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Abstract 
 

To improve energy efficiency, major components of 
mobile devices implement two operational modes: active 
and sleep mode. When devices are idle, their components 
are in sleep mode and power consumption can drop by an 
order of magnitude or more. When devices are in use, 
their components sleep for many short time intervals. To 
conserve energy, components have to transition less 
frequently between modes, and  sleep for longer intervals.  

Our approach to reduce energy consumption uses 
HTTP proxies to shape incoming WLAN traffic. Our 
proxies use techniques specific to the HTTP payload to 
compensate for any negative impact that shaping may 
have. This paper describes the architecture of a Power-
Aware Streaming Proxy (PASP), built on the Power-
Aware x-Proxy (PAxP) framework. PASP uses RTSP/RTP 
semantics to effectively schedule media streams across the 
WLAN. We compare PASP with PAWP, which is a PAxP 
extension for web traffic, and identify problem areas. 

 

1. Introduction 
Major components of mobile devices implement two 

operational modes: active and sleep mode.  In each mode, 
components transition between states with different 
performance characteristics and power consumption 
levels. When mobile devices are idle, their components 
are in sleep mode and their energy consumption can drop 
by an order of magnitude or more. When in use, mobile 
devices are typically lightly loaded and their components 
may sleep for a large number of short time intervals. To 
conserve energy, mobile devices have to be configured 
such that their components transition less frequently 
between active and sleep modes, and sleep for longer time 
intervals. The sleep intervals of various components are 
often correlated. For instance, a packet receipt generates 
an interrupt which activates the processor and the 
memory. 

As processor, memory, display, and (micro)disk 
become more energy efficient, the operation of the 
wireless LAN (WLAN) interface accounts for an 

increasing fraction of the total power consumption. 
Requirements for higher data rates in noisy environments 
set a lower bound on the energy consumed by the WLAN 
interface in active mode. As a result, keeping the interface 
in sleep mode for longer periods and reducing its sleep-
mode power consumption represent the most promising 
approaches for improving its energy efficiency.  

When mobile devices are lightly loaded, their operation 
is mostly driven by outside events, such as packet arrivals 
or user inputs. Due to the inherent correlations between 
component operations, keeping the WLAN interface in 
sleep mode for longer intervals reduces the number of 
transitions between power modes of the other device 
components, such as processor, memory and disk, and 
keeps them in sleep mode for longer intervals. In addition 
to hardware technologies, the energy consumed by the 
mobile device is determined by the client applications and 
their usage patterns. In particular, web browsing and 
multimedia streaming are characterized by high energy 
consumption.  
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Figure 1. PAxP Extensible Architecture 

Our approach to reducing the energy consumed by 
networked applications uses HTTP proxies to shape the 
WLAN traffic directed to the mobile client. Traffic 
shaping delays downloaded content to create packet bursts 
and extend idle intervals. In addition, media streams are 
transformed to reduce their energy and bandwidth 
requirements.  The HTTP proxies are implemented as 
extensions to a Proxy-Aware x-Proxy (PAxP) framework 
(see Figure 1), which implements the core HTTP 
processing tasks. The framework extensions use 

   



2. Power management in 802.11 WLANs techniques specific to the HTTP payload, such as web 
documents or multimedia streams, to control the traffic 
shaper and to compensate for any negative impact that 
traffic shaping may have. 

This section provides a brief overview of the power-
management features of an 802.11 client interface, or 
station, in an infrastructure network; see [9] for an 
extensive description. 

Our approach assumes that the cost of bandwidth 
across the wide area network (WAN) is low and therefore 
it is cost-effective to trade increased WAN usage for 
improved energy efficiency of the mobile device. In 
addition, it is assumed that the proxy has access to several 
configuration parameters of the mobile device and WLAN 
access point.  

The power management mode of a station can be either 
active or power save. The power state of a station can be 
either Awake, when the station is fully powered, or Doze, 
when the station consumes very little power but it is not 
able to receive or transmit frames. In active mode, the 
station is in the Awake state. In power save mode, the 
station is typically in Doze state but it transitions to 
Awake state to listen for select beacons, which are 
broadcasted every 102.4 ms by the wireless access point 
(see Figure 2). The station selects how often it wakes up 
to listen to beacons when it associates with the access 
point. The transition between modes is always initiated by 
the station and requires a successful frame exchange with 
the access point. 

