The Power-Aware Streaming Proxy Architecture

Marcel C. Rosu® C. Michael Olsen®
YIBM T.J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598 USA
{rosu, cmolsen, chandras } @us.ibm.com

Abstract

To improve energy efficiency, major components of
mobile devices implement two operational modes: active
and sleep mode. When devices are idle, their components
are in sleep mode and power consumption can drop by an
order of magnitude or more. When devices are in use,
their components sleep for many short time intervals. To
conserve energy, components have to transition less
frequently between modes, and sleep for longer intervals.

Our approach to reduce energy consumption uses
HTTP proxies to shape incoming WLAN traffic. Our
proxies use techniques specific to the HTTP payload to
compensate for any negative impact that shaping may
have. This paper describes the architecture of a Power-
Aware Streaming Proxy (PASP), built on the Power-
Aware x-Proxy (PAxP) framework. PASP uses RTSP/RTP
semantics to effectively schedule media streams across the
WLAN. We compare PASP with PAWP, which is a PAXP
extension for web traffic, and identify problem areas.

1. Introduction

Major components of mobile devices implement two
operational modes: active and sleep mode. In each mode,
components transition between states with different
performance characteristics and power consumption
levels. When mobile devices are idle, their components
are in sleep mode and their energy consumption can drop
by an order of magnitude or more. When in use, mobile
devices are typically lightly loaded and their components
may sleep for a large number of short time intervals. To
conserve energy, mobile devices have to be configured
such that their components transition less frequently
between active and sleep modes, and sleep for longer time
intervals. The sleep intervals of various components are
often correlated. For instance, a packet receipt generates
an interrupt which activates the processor and the
memory.

As processor, memory, display, and (micro)disk
become more energy efficient, the operation of the
wireless LAN (WLAN) interface accounts for an

LuLuo

Chandrasekhar Narayanaswami®

" School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213 USA
luluo@cs.cmu.edu

increasing fraction of the total power consumption.
Requirements for higher data rates in noisy environments
set a lower bound on the energy consumed by the WLAN
interface in active mode. As a result, keeping the interface
in sleep mode for longer periods and reducing its sleep-
mode power consumption represent the most promising
approaches for improving its energy efficiency.

When mobile devices are lightly loaded, their operation
is mostly driven by outside events, such as packet arrivals
or user inputs. Due to the inherent correlations between
component operations, keeping the WLAN interface in
sleep mode for longer intervals reduces the number of
transitions between power modes of the other device
components, such as processor, memory and disk, and
keeps them in sleep mode for longer intervals. In addition
to hardware technologies, the energy consumed by the
mobile device is determined by the client applications and
their usage patterns. In particular, web browsing and
multimedia streaming are characterized by high energy
consumption.

PASP

*RTSP Interpret.
*RTP Packets
assmmnn | *MM Frames
*RTCP Messages

PAWP

eHTML Structure
eEmbedded Objs.
*Pipeline Docs.
ePrioritize Tasks

*HTTP Headers
*HTTP Cookies
eServer Connections
«Client Connections

eEvents vs. Threads
*App- or Kernel-level
eFirewall Integration

PAxP Framework

Figure 1. PAxP Extensible Architecture

Our approach to reducing the energy consumed by
networked applications uses HTTP proxies to shape the
WLAN traffic directed to the mobile client. Traffic
shaping delays downloaded content to create packet bursts
and extend idle intervals. In addition, media streams are
transformed to reduce their energy and bandwidth
requirements. The HTTP proxies are implemented as
extensions to a Proxy-Aware x-Proxy (PAxP) framework
(see Figure 1), which implements the core HTTP
processing tasks. The framework extensions use

techniques specific to the HTTP payload, such as web
documents or multimedia streams, to control the traffic
shaper and to compensate for any negative impact that
traffic shaping may have.

Our approach assumes that the cost of bandwidth
across the wide area network (WAN) is low and therefore
it is cost-effective to trade increased WAN usage for
improved energy efficiency of the mobile device. In
addition, it is assumed that the proxy has access to several
configuration parameters of the mobile device and WLAN
access point.

