld/wearable computers
have generated diverse and novel user interaction
modalities. The most common are pen-based touch
screen interface inherited from the desktop graphical
user interface (GUI), handwriting recognition such as
Graffiti™, and hardware navigation buttons. In
addition, speech recognition and synthesis are gaining
popularity. These user interaction modalities have
brought variety to the design of handheld/wearable
applications, and we are interested in predicting their
impact on the human performance and system energy
consumption of interactive user tasks. The goal is to
create quantitative, accurate prediction during the
application design phase. However, how a human user
actually perform the task, i.e., the steps the user takes
and the cognitive delays between consecutive steps
often remain unknown without the expense of
observing and recording the target application on real
hardware executed by real users.

Cognitive engineering models view the human
mind as another information-processing system – the
Model Human Processor [5] that interacts with the
computer system. The KLM is one of the cognitive
modeling techniques that predicts the time it takes an
expert user to perform an error-free task using a given
method on an interactive computer system [4]. In
KLM, task execution time is estimated by listing the
sequence of elementary perceptual, motor or cognitive

actions, i.e., operators, and then summing the times of
the individual operators.

The original KLM had four physical-motor
operators: K represents pressing a key or a button, P
represents pointing with the mouse to a target on the
display, H represents moving hands to the home
position on the keyboard or mouse, and D represents
drawing lines using the mouse; one mental operator: M
is a heuristic to incorporate mentally preparing for a
task; and one system response operator: R for system
response where the user waits for the system. For each
operator, there is an estimation of constant execution
time set by previous psychology and HCI studies. An
exception is that the R operator must be estimated by
the designer, and only include the time that the user
must wait for the system after any M operator has
completed. Additionally, there is a set of heuristic rules
to account for mental preparation time.

KLM has been used and validated repeatedly by
academics and practitioners since it was introduced,
been applied to a significant amount of interactive
tasks in areas such as word processing, spreadsheets,
graphic, and video games [4, 10], and shown to
provide good predictive accuracy. Our previous work
[15] showed that KLM can provide accurate human
performance predictions for pen-based user interfaces
on handheld devices.

4. Keystroke-Level Energy Modeling

In this section, we first present the overall process
of predicting the user time and system energy
consumption of a given task using KLEM. We then
describe how KLM operators are integrated to energy-
consuming system activities based on the contextual
user interaction information of the task. The energy
profiles of system activities are obtained by running a
set of user interaction benchmarks on the target
platform.

4.1. Overview of KLEM

Given: A task, the methods used to execute the task,
the proposed interface design, and a target platform.
Here we define a task as a series of interactive
operations a user performs on a computer system to
achieve a certain goal, such as schedule a meeting,
inquire about store hours, or changing the system
settings.

Predict: The user time and system energy an expert
user will take to execute the task using the system,
providing the user uses the method without error.

A flowchart of the modeling process is shown in
Figure 1. The resulting user-energy performance
prediction consists of task execution time (User Time
Prediction) and task energy (Energy Prediction). The
task execution time is obtained by running the
Modeling Process to produce the energy prediction,
which produces the KLM of the task. The Energy
Characterizing Process obtains the necessary Energy
Profiles by running the UI Benchmarks on a Target
Platform. The KLM contains the information (i.e.
ACT-R Trace and Visualization, to be discussed in
Section 4.2) that is needed in the Mapping Process.

Figure 1. The flowchart of constructing a KLEM

4.2. Modeling Process

In the Modeling Process, the KLM of a given task
is constructed. Although the KLM enjoyed a rich
history in HCI because of its validity and predictive
value, the cost of learning and the complexity of
constructing correct models remained too high to
justify the benefits of predicting task execution time.
Fortunately, designers without much expertise in KLM
can use CogTool [6,12] to generate predictive
cognitive models of skilled user performance simply
by demonstrating their task on storyboards of the new
design. The predictions made by CogTool are based on
KLM, and are generated with a computational
cognitive engine called ACT-R [1]. For mobile
devices, CogTool currently provides functionality to
simulate interaction using a fingertip or stylus,
therefore can predict performance of platforms with
hardware buttons or pen-based input. The latest
version of CogTool will support Hear and Say
behaviors, which facilitates our future work of
modeling speech based interactions.