Our work focuses on the popular 802.11 WLAN 
technology. The 802.11 specifications define two power 
management modes: active mode and power save mode. 
In power save mode, which is the 802.11 term for sleep 
mode, the WLAN interface consumes 5 to 50 times less 
power than in active mode. A typical WLAN driver 
switches the interface to power save mode after an idle 
interval of approximately 100 msecs. In such 
configurations, the relative power consumed by the 
WLAN interface varies from 5-10% in high-end laptops 
to more than 50% in PDAs. beacons

file transfer

Ttimeout

active modepower save mode

Figure 2. WLAN – Dynamic Power Consumption 

The bursty character of the shaped traffic allows the 
WLAN interface to safely switch to power save mode 
after a shorter idle time interval, i.e., use a smaller timeout 
value, than typical, which reduces its energy consumption. 
Due to the hard-to-predict nature of incoming traffic, it is 
not possible to save energy by reducing the interface 
timeout without shaping the incoming traffic. Such a 
simplistic approach increases the roundtrip times of TCP 
connections, which degrades the performance of client 
applications.  The access point buffers all pending traffic for the 

stations known to be in power save mode and alerts these 
stations in the appropriate beacons. When a station detects 
that frames are pending in the access point, it sends a poll 
message to the access point. The station remains in the 
Awake state until it receives the response to its poll.  

This paper presents the architecture of a Power-Aware 
Streaming Proxy (PASP), designed to improve the energy 
efficiency of playing multimedia streams on mobile 
devices. PASP uses RTSP/RTP semantics to effectively 
schedule media streams across the WLAN. Besides 
shaping incoming traffic, PASP performs domain-specific 
stream manipulations, such as dropping select video 
frames and packets, while preserving the consistency of 
the forwarded stream. The PASP proxy is similar to the 
Power-Aware Web Proxy (PAWP), which performs 
domain specific operations on downloaded web pages to 
improve the energy efficiency of web browsing on mobile 
devices. Both proxies are implemented as extensions of 
the PAxP framework (see Figure 1). 

The access point’s response to the poll is either the 
next pending frame or an ACK frame, which signals that 
the access point delays the transmission of the pending 
frame and assumes the responsibility for initiating its 
delivery. The station must ACK every received frame. If 
the More Data field of the frame indicates additional 
pending frames, the station may send another poll frame. 
Otherwise, the station returns to Doze power state. 

The power mode of the client station is controlled by 
the WLAN device driver. The station may switch from 
power save mode to active mode at any point in time, e.g., 
after receiving the first data frame from the access point, 
or after sending a data frame to the access point. An 
example of transitioning from power save mode to active 
mode and back is shown in Figure 2. The station will 
switch back to power save mode after no data frames are 
received or transmitted for a predetermined interval, 
shown as Ttimeout. Switching from active mode to power 
save mode delays receiving any frames until after the next 
beacon is received. 

The paper is organized as follows: Section 2 provides 
an overview of the power-management features available 
in 802.11 WLANs. Section 3 describes the PAWP proxy 
and some of our experiences with the current prototype. 
Section 4 describes techniques for streaming media over 
HTTP. Section 5 describes the PASP proxy and compares 
it with PAWP. Section 6 is a brief survey of the related 
work. The last section summarizes our approach and 
describes future extensions of this work.  

   



PAWP has four major components, which are shown in 
Figure 4: the client-side module, the server-side module, 
the decision module, and the global state module (the 
blackboard). The client-side module processes HTTP 
requests from the WLAN clients. If the requested object 
was already prefetched with the correct cookie, then the 
client-side module builds the response immediately and it 
requests permission to send the object back to the client. 
Otherwise, the request is added to the global data 
structures in the blackboard module. 

