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Abstract 
 

The impact of user interactions on the electric 
energy consumption of a portable computer system 
and on user efficiency is often not obtainable until 
after the software application is implemented and 
deployed on a specific hardware platform. In this 
paper, we present the Keystroke-Level Energy Model 
(KLEM), a method that can predict the user time and 
system energy consumption it will take to perform an 
interactive task at run time during the phase of 
application design. KLEM is based on the Keystroke-
Level Model (KLM), a psychological theory of human 
cognitive and motor capabilities that can predict 
execution time for a skilled user. We first create a 
design storyboard and define a set of tasks whose 
KLMs are to be constructed. We then construct KLEM 
of each task by correlating system activities to the user 
actions modeled in the corresponding KLM. We obtain 
the energy profiles of system activities from running a 
set of user interaction benchmarks on the target 
hardware platform. To verify KLEM, we conducted a 
user study of 10 participants on executing an 
information query task using eight different methods. 
The user time and system energy of the participants 
were measured on two popular handheld platforms: a 
Windows Mobile iPaq and a Palm OS Tungsten. Our 
experimental results show that KLEM has an average 
prediction error of 5.6% and 8.8% on user time, and 
4.4% and 8.4% on energy consumption on the two 
platforms, respectively.  
 
1. Introduction 
 

Human users today have a wide variety of methods 
to interact with handheld and wearable systems. These 
systems, enabling the user to access information 
ubiquitously, are characterized by their small form 

factors with novel, heterogeneous user interaction 
modalities. While the current state-of-the-art in 
interface devices for portable systems include pen-
based touch screen and hardware buttons, wearable 
computers add head-mounted displays, touch pads, 
trackballs, and Gyroscopic or Twiddler mice. Speech 
recognition, position sensing, and eye tracking are also 
becoming common input modalities. In the future, 
stereographic audio and visual output will be coupled 
with 3D virtual reality information [17]. This 
heterogeneity of interaction modalities makes it 
difficult to predict and make decisions on important 
run time performance attributes at earlier design stages 
before the application is actually implemented, 
deployed, and user-tested.  

Energy consumption has been one of the most 
important design considerations for handheld and 
wearable systems. Most tasks performed on handheld 
and wearable systems are highly interactive. The 
unavailability of software application during design 
time and the large amount of time and effort needed to 
conduct user studies are substantial barriers to 
achieving accurate prediction of how the user would 
actually interact with the computer and of the resulting 
user time and system energy consumption.  

In this paper, we present the Keystroke-Level 
Energy Model (KLEM), a quantitative analysis method 
to address the problems stated above. Our approach is 
based on the Keystroke-Level Model (KLM), a 
cognitive modeling technique that predicts the time it 
takes a user to perform a task with a given method on 
an interactive computer system [4]. In KLM, task 
execution time is estimated by listing the sequence of 
elementary perceptual, motor or cognitive actions, i.e., 
operators, and then summing the times of the 
individual operators. KLM aggregates all perceptual 
and cognitive function into a single value for an entire 
task, using a heuristic. KLM has been used for almost 



three decades by Human-Computer Interaction (HCI) 
practitioners as a reliable and valid means of modeling 
human performance. In a previous work [15], we have 
shown that KLM can be used to produce accurate task 
execution time prediction on handheld systems. We 
now extend KLM into KLEM, which integrates the 
contextual system energy consumption information 
with the user interaction model of KLM, and predicts 
both system energy consumption and user interaction 
time.   

The rest of the paper is organized as follows. In 
Section 2, we discuss the related work on user 
interface and software energy consumption. In Section 
3, we introduce background information on KLM and 
explain why it is a suitable approach to energy 
estimation at design time. In Section 4, we explain the 
process of constructing KLEM. In Section 5, we 
describe the experimental setup for the task time and 
energy measurements. In Section 6, we present and 
discuss the results of a user study, and verify the 
KLEM predictions against the user study results. 
Finally we conclude the paper and propose future work 
in Section 7.  

This paper makes two major contributions: first, a 
methodology based on well-established HCI theory 
and practices is introduced to make design-time 
prediction on interactive task energy consumption; 
second, the energy efficiency of different user 
interaction methods on the same task is compared and 
analyzed. We show when using different interaction 
modalities, the energy consumption can vary by a 
factor of three in achieving the same user goal.  
 