Our work focuses on the popular 802.11 WLAN
technology. The 802.11 specifications define two power
management modes: active mode and power save mode.
In power save mode, which is the 802.11 term for sleep
mode, the WLAN interface consumes 5 to 50 times less
power than in active mode. A typical WLAN driver
switches the interface to power save mode after an idle
interval of approximately 100 msecs. In such
configurations, the relative power consumed by the
WLAN interface varies from 5-10% in high-end laptops
to more than 50% in PDAs.

The bursty character of the shaped traffic allows the
WLAN interface to safely switch to power save mode
after a shorter idle time interval, i.e., use a smaller timeout
value, than typical, which reduces its energy consumption.
Due to the hard-to-predict nature of incoming traffic, it is
not possible to save energy by reducing the interface
timeout without shaping the incoming traffic. Such a
simplistic approach increases the roundtrip times of TCP
connections, which degrades the performance of client
applications.

This paper presents the architecture of a Power-Aware
Streaming Proxy (PASP), designed to improve the energy
efficiency of playing multimedia streams on mobile
devices. PASP uses RTSP/RTP semantics to effectively
schedule media streams across the WLAN. Besides
shaping incoming traffic, PASP performs domain-specific
stream manipulations, such as dropping select video
frames and packets, while preserving the consistency of
the forwarded stream. The PASP proxy is similar to the
Power-Aware Web Proxy (PAWP), which performs
domain specific operations on downloaded web pages to
improve the energy efficiency of web browsing on mobile
devices. Both proxies are implemented as extensions of
the PAxP framework (see Figure 1).

The paper is organized as follows: Section 2 provides
an overview of the power-management features available
in 802.11 WLANS. Section 3 describes the PAWP proxy
and some of our experiences with the current prototype.
Section 4 describes techniques for streaming media over
HTTP. Section 5 describes the PASP proxy and compares
it with PAWP. Section 6 is a brief survey of the related
work. The last section summarizes our approach and
describes future extensions of this work.

2. Power management in 802.11 WLANSs

This section provides a brief overview of the power-
management features of an 802.11 client interface, or
station, in an infrastructure network; see [9] for an
extensive description.

The power management mode of a station can be either
active or power save. The power state of a station can be
either Awake, when the station is fully powered, or Doze,
when the station consumes very little power but it is not
able to receive or transmit frames. In active mode, the
station is in the Awake state. In power save mode, the
station is typically in Doze state but it transitions to
Awake state to listen for select beacons, which are
broadcasted every 102.4 ms by the wireless access point
(see Figure 2). The station selects how often it wakes up
to listen to beacons when it associates with the access
point. The transition between modes is always initiated by
the station and requires a successful frame exchange with
the access point.

20mvidiv S0ms/div

bﬁl

; :

beacons

file transfer

i Tumeout

powgl save mdodle active mode !

dv: 160.00mY dt: 101 .56ms

Figure 2. WLAN - Dynamic Power Consumption

The access point buffers all pending traffic for the
stations known to be in power save mode and alerts these
stations in the appropriate beacons. When a station detects
that frames are pending in the access point, it sends a poll
message to the access point. The station remains in the
Awake state until it receives the response to its poll.

The access point’s response to the poll is either the
next pending frame or an ACK frame, which signals that
the access point delays the transmission of the pending
frame and assumes the responsibility for initiating its
delivery. The station must ACK every received frame. If
the More Data field of the frame indicates additional
pending frames, the station may send another poll frame.
Otherwise, the station returns to Doze power state.

The power mode of the client station is controlled by
the WLAN device driver. The station may switch from
power save mode to active mode at any point in time, e.g.,
after receiving the first data frame from the access point,
or after sending a data frame to the access point. An
example of transitioning from power save mode to active
mode and back is shown in Figure 2. The station will
switch back to power save mode after no data frames are
received or transmitted for a predetermined interval,
shown as Timeou- SWitching from active mode to power
save mode delays receiving any frames until after the next
beacon is received.