Switching a client from power save mode to active 
mode to receive frames is very advantageous from a 
performance standpoint, because in the active mode the 
access point will forward data frames to the client as soon 
as they come in, while in the power save mode it must 
queue them up and wait for the client to wake up. 
Unfortunately, in order to absorb variations in packet 
delivery, the client must remain in active mode while 
waiting for more data, which wastes power. Thus, from an 
energy standpoint, it is never advantageous to transition 
into the active mode except if it is known, or highly 
expected, that data will be coming in at a very high rate.  
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Figure 4.  PAWP Architecture 

Client-side only solutions are restricted by the 
limitations in predicting the next frame arrival time and by 
the limitations imposed by the 802.11 specifications. Our 
approach overcomes these limitations by using an 
application-level proxy to schedule incoming WLAN 
traffic in a manner that accounts for client-side 
configuration. 

3. Power-Aware Web Proxy 
The Power-Aware Web Proxy (PAWP) is the first 

extension of the PAxP framework. PAWP [15] is designed 
to capture the web traffic directed to the mobile client and 
to shape it into alternating intervals of high and no 
communication. In contrast to web caching proxies, 
PAWP discards the forwarded objects immediately. 
PAWP does not require any client modifications. The server side-module handles origin servers: 

establishes and manages the TCP connections, constructs 
HTTP requests, and adds responses to the blackboard. In 
addition, this module parses uncompressed text/html 
responses, generates prefetch requests for the embedded 
objects, and adds them to the blackboard. The client- and 
server-side modules use the HTTP processing 
functionality in the underlying PAxP framework. One 
example of such PAxP support is pipelining responses 
from the server- to client-side module: as fragments of a 
web object are received, they are stored on the blackboard 
and the oracle is notified after a configurable threshold is 
reached.  The other two PAWP modules make little use of 
the framework. 

The current PAWP implementation does not modify the 
forwarded content; future implementations may include 
transcoding functionality. For improved performance, 
PAWP should be integrated with the caching proxy, if 
present, or with the firewall (see Figure 3).   
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The decision module is activated every time the client- 
or server-side modules change the state of the blackboard. 
The decision module determines when a client request is 
forwarded to the server, when a response can be returned 
to a client, when to reuse a TCP connection, etc. This 
module acts as the proxy’s oracle and its behavior is 
controlled by an extensible set of rules. Figure 3.  Usage Setting for PAWP 

One example of the data release rules is shown in 
Figure 5. Namely, PAWP releases data to a client 
immediately, if the WLAN interface is known to be 
active. The oracle uses the time of the last client request 
and Ttimeout to determine the power mode of an interface. 
Next, data is never delayed for more than a maximum 
amount of time, called MaxDelay. Whenever more than 
MinObjects are ready to be sent, they are forwarded to the 

To create longer idle intervals, the proxy buffers the 
downloaded content until one of the data release rules is 
triggered or until no additional data is expected. Once a 
transfer is initiated, all the buffered data is forwarded at 
the maximum WLAN link speed. The proxy aggressively 
prefetches embedded objects to compensate for the 
induced delays. 

   



client; MinObjects is set to be smaller than the maximum 
number of outstanding requests from the client device. 
Finally, content is forwarded when enough data (say 8K 
bytes) is available to justify interrupting the idle interval. 
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CurrentTime – TimeOfLastSend
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Figure 5.  Rules for Releasing Data to the Client 

In contrast to no-proxy configurations, where TCP 
packets arrive at the client in an unpredictable pattern due 
to the WAN transmission delays, PAWP-to-client traffic is 
characterized by a certain degree of predictability. The 
proxy effectively indicates to the WLAN client that a 
short time interval, such as ten milliseconds, of no 
incoming traffic signals a long enough interval of network 
inactivity to justify switching back to power save mode.  
Note that higher traffic predictability is achieved at the 
expense of an increase in the download latency of some 
objects.  

To avoid an increase in the user-perceived latency of 
downloading a web page, PAWP aggressively prefetches 
all the embedded objects in the page. As a result of 
prefetching, many of the subsequent client requests are 
served immediately, without incurring the delay of 
accessing the origin server and without being delayed by 
the proxy, as the WLAN interface is known to be active. 
Typically, the positive effects of object prefetching 
compensate the negative effects of delaying packets and 
page download latency is shorter. In addition to object 
prefetching, this proxy architecture benefits from splitting 
TCP connections between the WLAN client and origin 
servers.  