2. Related Work 
 

Research that recognizes the significance of human 
interaction and user interface design on user 
performance and system energy consumption is 
relatively new. Most existing approaches focus on run-
time energy management techniques rather than 
design-time energy prediction. The user interface 
events for dynamic voltage scaling were discussed in 
[14]. Techniques were proposed to aggressively 
power-manage the system during user idle periods 
based on user-delay predictions [21]. Low power 
techniques for interface devices such as displays were 
reported in [7], [8], [11], and [16].  

An emulation-based energy model for the Palm OS 
was given in [3] to characterize system energy 
consumption, a. The limitation of this approach is that 
an emulator running on a PC can only accept desktop 
mouse events, which do not reflect the real pen and 
key user interface behaviors on the Palm device, 

especially when applications are used interactively. 
There has been a large body of research focusing on 
characterizing and modeling energy consumption of 
individual hardware components, embedded operating 
system and software [2, 9, 18, 19]. Those approaches 
either failed to provide higher level views of system 
energy behavior, or lacked the generality to be applied 
on consumer platforms and applications.  

The only existing work that is closely related is the 
characterization of energy consumption of different 
graphical user interface (GUI) features on handheld 
computers presented by Zhong et al [20, 21, 22]. They 
pointed out the importance of idle time and user 
productivity in system energy efficiency, and 
suggested several energy efficient GUI design 
techniques in [13]. Another work of theirs 
characterized the energy requirements and overheads 
imposed by various human sensory and speed limits 
[22], but did not provide a comprehensive way to 
understand how these human aspects could be 
integrated during the actual user interactions. 

 
3. Why Keystroke-Level Model 
 

The form factors of handheld/wearable computers 
have generated diverse and novel user interaction 
modalities. The most common are pen-based touch 
screen interface inherited from the desktop graphical 
user interface (GUI), handwriting recognition such as 
Graffiti™, and hardware navigation buttons. In 
addition, speech recognition and synthesis are gaining 
popularity. These user interaction modalities have 
brought variety to the design of handheld/wearable 
applications, and we are interested in predicting their 
impact on the human performance and system energy 
consumption of interactive user tasks. The goal is to 
create quantitative, accurate prediction during the 
application design phase. However, how a human user 
actually perform the task, i.e., the steps the user takes 
and the cognitive delays between consecutive steps 
often remain unknown without the expense of 
observing and recording the target application on real 
hardware executed by real users.  

Cognitive engineering models view the human 
mind as another information-processing system – the 
Model Human Processor [5] that interacts with the 
computer system. The KLM is one of the cognitive 
modeling techniques that predicts the time it takes an 
expert user to perform an error-free task using a given 
method on an interactive computer system [4]. In 
KLM, task execution time is estimated by listing the 
sequence of elementary perceptual, motor or cognitive 



actions, i.e., operators, and then summing the times of 
the individual operators.  

The original KLM had four physical-motor 
operators: K represents pressing a key or a button, P 
represents pointing with the mouse to a target on the 
display, H represents moving hands to the home 
position on the keyboard or mouse, and D represents 
drawing lines using the mouse; one mental operator: M 
is a heuristic to incorporate mentally preparing for a 
task; and one system response operator: R for system 
response where the user waits for the system. For each 
operator, there is an estimation of constant execution 
time set by previous psychology and HCI studies. An 
exception is that the R operator must be estimated by 
the designer, and only include the time that the user 
must wait for the system after any M operator has 
completed. Additionally, there is a set of heuristic rules 
to account for mental preparation time. 

KLM has been used and validated repeatedly by 
academics and practitioners since it was introduced, 
been applied to a significant amount of interactive 
tasks in areas such as word processing, spreadsheets, 
graphic, and video games [4, 10], and shown to 
provide good predictive accuracy. Our previous work 
[15] showed that KLM can provide accurate human 
performance predictions for pen-based user interfaces 
on handheld devices. 
 
4. Keystroke-Level Energy Modeling 
 

In this section, we first present the overall process 
of predicting the user time and system energy 
consumption of a given task using KLEM. We then 
describe how KLM operators are integrated to energy-
consuming system activities based on the contextual 
user interaction information of the task. The energy 
profiles of system activities are obtained by running a 
set of user interaction benchmarks on the target 
platform. 