To make a prediction, the designer first needs to
create a Storyboard for the interface design upon
which tasks will be performed. A storyboard contains a
series of Frames that represent the changes of the
display between user operations. A frame can be a
sketch of the proposed user interface design. Once the
design storyboard has been created, the set of Tasks

needs to be defined. Then, the designer needs to
demonstrate on the storyboard the steps a user would
perform to accomplish a task. The demonstration is
recorded to a script for CogTool to generate
predictions.

A human user manipulates an application using
GUI widgets. In CogTool, a Widget is represented as a
“hot-spot” in a frame to indicate an interactive area on
the actual physical device. Interactive widgets that are
currently supported by CogTool include Button, Check
box, Radio button, Textbox, Pull-down list, List box,
Menu (header, submenu, and menu item), and
handwriting input area (e.g. Graffiti™ in Palm OS and
Soft Input Panel (SIP) in Windows Mobile). The KLM
P operation is relevant to layout of Widgets defined in
the storyboard, based on Fitts’ Law [5].

As an example, a piece of the model trace created
in CogTool is shown in Figure 2, showing the
activities ACT-R goes through to make the time
prediction. The ACT-R trace contains the contextual
information necessary for the construction of KLEM.
For instance, the model user executes a MOTOR
activity at 0.683 second, which taps the device display
at the coordinate (278.0 177.0).

…

 0.400 MOTOR INITIATION-COMPLETE
 0.400 PROCEDURAL CONFLICT-RESOLUTION
 0.683 MOTOR MOVE-CURSOR-ABSOLUTE #(278.0 177.0)
 0.683 Storyboard transitioning to frame "List1"
 0.683 PROCEDURAL CONFLICT-RESOLUTION
 0.733 MOTOR FINISH-MOVEMENT
 0.733 PROCEDURAL CONFLICT-RESOLUTION
 0.768 VISION Encoding-complete LOC1-0 NIL
 0.768 PROCEDURAL PRODUCTION-SELECTED WAIT-FOR-SYSTEM-5
 0.768 PROCEDURAL BUFFER-READ-ACTION GOAL

…
 0.768 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.768 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 0.818 VISION CHANGE-STATE LAST NONE PREP FREE
 1.324 COGTOOL Restoring display at end of system wait (0.556)

…

Figure 2. An example ACT-R model trace created
by CogTool

The execution of a MOTOR in the model (note that

the model simulates a human user) is a trigger to a GUI
event that the computer system needs to respond to
(therefore consume energy). In the example trace
above, at 0.683 second, the MOTOR causes the
storyboard to transition to the next frame, which
represents a display update in the computer system.
Similarly, at line 0.768 PROCEDURAL PRODUCTION-SELECTED

WAIT-FOR-SYSTEM-5, the model user starts waiting for the
system until the system restores at 1.324 sec. This
duration of waiting is considered as a system response
time operator in KLEM. The PROCEDUAL activities
during the system response time represent the thoughts
the model has when performing the task and the
VISION activities represent the eyes seeing objects on
the frame. The system response time can be caused by

any sort of computation or communication job that the
system must finish before the user can continue
operation.

4.3. Energy Characterizing Process

We use a measurement based approach to obtain
the energy profiles of KLEM operators by running a
set of benchmarks on the target platform. This
approach is suitable when the target platform is already
available at the time of application design. If the target
platform is not available for benchmarking, the energy
profiles can be obtained from the manufacturer
hardware datasheets or data from literature. In this
paper, we focus on the measurement-based approach
only.

In an ACT-R trace, some activities such as the
MOTOR and WAIT-FOR-SYSTEM cause non-idle
system activities thus extra energy consumption, while
during other activities such as the VISION and
PROCEDUAL the system is usually idle waiting for
user operations. The energy consumption of non-idle
system activities depend on the hardware platform,
operating system, and application software. It also
depends on the particular interaction method. For
instance, a MOTOR activity can be tapping, dragging,
key pressing or releasing, or a handwriting stroke.
Besides, a WAIT-FOR-SYSTEM can be of any length,
depending on the details of a design.