Switching a client from power save mode to active
mode to receive frames is very advantageous from a
performance standpoint, because in the active mode the
access point will forward data frames to the client as soon
as they come in, while in the power save mode it must
queue them up and wait for the client to wake up.
Unfortunately, in order to absorb variations in packet
delivery, the client must remain in active mode while
waiting for more data, which wastes power. Thus, from an
energy standpoint, it is never advantageous to transition
into the active mode except if it is known, or highly
expected, that data will be coming in at a very high rate.

Client-side only solutions are restricted by the
limitations in predicting the next frame arrival time and by
the limitations imposed by the 802.11 specifications. Our
approach overcomes these limitations by using an
application-level proxy to schedule incoming WLAN
traffic in a manner that accounts for -client-side
configuration.

3. Power-Aware Web Proxy

The Power-Aware Web Proxy (PAWP) is the first
extension of the PAxP framework. PAWP [15] is designed
to capture the web traffic directed to the mobile client and
to shape it into alternating intervals of high and no
communication. In contrast to web caching proxies,
PAWP discards the forwarded objects immediately.
PAWP does not require any client modifications.

The current PAWP implementation does not modify the
forwarded content; future implementations may include
transcoding functionality. For improved performance,
PAWP should be integrated with the caching proxy, if
present, or with the firewall (see Figure 3).

- Firewall
Access

Point I'_"

|

|

PAWP
Proxy |

je—>
|
.. Access —
Point

(optional)

Origin
Server

Origin
Server

Figure 3. Usage Setting for PAWP

To create longer idle intervals, the proxy buffers the
downloaded content until one of the data release rules is
triggered or until no additional data is expected. Once a
transfer is initiated, all the buffered data is forwarded at
the maximum WLAN link speed. The proxy aggressively
prefetches embedded objects to compensate for the
induced delays.

WLANs

PAWP has four major components, which are shown in
Figure 4: the client-side module, the server-side module,
the decision module, and the global state module (the
blackboard). The client-side module processes HTTP
requests from the WLAN clients. If the requested object
was already prefetched with the correct cookie, then the
client-side module builds the response immediately and it
requests permission to send the object back to the client.
Otherwise, the request is added to the global data
structures in the blackboard module.

Decision Module

D per request state
I per client state

I SJUBID NVTIM I
I sloAI8g QoM I

Blackboard

Client Module Server Module

Figure 4. PAWP Architecture

The server side-module handles origin servers:
establishes and manages the TCP connections, constructs
HTTP requests, and adds responses to the blackboard. In
addition, this module parses uncompressed text/html
responses, generates prefetch requests for the embedded
objects, and adds them to the blackboard. The client- and
server-side modules use the HTTP processing
functionality in the underlying PAxP framework. One
example of such PAxP support is pipelining responses
from the server- to client-side module: as fragments of a
web object are received, they are stored on the blackboard
and the oracle is notified after a configurable threshold is
reached. The other two PAWP modules make little use of
the framework.

The decision module is activated every time the client-
or server-side modules change the state of the blackboard.
The decision module determines when a client request is
forwarded to the server, when a response can be returned
to a client, when to reuse a TCP connection, etc. This
module acts as the proxy’s oracle and its behavior is
controlled by an extensible set of rules.

One example of the data release rules is shown in
Figure 5. Namely, PAWP releases data to a client
immediately, if the WLAN interface is known to be
active. The oracle uses the time of the last client request
and Tjimeons to determine the power mode of an interface.
Next, data is never delayed for more than a maximum
amount of time, called MaxDelay. Whenever more than
MinObjects are ready to be sent, they are forwarded to the

client; MinObjects is set to be smaller than the maximum
number of outstanding requests from the client device.
Finally, content is forwarded when enough data (say 8K
bytes) is available to justify interrupting the idle interval.

<3urrentTime — TimeOfLastRequest\

< Ttimeout Y
N
CurrentTime — TimeOfLastSend N\
< MaxDelay %

lN

< ObjectsReceived >= MinObjects >Y_
1N

<’otalBytesReceived >= MinBytes>Y—

N

v

Delay Data Release Release Data

Figure 5. Rules for Releasing Data to the Client

In contrast to no-proxy configurations, where TCP
packets arrive at the client in an unpredictable pattern due
to the WAN transmission delays, PAWP-to-client traffic is
characterized by a certain degree of predictability. The
proxy effectively indicates to the WLAN client that a
short time interval, such as ten milliseconds, of no
incoming traffic signals a long enough interval of network
inactivity to justify switching back to power save mode.
Note that higher traffic predictability is achieved at the
expense of an increase in the download latency of some
objects.

