KLEM: A Method for Predicting User Interaction Time and System Energy Consumption during Application Design

Lu (Annie) Luo and Dan Siewiorek

School of Computer Science
Carnegie Mellon University

ISWC’07 – October 12, 2007
Motivation and goals

- Energy consumption from user interaction
 - Wide variety of user interaction methods
 - Highly interactive tasks
 - Unavailability of application at design time
 - High cost to conduct user study

- Keystroke-Level Energy Model (KLEM)
 - Keystroke-Level Model (KLM) extended
 - Predicts expert user task time
 - Predicts system energy consumption of task
KLM in brief

- Created by Card, Moron, and Newell in 1980
- Describe a task by placing operators in a sequence
 - K – keystroke (Physical operators)
 - P – point with mouse
 - H – homing (move hand from mouse to keyboard)
 - D (takes parameters) – drawing
 - R (takes parameters) – system response time
 - M – mental preparation (Mental operator)
- Five heuristic rules to insert candidate Ms into the sequence
- Task execution time = \(\Sigma \) all operators involved
- KLM for pen-based handheld user interfaces [LuoJohn05]
KLEM: an overview

- **Given**: a task, the methods to execute the task, the design, and a target platform
- **Predict**: user time and task energy
Modeling process

- Using CogTool [http://www.cs.cmu.edu/~bej/cogtool/]
 - Support touch-screen and voice-based interfaces
 - Create KLM by demonstrating task on storyboards

- Sample model trace:

```
...  
0.400  MOTOR    INITIATION-COMPLETE  
0.400  PROCEDURAL  CONFLICT-RESOLUTION  
0.683  MOTOR    MOVE-CURSOR-ABSOLUTE #(278.0 177.0)  
0.683  Storyboard transitioning to frame "List1"  
0.683  PROCEDURAL  CONFLICT-RESOLUTION  
0.733  MOTOR    FINISH-MOVEMENT  
0.733  PROCEDURAL  CONFLICT-RESOLUTION  
0.768  VISION    Encoding-complete LOC1-0 NIL  
0.768  PROCEDURAL  PRODUCTION-SELECTED WAIT-FOR-SYSTEM-5  
0.768  PROCEDURAL  BUFFER-READ-ACTION GOAL  

...  
0.768  PROCEDURAL  BUFFER-READ-ACTION GOAL  
0.768  PROCEDURAL  QUERY-BUFFER-ACTION MANUAL  
0.818  VISION    CHANGE-STATE LAST NONE PREP FREE  
1.324  COGTOOL  Restoring display at end of system wait (0.556)  
...  
```
Energy characterizing process

- Measurement based approach
- Power state correspondence of KLM operators
 - “Busy” (K, D, R): MOTOR, WAIT-FOR-SYSTEM...
 - “Idle” (M): VISION, PROCEDUAL...
- Operator time decided by KLM and benchmarks
Interaction benchmarks

<table>
<thead>
<tr>
<th>Widget</th>
<th>Operation</th>
<th>System Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Button</td>
<td>Tap</td>
<td>Small, Medium, Large</td>
</tr>
<tr>
<td>Checkbox</td>
<td>Tap</td>
<td>Small</td>
</tr>
<tr>
<td>List box</td>
<td>Tap</td>
<td>Small</td>
</tr>
<tr>
<td>Dropdown list</td>
<td>Tap+ Tap</td>
<td>Small</td>
</tr>
<tr>
<td>Radio button</td>
<td>Tap</td>
<td>Small</td>
</tr>
<tr>
<td>Menu</td>
<td>Tap</td>
<td>Small, Medium, Large</td>
</tr>
<tr>
<td>Hardware button</td>
<td>Tap</td>
<td>Small, Medium, Large</td>
</tr>
<tr>
<td>Tab</td>
<td>Tap</td>
<td>Medium, Large</td>
</tr>
<tr>
<td>Scrollbar</td>
<td>Tap/Drag</td>
<td>Small, Medium, Large</td>
</tr>
<tr>
<td>Slider</td>
<td>Tap/Drag</td>
<td>Small</td>
</tr>
<tr>
<td>Soft keyboard</td>
<td>Tap</td>
<td>Small</td>
</tr>
<tr>
<td>Handwriting</td>
<td>Stroke</td>
<td>Medium, Large</td>
</tr>
</tbody>
</table>

Selection, Navigation, Text Input
Task: information query

- Platforms:
 - Windows Mobile (iPaq)
 - Palm OS (Tungsten)

- Method 1: map navigation interface

- Method 2, 3, 4: scroll list interface
Model verification: user time

- **User study:**
 - 10 participants
 - Two platforms
 - 12 tasks in total

- **Measurement:**
 - Total task execution time

- **Prediction error:**
 - 5.6% for iPaq
 - 8.8% for Tungsten
Model verification: task energy

- **Measurement:**
 - System energy consumption during task
- **Prediction error:**
 - 4.4% for iPaq
 - 8.4% for Tungsten
Conclusion & Future work

- Contributions of this paper:
 - A methodology based on well-established HCI theory and practices is introduced to make design-time prediction on interactive task energy consumption.
 - The energy efficiency of different user interaction methods on the same task is compared and analyzed. We show when using different interaction modalities, the energy consumption can vary by a factor of three in achieving the same user goal.

- Future work:
 - Extend KLEM to other interaction modalities.
 - Comprehensive user interaction and power benchmarks.