We create a set of benchmarks of interaction
activities performed on common GUI widgets. Table 1
lists the benchmarks grouped by similar functions:
Selection, Navigation, and Text Input. The operation(s)
user can perform on each widget and the
corresponding system activities are also listed.

Table 1. Interaction activity benchmarks
Widget Operation System Activity

Selection
Button Tap Small, Medium, Large
Checkbox Tap Small
List box Tap Small
Dropdown list Tap+ Tap Small
Radio button Tap Small
Menu Tap Small, Medium, Large
Hardware button Tap Small, Medium, Large

Navigation
Tab Tap Medium, Large
Scrollbar Tap/Drag Small, Medium, Large
Slider Tap/Drag Small

Text Input
Soft keyboard Tap Small
Handwriting Stroke Medium, Large

In the Selection group, the widgets Checkbox, List
box, Dropdown list, and Radio button are usually used
to make a selection among several items that the user
operates by tapping the widget. Note that the

Dropdown list widget requires two taps to perform a
selection, and one can use tapping and dragging to
operate the Scrollbar and Slider widgets. After the user
selects an item, the application records the selection,
updates a small area of the display to look responsive
to user operation, and goes back to the waiting/idling
state for the next user operation. We define this kind of
system activity “Small”. As for “Medium” and “Large”
system activities, for example, if a “next” button is
pressed to open a new window, the consequent system
activity is defined “Medium”, while an “open” button
that reads a 1MB file is considered “Large” system
activity. At this point we can only use rough estimation
instead of accurate quantification.

We assume that during the task execution, the
system runs in normal operation mode with no special
power management techniques. For the tasks we
studied in this paper, the hardware components
involved are processor, memory, and display. We
define a simple state machine of system activities with
the corresponding power level of each state in Figure
3. The power levels Pi and Pb are obtained from the
interaction activity benchmarks.

Idle
(Pi)

Busy
(Pb)

Figure 3. A simplified state machine of system
activities. If other hardware components are

involved during user operation, more states should
be added.

Figure 4. Energy profile of a “button press”

followed by a display update

Figure 4 depicts the energy profile of a “button
press” (Tap) operation followed by a full display
update (e.g. open a new window, load a picture)
measured on one of the handheld devices we studied.
The values along the y axis are the instantaneous
power level at time t, and the system energy
consumption during any time interval (t1, t2) is the area
under the power trace between t1 and t2. In Figure 4,
the smaller oval circle indicates the energy profile of
the Tap operation and the larger oval indicates the

energy profile of the display update activity. The lower
power level (e.g. 3.6 sec to 3.7 sec) is the Pi in the Idle
state, and the higher power level (e.g. 3.9 sec to 4.1
sec) is the Pb in the Busy state.

We define the energy consumption of a KLEM
operator the sum of the KLM operator energy and the
system activity energy it invoked. Let S be the set of
power states of the system activity following an
operator, Ps be the power level of each state, Ts be the
time the system stays in state c, then the system energy
consumption triggered by this operator Eo can be
predicted using the following formula:

∑
∈

=
Ss

sso TPE (1)

To achieve accurate system energy prediction,
quantitative characterizations of the system activities
invoked by KLEM operators must be obtained. We
already have the power profiles during system
activities defined in Figure 3, and we still need the
system activity time Ts. We create another set of
benchmarks that measure the time it takes a target
platform to perform common system activities such as
opening a new window, writing to a file, or searching
an item in database. These benchmarks are no different
than other system performance benchmarks. Due to
space limitation, we do not elaborate on this topic
because there are enormous research and practices on
performance analysis and benchmarking. We used two
simple benchmarks to measure the display update time
to construct the models in this paper.