 
4.1. Overview of KLEM 
 

Given: A task, the methods used to execute the task, 
the proposed interface design, and a target platform. 
Here we define a task as a series of interactive 
operations a user performs on a computer system to 
achieve a certain goal, such as schedule a meeting, 
inquire about store hours, or changing the system 
settings. 

Predict: The user time and system energy an expert 
user will take to execute the task using the system, 
providing the user uses the method without error. 

A flowchart of the modeling process is shown in 
Figure 1. The resulting user-energy performance 
prediction consists of task execution time (User Time 
Prediction) and task energy (Energy Prediction). The 
task execution time is obtained by running the 
Modeling Process to produce the energy prediction, 
which produces the KLM of the task. The Energy 
Characterizing Process obtains the necessary Energy 
Profiles by running the UI Benchmarks on a Target 
Platform. The KLM contains the information (i.e. 
ACT-R Trace and Visualization, to be discussed in 
Section 4.2) that is needed in the Mapping Process. 
 

 
 

Figure 1. The flowchart of constructing a KLEM 
 
4.2. Modeling Process 
 

In the Modeling Process, the KLM of a given task 
is constructed. Although the KLM enjoyed a rich 
history in HCI because of its validity and predictive 
value, the cost of learning and the complexity of 
constructing correct models remained too high to 
justify the benefits of predicting task execution time. 
Fortunately, designers without much expertise in KLM 
can use CogTool [6,12] to generate predictive 
cognitive models of skilled user performance simply 
by demonstrating their task on storyboards of the new 
design. The predictions made by CogTool are based on 
KLM, and are generated with a computational 
cognitive engine called ACT-R [1]. For mobile 
devices, CogTool currently provides functionality to 
simulate interaction using a fingertip or stylus, 
therefore can predict performance of platforms with 
hardware buttons or pen-based input. The latest 
version of CogTool will support Hear and Say 
behaviors, which facilitates our future work of 
modeling speech based interactions. 

To make a prediction, the designer first needs to 
create a Storyboard for the interface design upon 
which tasks will be performed. A storyboard contains a 
series of Frames that represent the changes of the 
display between user operations. A frame can be a 
sketch of the proposed user interface design. Once the 
design storyboard has been created, the set of Tasks 



needs to be defined. Then, the designer needs to 
demonstrate on the storyboard the steps a user would 
perform to accomplish a task. The demonstration is 
recorded to a script for CogTool to generate 
predictions.  

A human user manipulates an application using 
GUI widgets. In CogTool, a Widget is represented as a 
“hot-spot” in a frame to indicate an interactive area on 
the actual physical device. Interactive widgets that are 
currently supported by CogTool include Button, Check 
box, Radio button, Textbox, Pull-down list, List box, 
Menu (header, submenu, and menu item), and 
handwriting input area (e.g. Graffiti™ in Palm OS and 
Soft Input Panel (SIP) in Windows Mobile). The KLM 
P operation is relevant to layout of Widgets defined in 
the storyboard, based on Fitts’ Law [5].  

As an example, a piece of the model trace created 
in CogTool is shown in Figure 2, showing the 
activities ACT-R goes through to make the time 
prediction. The ACT-R trace contains the contextual 
information necessary for the construction of KLEM. 
For instance, the model user executes a MOTOR 
activity at 0.683 second, which taps the device display 
at the coordinate (278.0 177.0).  

 
… 

     0.400   MOTOR                INITIATION-COMPLETE  
     0.400   PROCEDURAL    CONFLICT-RESOLUTION  
     0.683   MOTOR                MOVE-CURSOR-ABSOLUTE #(278.0 177.0)  
     0.683   Storyboard transitioning to frame "List1" 
     0.683   PROCEDURAL    CONFLICT-RESOLUTION  
     0.733   MOTOR                FINISH-MOVEMENT      
     0.733   PROCEDURAL    CONFLICT-RESOLUTION 
     0.768   VISION                 Encoding-complete LOC1-0 NIL  
     0.768   PROCEDURAL    PRODUCTION-SELECTED WAIT-FOR-SYSTEM-5  
     0.768   PROCEDURAL    BUFFER-READ-ACTION GOAL  

… 
     0.768   PROCEDURAL     BUFFER-READ-ACTION GOAL  
     0.768   PROCEDURAL    QUERY-BUFFER-ACTION MANUAL  
     0.818   VISION                 CHANGE-STATE LAST NONE PREP FREE  
     1.324   COGTOOL           Restoring display at end of system wait (0.556) 