PAWP has to address several challenges. First, the 
proxy must correctly handle HTTP cookies. All client 
cookies are forwarded and Set-Cookie operations are 
recorded locally, for later use. Objects prefetched without 
the proper cookie information are discarded. To lower the 
likelihood of incorrect prefetches, the architecture 
includes a mechanism for downloading client cookies into 
the proxy and for sharing cookies between related proxy 
installations.  

Second, the proxy has to be efficient in prefetching the 
embedded objects. For instance, PAWP attempts to 
prefetch objects in the order they are expected to be 

requested by client. In addition, when the client device 
caches web objects, a large fraction of the client requests 
are “conditional GETs” and the proxy uses prefetched 
objects to handle these requests correctly. Because of 
client caches, some prefetched objects are never requested 
and they are discarded after a several tens of seconds.  

Incorrect and useless prefetches increase WAN 
bandwidth usage and, most importantly, delay subsequent 
client requests or useful prefetches sent on the same TCP 
connection. Due to the heavy usage of web cookies on 
popular web sites, perfect prefetching is rarely achievable. 
Our experiments with a large number of web sites show 
that incorrect prefetches do not impact download latencies 
if they represent less than 5% of the downloaded objects.    
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Figure 6.  Dynamic Power Traces (eBay.com) 

In experiments using popular web sites, such as 
cnn.com, nytimes.com, msn.com, amazon.com, eBay.com, 
americanexpress.com, using the proxy reduces the energy 
consumed by the WLAN interface by 51% to 73%, while 
increasing the download latency by up to 4%. Figure 6 
shows two dynamic power traces collected while 
downloading eBay.com in ‘Direct’ and ‘Proxy’ 
experiments, respectively. The traces represent the entire 
download process which lasted 8.0 secs and 6.6 secs in 
the ‘Direct’ and ‘Proxy’ case, respectively. For these 
experiments, the client device is an IBM ThinkPad T20 

   



running Windows 2000. The WLAN interface is an 
Intersil PRISM3 PCMCIA card, which consumes 848 
mW in the Awake state and 25 mW in the Doze state. 

4. Multimedia streaming over HTTP 
Using HTTP for tunneling RTSP/RTP streams has 

become a popular option for many multimedia players. 
Moreover, in network configurations where for security 
reasons HTTP proxies must be used to access the Internet, 
this is the only option available. Compared to using one 
TCP connection, HTTP does not provide any additional 
functionality. In fact, to accommodate HTTP semantics, 
clients open two TCP connections to the multimedia 
server.  

Client Media
Servercontrol msgs.

media & control msgs.

‘GET’ connection

‘POST’ connection
Figure 7.  HTTP Connections used for Tunneling 

One connection is used to transport the server-to-client 
data, which includes media stream messages and server 
control messages. The client opens the first connection 
using an HTTP GET request (see Figure 7). The initial 
reply from the server contains only the HTTP header, 
which includes the ‘Connection:close’ field; therefore, 
this connection stays open until closed by the server.  

The second connection is used to transport the client-
to-server data, which consists of control messages only. 
The client opens the second connection using an HTTP 
POST request. The server never replies to this request.  

The client has to use HTTP 1.0 for both requests. In 
addition, the two client headers must include an ‘x-
sessioncookie’ directive with the same value in both 
requests. The value is expected to be a globally unique 
identifier and it is used by the server to unambiguously 
bind the two connections. An optional directive ‘x-server-
ip-address’ is used when the origin site consists of a 
server cluster using round robin DNS for load balancing. 
Adding the value returned in the header of the GET 
response to the header of the POST request insures that 
both connections are handled by the same server.  

The client control messages sent on the POST 
connection represent RTSP [12] commands, such as 
DESCRIBE, SETUP, PLAY, PAUSE, and TEARDOWN, 
and RTCP messages, such as receiver report (RR) and 
application specific (APP) messages. Using HTTP does 
not impose any restrictions on RTSP usage; however, 
RTSP commands are encoded using the base64 method to 
prevent the proxy from classifying them as malformed 
HTTP requests. Also, when using HTTP tunnels, existing 
players rarely send RTCP messages. The value of the 
‘Content-length’ field in the POST request header is set to 
an arbitrary large value to impose no restrictions on the 

size and number of RTSP commands or RTCP messages 
that can be sent to the server. 