4.4. Mapping Process

The Mapping Process takes the CogTool predicted
total task time Ttask, the storyboard and the ACT-R
trace that contains the contextual system activity
information, and the KLEM operator energy profiles
defined in the Energy Characterizing Process, and
produces the task energy prediction. Let O be the
sequence of KLEM operators in the task, To be the
time of operator o, the total system energy
consumption during idle state Eidle is:

)(∑
∈

−=
Oo

otaskiidle TTPE (2)

The total task energy can be predicted using:

∑
∈

+=
Oo

idleotask EEE (3)

5. Experiment Setup

We chose two popular handheld platforms to

validate the KLEM predictions on user time and

system energy. The specifications of devices are
summarized in Table 2.

We removed the battery from both devices to
eliminate the current draw of battery charging. The
devices were connected directly to the external power
supply and the input current Ii was obtained by
measuring the voltage Vi across a 1 Ohm resistor R
connected in series with the device. The voltage value
is sampled at 10 KHz using a high speed Data
Acquisition Card (DAQ) PCI-9820. For both devices,
we ignored the minor fluctuation in the supply voltage
Vs and assumed it to be constant. The instantaneous
electric power P that a device consumes at a given
time is:

isisis VVRVVIVP ×=÷×=×= (4)
When choosing the tasks to validate the KLEM

model, we kept in mind two principles. First, the
operations required to accomplish the tasks should
cover as many different interaction methods available
in the target platforms as possible. Second, for
comparison purposes, the same goal should be
accomplishable by using different interaction methods.
We selected a commercial off-the-shelf tour guide
application named ChoiceWay™ Guides (CWG) for
New York City because it has releases for both
Windows Mobile and Palm OS.

Table 2. Specifications of target platforms
 iPaq Tungsten
Vendor HP PalmOne
Model Rx1955 T5
SoC 300MHz Samsung

SC32442
416MHz Intel XScale

Storage 32 MB built-in RAM
64 MB Flash ROM

215MB storage capacity
160MB internal flash drive

Display TFT color LCD
64K colors
240 x 320 (QVGA).

TFT color display
64K colors
320 x 480

OS Windows Mobile 5.0 Palm OS v5.4
Figure 5 shows four screenshots of the CWG

application interface on the two platforms we used. For
simplicity, we built the storyboard for CogTool using
the screenshots since we already have the software. In
reality where KLEM is used during design time,
modelers can use sketches of the proposed interface
design to build the storyboard.

All tasks we modeled have the same goal of finding
the opening hours of the Metropolitan Museum of Art
(MET). There are two different ways in CWG to find
this information and each can be considered as a
different interface design. One way is to navigate the
map of Manhattan area as depictured in Figure 5(a).
The user can zoom in the map by tapping one of the
several areas delimited by the four boxes. When the
street map of the MET neighborhood is displayed, the
user can view the open hour information by tapping

the dot representing the location of MET on the street
map. The other way is to display a list of all New York
museums, and choose MET from this list to display the
open hour information. There are various methods to
select MET from the list: searching or browsing. For
the iPaq, the user can tap the letter “M” on the
software keyboard at the bottom of the museum list as
shown in Figure 5(b); tap the trough of the list’s
scrollbar until MET can be viewed in the list; tap the
down arrow; tap the down arrow and hold it until the
MET item appears in the current list window; drag the
scrollbar; and press the hardware navigation button at
the bottom of the device to browse down the list.

(a) The map navigation interface of CWG for

WM5 and PalmOS5

(b) The scroll list interface of CWG for WM5

and PalmOS5
Figure 5. Screenshots of CWG software

For the Tungsten, the user can input the letter “M”

on the software keyboard; tap the down arrow: gesture
“M” in the Graffiti area at the lower part of the device
display, and press the hardware button to browse down
the list.

The scrollbar in the Tungsten does not have the
same design as the iPaq and cannot be manipulated
using dragging or tapping the trough. Although one
can invoke the soft input panel (SIP) at the bottom of
the iPaq screen, the handwriting area will obstruct the
lower part the list, which makes it unnatural and error-
prone to use. Therefore handwriting recognition in
iPaq that corresponds to the Palm Graffiti input is not
used in these tasks.