… 

Figure 2. An example ACT-R model trace created 
by CogTool 

 
The execution of a MOTOR in the model (note that 

the model simulates a human user) is a trigger to a GUI 
event that the computer system needs to respond to 
(therefore consume energy). In the example trace 
above, at 0.683 second, the MOTOR causes the 
storyboard to transition to the next frame, which 
represents a display update in the computer system. 
Similarly, at line 0.768 PROCEDURAL PRODUCTION-SELECTED 

WAIT-FOR-SYSTEM-5, the model user starts waiting for the 
system until the system restores at 1.324 sec. This 
duration of waiting is considered as a system response 
time operator in KLEM. The PROCEDUAL activities 
during the system response time represent the thoughts 
the model has when performing the task and the 
VISION activities represent the eyes seeing objects on 
the frame. The system response time can be caused by 

any sort of computation or communication job that the 
system must finish before the user can continue 
operation.  
 
4.3. Energy Characterizing Process 
 

We use a measurement based approach to obtain 
the energy profiles of KLEM operators by running a 
set of benchmarks on the target platform. This 
approach is suitable when the target platform is already 
available at the time of application design. If the target 
platform is not available for benchmarking, the energy 
profiles can be obtained from the manufacturer 
hardware datasheets or data from literature. In this 
paper, we focus on the measurement-based approach 
only. 

In an ACT-R trace, some activities such as the 
MOTOR and WAIT-FOR-SYSTEM cause non-idle 
system activities thus extra energy consumption, while 
during other activities such as the VISION and 
PROCEDUAL the system is usually idle waiting for 
user operations. The energy consumption of non-idle 
system activities depend on the hardware platform, 
operating system, and application software. It also 
depends on the particular interaction method. For 
instance, a MOTOR activity can be tapping, dragging, 
key pressing or releasing, or a handwriting stroke. 
Besides, a WAIT-FOR-SYSTEM can be of any length, 
depending on the details of a design.   

We create a set of benchmarks of interaction 
activities performed on common GUI widgets. Table 1 
lists the benchmarks grouped by similar functions: 
Selection, Navigation, and Text Input. The operation(s) 
user can perform on each widget and the 
corresponding system activities are also listed.  

Table 1. Interaction activity benchmarks  
Widget Operation System Activity 

Selection 
Button Tap Small, Medium, Large 
Checkbox Tap Small 
List box Tap Small 
Dropdown list Tap+ Tap  Small 
Radio button Tap Small 
Menu Tap Small, Medium, Large 
Hardware button Tap Small, Medium, Large 

Navigation 
Tab Tap Medium, Large 
Scrollbar Tap/Drag Small, Medium, Large 
Slider Tap/Drag Small 

Text Input 
Soft keyboard Tap Small 
Handwriting Stroke Medium, Large 

In the Selection group, the widgets Checkbox, List 
box, Dropdown list, and Radio button are usually used 
to make a selection among several items that the user 
operates by tapping the widget. Note that the 



Dropdown list widget requires two taps to perform a 
selection, and one can use tapping and dragging to 
operate the Scrollbar and Slider widgets. After the user 
selects an item, the application records the selection, 
updates a small area of the display to look responsive 
to user operation, and goes back to the waiting/idling 
state for the next user operation. We define this kind of 
system activity “Small”. As for “Medium” and “Large” 
system activities, for example, if a “next” button is 
pressed to open a new window, the consequent system 
activity is defined “Medium”, while an “open” button 
that reads a 1MB file is considered “Large” system 
activity. At this point we can only use rough estimation 
instead of accurate quantification.  

We assume that during the task execution, the 
system runs in normal operation mode with no special 
power management techniques. For the tasks we 
studied in this paper, the hardware components 
involved are processor, memory, and display. We 
define a simple state machine of system activities with 
the corresponding power level of each state in Figure 
3. The power levels Pi and Pb are obtained from the 
interaction activity benchmarks.  

Idle
(Pi)

Busy
(Pb)

 
Figure 3. A simplified state machine of system 
activities. If other hardware components are 

involved during user operation, more states should 
be added. 