Most of the traffic on the GET connection consists of 
RTP [14] messages carrying the media streams. The RTP 
messages are embedded in the RTSP stream (see 10.12 in 
[12]), with each media stream using a different channel. 
The server control messages include the responses to the 
client RTSP commands and RTCP messages embedded in 
the RTSP stream, such as sender report (SR) messages. 
RTCP messages use a dedicated channel. Media servers 
rarely send RTSP commands to clients. Any server 
commands would be sent on the GET connection and 
responses received on the POST connection.  

The request and reply headers of the two HTTP 
requests include directives that instruct HTTP proxies to 
not cache any elements from the two transactions. A client 
may close the POST connection at any given time and 
open another one later, when it needs to communicate 
with the origin server. HTTP proxies are expected to 
handle these cases correctly.  

5. Power-Aware Streaming Proxy 
The Power-Aware Streaming Proxy (PASP) is an 

extension of the PAxP framework designed to handle 
RTSP/RTP multimedia streams tunneled over HTTP. In 
contrast to PAWP, the streaming proxy is designed to alter 
the forwarded content. Although presented as separate 
proxies, PASP, PAWP, and future PAxP extensions are 
expected to be part of the same executable.  

To help the mobile client save energy, PASP acts 
similarly to PAWP and schedules incoming WLAN traffic 
in intervals of high and no communication. To enable 
future energy savings, PASP modifies the server-to-client 
media stream tunneled on the GET connection. In 
addition, PASP modifies the media stream to adapt it to 
the current WLAN link bandwidth. To hide the effects of 
traffic shaping or stream transformation from the origin 
media server,  PASP intercepts and alters the client-to-
server stream, tunneled on the POST connection.  
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Figure 8. PASP Architecture 

   



PASP has four major components, which are shown in 
Figure 8: the client-side module, the server-side module, 
the stream transformation module, and the monitoring & 
control module. The client- and server-side modules are 
similar to the corresponding PAWP modules. In addition, 
the client-side module collects information about the 
client link bandwidth and energy level, if available. The 
stream transformation module handles both server-to-
client and client-to-server streams.  The monitoring  & 
control module selects the stream transformations using 
all the available information.  

5.1.

5.2.

 Scheduling media streams 
Scheduling incoming media streams is significantly 

easier than scheduling web responses due to the more 
relaxed latency restrictions. More specifically, player 
applications buffer tens of seconds of content before they 
start playing a stream. Therefore, incoming streams may 
be delayed until the player application is close to running 
out of content to play. In contrast, any delay in the 
download of an embedded web object translates into an 
equal increase in the user-perceived delay.  

Besides the buffered amount, there are other factors 
that determine for how long media content can be 
delayed. For instance, delaying content for one or more 
seconds may result in the client connection being marked 
as idle. This may reduce the rate at which the proxy can 
forward content in the future, as the congestion window of 
idle connections is reset to the minimum value. 

Note that traffic scheduling increases the jitter in the 
arrival of packets. As long as there is content to play, 
inter-arrival jitter does not affect user experience but high 
jitter may determine the player to send (more) Receiver 
Report (RR) RTCP messages. To prevent the origin media 
server from reacting unnecessarily and possibly 
disadvantageously to high jitter reports, the stream 
transformation module intercepts and updates client RR 
messages accordingly. 

Similar to PAWP, when scheduling media streams, 
PASP does not change forwarded content and it only 
needs to know the configuration of the client WLAN 
interface. However, PASP needs more information to 
effectively transform the server-to-client streams. This 
information includes client capabilities, such as screen 
resolution, computing resources and battery left, and 
characteristics of the WLAN client association, such as 
link bandwidth.  

 Transforming media streams 
A streaming proxy aware of the MPEG-4 stream 

structure [13] has ample opportunities for transforming a 
stream to reduce client energy consumption, or to adapt it 
to the existing WLAN link bandwidth, which is known to 
vary significantly and unexpectedly in noisy WLAN 
environments. The adaptation of the stream to the link 
bandwidth reduces client energy consumption as well, 

although indirectly: without adaptation, the player 
application periodically stops for buffering content, which 
increases total play time and energy consumption.  

