Predicting Task Execution Time on Handheld Devices Using the Keystroke Level Model

Annie Lu Luo and Bonnie E. John

School of Computer Science
Carnegie Mellon University

CHI'05 – April 6, 2005
Motivation and goals

- **Keystroke Level Model (KLM)**
 - *A priori* prediction of expert user task time
 - Intensively used on desktop computers
 - Not yet been adapted to handheld devices
 - Limited display size
 - Input device: stylus, touch-screen, hardware buttons
 - Interaction methods: tap, Graffiti, etc.

- **Investigate KLM on handheld UIs**
 - Applicability of model to novel interface modalities
 - Accuracy of model predictions
KLM in brief

- Describe a task by placing operators in a sequence
 - K – keystroke (tap)
 - P – point with mouse (with stylus)
 - H – homing (move hand from mouse to keyboard) (N/A)
 - D (takes parameters) – drawing
 - R (takes parameters) – system response time
 - M – mental preparation

- Five heuristic rules to insert candidate Ms into the sequence
- Task execution time = \(\sum \) all operators involved
Handheld task:
Find information about the MET

1. City map
2. Region map
3. Street map
4. Museums list

© Annie Luo, Carnegie Mellon University, 2005
Create KLMs

- One KLM for each of the four methods
- Used CogTool (John, et al 2004)

Diagram:

1. MacroMedia DreamWeaver
 - HTML mockups
 - Modeler mocks up interfaces as HTML storyboard

2. Netscape HTML event handler
 - Interface event messages via LiveConnect
 - Modeler demonstrates tasks on the HTML storyboard

3. Behavior Recorder
 - ACT-Simple code based on KLM
 - ACT-Simple complies code into ACT-R production rules

4. ACT-R Environment
 - KLM Trace
User study

- 10 expert PDA users (Female:Male = 3:7)
- At least one year experience using:
 - Palm series, pocket PC, or smart cell phone
- Instructed to perform the task on a PalmVx
 - Using four different methods (within subject design)
- Training session before real session
 - Repeating each method for 10 times

- Data collection
 - EventLogger: records system events to a log file
 - Videotaped modeler’s behavior for verification
New results since paper published

- Better estimation of system response time
- Latest version of CogTool
- Detailed analysis of model and user traces (140/400 removed)
Conclusion & Future work

- KLMs produced with CogTool are effective for handheld user interfaces:
 - Produces accurate execution time prediction
 - Supports new input modalities: Graffiti

- Future work:
 - Detailed analysis of the user pauses (mental time)
 - Use predictions of pauses to assist energy management
Thank you!

Authors’ contact info:
- Bonnie John – bej@cs.cmu.edu
- Annie Luo – luluo@cs.cmu.edu

The CogTool project:
- http://www.cs.cmu.edu/~bej/cogtool/