 

 
Figure 4. Energy profile of a “button press” 

followed by a display update 
 

Figure 4 depicts the energy profile of a “button 
press” (Tap) operation followed by a full display 
update (e.g. open a new window, load a picture) 
measured on one of the handheld devices we studied. 
The values along the y axis are the instantaneous 
power level at time t, and the system energy 
consumption during any time interval (t1, t2) is the area 
under the power trace between t1 and t2. In Figure 4, 
the smaller oval circle indicates the energy profile of 
the Tap operation and the larger oval indicates the 

energy profile of the display update activity. The lower 
power level (e.g. 3.6 sec to 3.7 sec) is the Pi in the Idle 
state, and the higher power level (e.g. 3.9 sec to 4.1 
sec) is the Pb in the Busy state.  

We define the energy consumption of a KLEM 
operator the sum of the KLM operator energy and the 
system activity energy it invoked. Let S be the set of 
power states of the system activity following an 
operator, Ps be the power level of each state, Ts be the 
time the system stays in state c, then the system energy 
consumption triggered by this operator Eo can be 
predicted using the following formula: 

∑
∈

=
Ss

sso TPE    (1) 

To achieve accurate system energy prediction, 
quantitative characterizations of the system activities 
invoked by KLEM operators must be obtained. We 
already have the power profiles during system 
activities defined in Figure 3, and we still need the 
system activity time Ts. We create another set of 
benchmarks that measure the time it takes a target 
platform to perform common system activities such as 
opening a new window, writing to a file, or searching 
an item in database. These benchmarks are no different 
than other system performance benchmarks. Due to 
space limitation, we do not elaborate on this topic 
because there are enormous research and practices on 
performance analysis and benchmarking. We used two 
simple benchmarks to measure the display update time 
to construct the models in this paper.   

 
4.4. Mapping Process 
 

The Mapping Process takes the CogTool predicted 
total task time Ttask, the storyboard and the ACT-R 
trace that contains the contextual system activity 
information, and the KLEM operator energy profiles 
defined in the Energy Characterizing Process, and 
produces the task energy prediction. Let O be the 
sequence of KLEM operators in the task, To be the 
time of operator o, the total system energy 
consumption during idle state Eidle is:  

)( ∑
∈

−=
Oo

otaskiidle TTPE   (2) 

The total task energy can be predicted using: 

∑
∈

+=
Oo

idleotask EEE   (3) 

 
5. Experiment Setup 

 
We chose two popular handheld platforms to 

validate the KLEM predictions on user time and 



system energy. The specifications of devices are 
summarized in Table 2. 

We removed the battery from both devices to 
eliminate the current draw of battery charging. The 
devices were connected directly to the external power 
supply and the input current Ii was obtained by 
measuring the voltage Vi across a 1 Ohm resistor R 
connected in series with the device. The voltage value 
is sampled at 10 KHz using a high speed Data 
Acquisition Card (DAQ) PCI-9820. For both devices, 
we ignored the minor fluctuation in the supply voltage 
Vs and assumed it to be constant. The instantaneous 
electric power P that a device consumes at a given 
time is: 

isisis VVRVVIVP ×=÷×=×=  (4) 
When choosing the tasks to validate the KLEM 

model, we kept in mind two principles. First, the 
operations required to accomplish the tasks should 
cover as many different interaction methods available 
in the target platforms as possible. Second, for 
comparison purposes, the same goal should be 
accomplishable by using different interaction methods. 
We selected a commercial off-the-shelf tour guide 
application named ChoiceWay™ Guides (CWG) for 
New York City because it has releases for both 
Windows Mobile and Palm OS. 

Table 2. Specifications of target platforms 
 iPaq Tungsten 
Vendor HP PalmOne 
Model Rx1955 T5 
SoC 300MHz Samsung 

SC32442  
416MHz Intel XScale  

Storage 32 MB built-in RAM 
64 MB Flash ROM 

215MB storage capacity 
160MB internal flash drive 

Display TFT color LCD 
64K colors 
240 x 320 (QVGA). 

TFT color display  
64K colors 
320 x 480 

OS Windows Mobile 5.0 Palm OS v5.4 
Figure 5 shows four screenshots of the CWG 

application interface on the two platforms we used. For 
simplicity, we built the storyboard for CogTool using 
the screenshots since we already have the software. In 
reality where KLEM is used during design time, 
modelers can use sketches of the proposed interface 
design to build the storyboard.  