There is already a significant body of work on 
transcoding proxies and more recently, on energy-aware 
transcoding techniques [8, 19]. The proposed 
transformations selectively drop video frames or alter 
their resolution. MPEG-4 defines a hierarchical structure 
for the coded video data, which enables a wide range of 
stream transformations. For instance, MPEG-4 allows for 
both natural and synthetic video to be coded and provides 
access to the individual objects in a scene. Video objects 
are encoded in one or more video object layers, each one 
with a different temporal or spatial resolution. Finally, 
video object planes, which are the representation of a 
video object in a particular video layer, are segmented 
into video packets in a way which minimizes the impact 
of packet loss on user experience. 

PASP performs several simple transformations on the 
media stream. First, it forwards only the video layer that is 
most appropriate for the client rendering capabilities and 
its current battery level. Second, it selectively drops the B- 
and P-video object planes while it forwards as many I-
planes as possible. In MPEG-4, the meaning of I-, B-, and 
P-planes is very similar to the one used in previous MPEG 
specifications for encoded video frames. Third, for 
streams consisting of multiple video objects planes, such 
as synthetic video, it may apply different transformations 
to different objects. For instance, objects that are too small 
to be displayed on the mobile device screen may be 
deleted from the forwarded stream. Finally, dropping 
individual video packets is the simplest transformation 
that PASP can apply to the data stream. However, the 
proxy never drops RTP packets that carry stream 
configuration information.  

The structure of the MPEG-4 video stream and the 
specifications of the MPEG-4 RTP payload support the 
identification of the video elements mentioned above. As 
PASP has a better understanding of the client device and 
WLAN conditions than the origin media server, it is 
expected that PASP can perform a more effective stream 
transformation than the server. The challenge is to hide as 
many of these transformations as possible from the origin 
media server.  Otherwise, the origin server may attempt to 
apply its own transformations, which would increase the 
complexity of PASP’s task. 

To hide its stream transformations from the server and 
to preserve the consistency of the stream, PASP intercepts 
and modifies the client and server control messages. The 
player application sends updates to the origin server on 
the characteristics of the stream using RR RTCP 
messages. Similarly, the server sends updates to clients 
using SR RTCP packets. In addition, the player may use 
APP RTCP packets to communicate with the server.  
PASP modifies the RR packet fields that refer to lost 
packets and inter-arrival jitter. Similarly, PASP modifies 
the SR packet fields that refer to packet and octet count. 

   



   

6. 

7. 

These packet changes are necessary because both client 
and server are aware that the connection between them is 
reliable, i.e., media streams are tunneled over HTTP. 

In addition, modified players and PASP can 
communicate status information, such as battery level, 
using RR and SR packet extensions. These exchanges may 
require PASP to generate new SR packets and to remove 
or modify RR packets. In addition, PASP interprets APP 
packets with known formats from select media players 
and acts upon, if necessary. 

PASP performs two important tasks. First, it shapes the 
media stream to reduce the client energy consumption or 
to adapt it to changing WLAN conditions. Second, PASP 
intercepts and modifies the stream control messages, 
which are RTCP messages tunneled over HTTP. It 
modifies control messages to hide PASP stream 
transformations from the origin media server and from the 
client. As a result, the data and the control messages of a 
media stream remain consistent, which is expected when 
reliable protocols, such as TCP or HTTP are used for 
media transport.   

Related work 
We believe that our work is the first to take advantage 

at the proxy server of the semantics of the HTTP payload 
to reduce the energy consumption of the mobile client.  
HTTP proxy servers have been developed for many other 
purposes.  Most commonly, proxies are used for web 
caching and as firewall components.   

The idea of prefetching web pages to reduce page 
download latency was previously explored.  The authors 
of [7] found that local proxy prefetching could 
significantly reduce web latency and that prefetch lead-
time is an important factor in the performance of 
prefetching. A survey of 14 related studies on web 
prefetching can be found in [4]. The PAWP architecture 
focuses on reducing the energy consumption of mobile 
clients by prefetching embedded objects. 