6. User Study and Experimental Results

To verify the KLEM prediction of user time and

system energy, we performed a user study on ten
participants (six male, four female), all are engineering
major undergrad or graduate students who are familiar
and comfortable with using computers. Each
participant was first asked to practice all the tasks
under the author’s instruction as a training session. The
participants were given adequate time to practice the
tasks until s/he became very familiar with the tasks
without making errors or unnecessary pauses during
the task execution. This conforms to the central ideas
of KLM. The participants were then asked to perform
all 12 tasks on the two devices as the testing session.
The device power supply traces with corresponding
time stamps of each task were measured during the
testing session, as described in the previous session.

Time Prediction - iPaq rx1955

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Map Nav List Key List
Trough

List Arrow List Tap
and Hold

List Drag List Hw
Button

Ti
m

e
(s

ec
)

Avg User Time

Model Time

Time Prediction - Tungsten T5

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Map Nav List Key List Graffiti List Arrow List Hw Button

Ti
m

e
(s

ec
)

Avg User Time
Model Time

Figure 6. Comparison of measured user time and

model predicted time. The bars represent
observation means and the error bars on the user

data indicate the 95% confidence intervals.

The average measured user times versus the
predicted model times is shown in Figure 6. The time
prediction errors against the average measured user
time for the iPaq tasks are between 0.1% and 11.7%
(average 5.6%). For the Tungsten, the error rates are
2.6% to 12.6% (average 8.8%) for KLEM time
predictions. Note that the predictions for “List
Hardware Button” tasks for both platforms have
comparably higher error due to the fact that the

number of hardware button presses used by different
users to browse the list varies widely.

The average measured task energy versus the
predicted model energy is shown in Figure 7. The
energy prediction errors against the average measured
task energy for the iPaq tasks are between 0.3% and
8.1% (average 4.4%). For the Tungsten, the error rates
are between 1.2% and 12.5% (average 8.4%).

Energy Prediction - iPaq rx1955

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Map Nav List Key List
Trough

List Arrow List Tap
and Hold

List Drag List Hw
Button

En
er

gy
 (j

ou
le

)

Avg User Energy

Model Energy

Energy Prediction - Tungsten T5

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Map Nav List Key List Graffiti List Arrow List Hw Button

En
er

gy
 (j

ou
le

)
Avg User Energy
Model Energy

Figure 7. Comparison of measured task energy and

model predicted energy. The bars represent
observation means and the error bars on the user

data indicate the 95% confidence intervals.

7. Conclusion and Future Work

Based on the KLM user performance prediction
techniques, KLEM can predict user time and energy
consumption from story boards of proposed user
interactions with good accuracy. The resulting
predictions are within 13% of measured user time and
system energy for two different popular handheld
platforms. The time and energy for doing the same task
in different modalities on the same platform (List
Hardware Button vs. List Drag or List Key) can vary
by a factor of two to three. Up to a 30% variation in
doing the same task with the same modality on
different platforms was also observed.

Future work will include extending the model to
other interaction modalities such as speech recognition
for input and speech synthesis and speech playback for
output. The performance benchmarks also need to be
enriched for a larger scope of system activities.

8. Acknowledgements

This material is based upon work supported by the
Defense Advanced Project Agency (DARPA) under
Contract No. NBCHD030010, and the National
Science Foundation under Grant Nos. EEEC-540865
and 0205266.

The authors would like to thank Bonnie John for
providing insightful guides on cognitive models, and
Don Morrison and Jason Cornwell from the CogTool
team for their help on fixing bugs and answering
questions.

9. References

[1] http://act-r.psy.cmu.edu/ The ACT-R website.

[2] K. Baynes, C. Collins, et. al., “The performance and
energy consumption of three embedded real-time operating
systems”, In Proc. Int. Conf. Compilers, Architecture, and
Synthesis for Embedded Systems, Nov. 2001, pp. 203-210.

[3] T. L. Cignetti, K. Komarov, and C. S. Ellis, “Energy
estimation tools for the Palm”, In Proc. ACM MSWiM 2000:
Modeling, Analysis and Simulation of Wireless and Mobile
Systems, Aug. 2000.