All tasks we modeled have the same goal of finding 
the opening hours of the Metropolitan Museum of Art 
(MET). There are two different ways in CWG to find 
this information and each can be considered as a 
different interface design. One way is to navigate the 
map of Manhattan area as depictured in Figure 5(a). 
The user can zoom in the map by tapping one of the 
several areas delimited by the four boxes. When the 
street map of the MET neighborhood is displayed, the 
user can view the open hour information by tapping 

the dot representing the location of MET on the street 
map. The other way is to display a list of all New York 
museums, and choose MET from this list to display the 
open hour information. There are various methods to 
select MET from the list: searching or browsing. For 
the iPaq, the user can tap the letter “M” on the 
software keyboard at the bottom of the museum list as 
shown in Figure 5(b); tap the trough of the list’s 
scrollbar until MET can be viewed in the list; tap the 
down arrow; tap the down arrow and hold it until the 
MET item appears in the current list window; drag the 
scrollbar; and press the hardware navigation button at 
the bottom of the device to browse down the list.  

 

          
(a) The map navigation interface of CWG for 

WM5 and PalmOS5 

          
(b) The scroll list interface of CWG for WM5 

and PalmOS5 
Figure 5. Screenshots of CWG software 

 
For the Tungsten, the user can input the letter “M” 

on the software keyboard; tap the down arrow: gesture 
“M” in the Graffiti area at the lower part of the device 
display, and press the hardware button to browse down 
the list.  

The scrollbar in the Tungsten does not have the 
same design as the iPaq and cannot be manipulated 
using dragging or tapping the trough. Although one 
can invoke the soft input panel (SIP) at the bottom of 
the iPaq screen, the handwriting area will obstruct the 
lower part the list, which makes it unnatural and error-
prone to use. Therefore handwriting recognition in 
iPaq that corresponds to the Palm Graffiti input is not 
used in these tasks. 

 



6. User Study and Experimental Results 
 
To verify the KLEM prediction of user time and 

system energy, we performed a user study on ten 
participants (six male, four female), all are engineering 
major undergrad or graduate students who are familiar 
and comfortable with using computers. Each 
participant was first asked to practice all the tasks 
under the author’s instruction as a training session. The 
participants were given adequate time to practice the 
tasks until s/he became very familiar with the tasks 
without making errors or unnecessary pauses during 
the task execution. This conforms to the central ideas 
of KLM. The participants were then asked to perform 
all 12 tasks on the two devices as the testing session. 
The device power supply traces with corresponding 
time stamps of each task were measured during the 
testing session, as described in the previous session.  
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Time Prediction - Tungsten T5
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Figure 6. Comparison of measured user time and 

model predicted time. The bars represent 
observation means and the error bars on the user 

data indicate the 95% confidence intervals. 
 

The average measured user times versus the 
predicted model times is shown in Figure 6. The time 
prediction errors against the average measured user 
time for the iPaq tasks are between 0.1% and 11.7% 
(average 5.6%). For the Tungsten, the error rates are 
2.6% to 12.6% (average 8.8%) for KLEM time 
predictions. Note that the predictions for “List 
Hardware Button” tasks for both platforms have 
comparably higher error due to the fact that the 

number of hardware button presses used by different 
users to browse the list varies widely. 

The average measured task energy versus the 
predicted model energy is shown in Figure 7. The 
energy prediction errors against the average measured 
task energy for the iPaq tasks are between 0.3% and 
8.1% (average 4.4%). For the Tungsten, the error rates 
are between 1.2% and 12.5% (average 8.4%). 
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Energy Prediction - Tungsten T5
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Figure 7. Comparison of measured task energy and 

model predicted energy. The bars represent 
observation means and the error bars on the user 

data indicate the 95% confidence intervals. 
 
7. Conclusion and Future Work 
 

Based on the KLM user performance prediction 
techniques, KLEM can predict user time and energy 
consumption from story boards of proposed user 
interactions with good accuracy. The resulting 
predictions are within 13% of measured user time and 
system energy for two different popular handheld 
platforms. The time and energy for doing the same task 
in different modalities on the same platform (List 
Hardware Button vs. List Drag or List Key) can vary 
by a factor of two to three. Up to a 30% variation in 
doing the same task with the same modality on 
different platforms was also observed.  

Future work will include extending the model to 
other interaction modalities such as speech recognition 
for input and speech synthesis and speech playback for 
output. The performance benchmarks also need to be 
enriched for a larger scope of system activities. 
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