Proxies are also used for transcoding content to better 
suit the capabilities and, more recently, the energy 
consumption characteristics of mobile client devices   [8, 
19]. Our approach uses a different model for the WLAN 
interface that is closer to typical implementations and 
more appropriate for the mix of web and media workloads 
that mobile devices are expected to handle. In addition, 
the PASP architecture focuses on the challenges of using 
some of the existing stream transformations with the 
protocols used for tunneling media over HTTP. 

Chandra et al. [2, 3] investigate using a proxy for an 
application-specific protocol designed to reduce the 
WLAN interface power consumption when streaming 
media. Their approach is limited to streaming media 
applications and requires proxies at both ends of the 
WLAN. Our approach can be applied to any application 
that uses HTTP for transport and it does not require 
installing a proxy on the client device. 

Many techniques that reduce the energy consumed by 
the WLAN interface can be found in literature.  The 
power saving mode of IEEE 802.11b is based on the work 
of Stemm and Katz, which shows that leaving the WLAN 
card in sleep mode whenever possible can dramatically 
reduce the power consumption of the device [18].  At the 
transport level, the “Bounded Slowdown protocol” [6], 
introduces a power saving mode that dynamically adapts 
to network activity and guarantees that a connection’s 
round trip time (RTT) does not increase by more than a 
preset factor.  At the MAC level, Qiao et al. propose to 
combine Transmit Power Control and PHY rate 
adaptation to pre-compute an optimal rate-power 
combination table for a wireless station [11]. Gundlach et 
al. describe a transport-level scheduling policy designed 
to burst packets to clients [5]. The implementation uses a  
transparent proxy placed between the server and the 
wireless access point.  This approach is similar to ours to 
the extent that both enable periodical release of data.  
However, as our approach employs HTTP payload 
information, it is able to better optimize the data delivery 
to the client. Our approach is capable of handling more 
complex situations, such as web pages with a lot of 
embedded objects while theirs cannot.   

At the system level, Shih et al. introduce a technique in 
[17] to reduce the idle power, the power that a WLAN-
enabled PDA phone consumes in a “standby” mode.  
Their approach is to shutdown the device and its wireless 
card when the device is not being used.  A secondary, 
lower-power wakeup mechanism is used to wakeup the 
device only when an incoming call is received.  Simunic 
et al. describe system-level power management strategies 
that turn the network interface off completely during idle 
periods to reduce its power consumption [16].  The STPM 
algorithm proposed in [1] adaptively manages the power 
consumption of the WLAN interface using knowledge 
from application, network interface, and mobile platform.   

The work presented in [10] employs an idea similar to 
ours to manage hard disk power consumption by 
suggesting the use of aggressive prefetching and the 
postponement of non-urgent requests in order to increase 
the average length of disk idle phases.   

 Conclusions  
This paper describes a proxy-based approach to 

reducing the energy consumed by mobile clients when 
running HTTP-based applications, such as web browsing 
or media playing. Our approach is to shape the WLAN 
traffic directed to the mobile client and use techniques 
specific to the HTTP payload to compensate for any 
negative impact that shaping may have on application 
performance. The HTTP proxies are implemented as 
extensions to the PAxP framework.  For web payloads, 
PAWP aggressively prefetches embedded objects and 
pipelines browser and prefetch requests to the origin 
servers. For media payloads, PASP applies encoding-
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specific transformations to the media stream to account 
for the client configuration and its current battery level, 
and for the current link bandwidth. In addition, PASP 
modifies the associated control messages to ensure their 
consistency with the modified data stream.  

Experiments with several PAWP implementations have 
demonstrated significant reductions in the energy 
consumed by the WLAN interface and substantial 
reductions in page download time. We expect PASP 
implementations to enable similar reductions in client 
energy consumption. 

The PAxP framework was designed for low latency 
802.11-based WLANs. Although some of its elements 
may provide benefits when used with other wireless 
technologies, such as CDMA2000, others may not. We 
plan to experiment with our proxies in networking 
environments that emulate different wireless technologies. 
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