[4] S. K. Card, T. P. Moron, and A. Newell, “The Keystroke-
level model for user performance time with interactive
systems”, In Communications of the ACM archive, 23(7),
1980, pp. 396-410.

[5] S. K. Card, T. P. Moron, and A. Newell, The psychology
of human computer interaction, Lawrence Erlbaum
Associates Inc., Mahwah, NJ, USA, 1983.

[6] http://www.cogtool.org/download.html CogTool website.

[7] W. C. Cheng, and M. Pedram, “Power minimization in a
backlit TFT-LCD display by concurrent brightness and
contrast scaling”, In IEEE Trans. Consumer Electronics 50,
1, Feb. 2004, pp. 25–32.

[8] I. Choi, H. Shim, and N. Chang. “Low-power color TFT
LCD display for handheld embedded systems”, In Proc. Int.
Symp. Low Power Electronics & Design, Aug. 2002, pp.
112-117.

[9] K. I. Farkas, J. Flinn, et. al., “Quantifying the energy
consumption of a pocket computer and a Java virtual
machine”, In Proc. ACM SIGMETRICS: Int. Conf.
Measurement & Modeling of Computer Systems, June 2000,
pp. 252-263.

[10] P. Haunold, and W. Kuhn, “A keystroke level analysis
of a graphics application: Manual map digitizing”, In Proc.
of CHI, April, 1994, pp. 337-343.

[11] S. Iyer, L. Luo, R. Mayo, and P. Ranganathan, “Energy-
adaptive display system designs for future mobile
environments”, In Proc. Int. Conf. Mobile Systems,
Applications, & Services, May 2003, pp. 245–258.

[12] B. John, K. Prevas, D. Salvucci, and K. Koedinger,
“Predictive Human Performance Modeling Made Easy”, In
Proceedings of CHI, April 2004.

[13] K. S. Vallerio, Lin Zhong and N. K. Jha, “Energy-
efficient graphical user interface design”, In IEEE Trans. on
Mobile Computing, July 2006.

[14] J. Lorch, and A. Smith, “Using user interface event
information in dynamic voltage scaling algorithms”, In Proc.
Int. Symp. Modeling, Analysis & Simulation of Computer
Telecommunications Systems, Oct. 2003, pp. 46–55.

[15] L. Luo and B. John, “Predicting Task Execution Time
on Handheld Devices Using the Keystroke-Level Model”, In
Conference on Human Factors in Computing Systems (CHI
'05) extended abstracts on Human factors in computing
systems, April 2005, pp. 1605-1608.

[16] S. Pasricha, S. Mohapatra, et. al., “Reducing backlight
power consumption for streaming video applications on
mobile handheld devices”, In Proc. First Workshop
Embedded Systems for Real-Time Multimedia, Oct. 2003.

[17] D. Siewiorek, “New frontiers of application design,”
Communications of ACM, vol. 45, no. 12, Dec. 2002.

[18] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of
Embedded Software: A First Step Towards Software Power
Minimization”, In IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, 2(4):437-445, Dec. 1994.

[19] Y. Xiong, X. Zhou, X. Li, and Y. Gong, “OOEM:
object-oriented energy model for embedded software reuse”,
IEEE Int. Conf. on Information Reuse and Integration, 2003.

[20] L. Zhong, and N. K. Jha, “Graphical user interface
energy characterization for handheld computers”, In Proc.
Int. Conf. Compilers, Architecture, & Synthesis for
Embedded Systems, Nov. 2003, pp. 232–242.

[21] L. Zhong, and N. K. Jha, “Dynamic power optimization
for interactive systems”, In Proc. Int. Conf. VLSI Design,
Jan. 2004, pp. 1041–1047.

[22] L. Zhong, and N. K. Jha, “Energy efficiency of
handheld computer interfaces: Limits, characterization, and
practice”, In Proc. USENIX/ACM MobiSys, June 2005

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 450
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 450
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /DEU ()
 /FRA ()
 /PTB ()
 /DAN ()
 /NLD ()
 /ESP ()
 /SUO ()
 /ITA ()
 /NOR ()
 /SVE ()
 /ENU ()
 /JPN ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