To avoid an increase in the user-perceived latency of
downloading a web page, PAWP aggressively prefetches
all the embedded objects in the page. As a result of
prefetching, many of the subsequent client requests are
served immediately, without incurring the delay of
accessing the origin server and without being delayed by
the proxy, as the WLAN interface is known to be active.
Typically, the positive effects of object prefetching
compensate the negative effects of delaying packets and
page download latency is shorter. In addition to object
prefetching, this proxy architecture benefits from splitting
TCP connections between the WLAN client and origin
servers.

PAWP has to address several challenges. First, the
proxy must correctly handle HTTP cookies. All client
cookies are forwarded and Set-Cookie operations are
recorded locally, for later use. Objects prefetched without
the proper cookie information are discarded. To lower the
likelihood of incorrect prefetches, the architecture
includes a mechanism for downloading client cookies into
the proxy and for sharing cookies between related proxy
installations.

Second, the proxy has to be efficient in prefetching the
embedded objects. For instance, PAWP attempts to
prefetch objects in the order they are expected to be

requested by client. In addition, when the client device
caches web objects, a large fraction of the client requests
are “conditional GETs” and the proxy uses prefetched
objects to handle these requests correctly. Because of
client caches, some prefetched objects are never requested
and they are discarded after a several tens of seconds.
Incorrect and useless prefetches increase WAN
bandwidth usage and, most importantly, delay subsequent
client requests or useful prefetches sent on the same TCP
connection. Due to the heavy usage of web cookies on
popular web sites, perfect prefetching is rarely achievable.
Our experiments with a large number of web sites show
that incorrect prefetches do not impact download latencies
if they represent less than 5% of the downloaded objects.

DIRECT
20 mV/div 1
I, Lo all L JUU“"»« 'bw'.m
' 0.5 s/div
PROXY
20 mV/div
M)

0.5 s/div

20 mV/div

m
Ll

Figure 6. Dynamic Power Traces (eBay.com)

0.05 s/div

In experiments using popular web sites, such as
cnn.com, nytimes.com, msn.com, amazon.com, eBay.com,
americanexpress.com, using the proxy reduces the energy
consumed by the WLAN interface by 51% to 73%, while
increasing the download latency by up to 4%. Figure 6
shows two dynamic power traces collected while
downloading eBay.com in ‘Direct’” and ‘Proxy’
experiments, respectively. The traces represent the entire
download process which lasted 8.0 secs and 6.6 secs in
the ‘Direct’ and ‘Proxy’ case, respectively. For these
experiments, the client device is an IBM ThinkPad T20

running Windows 2000. The WLAN interface is an
Intersil PRISM3 PCMCIA card, which consumes 848
mW in the Awake state and 25 mW in the Doze state.

4. Multimedia streaming over HTTP

Using HTTP for tunneling RTSP/RTP streams has
become a popular option for many multimedia players.
Moreover, in network configurations where for security
reasons HTTP proxies must be used to access the Internet,
this is the only option available. Compared to using one
TCP connection, HTTP does not provide any additional
functionality. In fact, to accommodate HTTP semantics,
clients open two TCP connections to the multimedia
server.

‘GET’ connection

Media
- Server

media & control msgs.

Client

control msgs.

‘POST’ connection
Figure 7. HTTP Connections used for Tunneling

One connection is used to transport the server-to-client
data, which includes media stream messages and server
control messages. The client opens the first connection
using an HTTP GET request (see Figure 7). The initial
reply from the server contains only the HTTP header,
which includes the ‘Connection:close’ field; therefore,
this connection stays open until closed by the server.

The second connection is used to transport the client-
to-server data, which consists of control messages only.
The client opens the second connection using an HTTP
POST request. The server never replies to this request.

The client has to use HTTP 1.0 for both requests. In
addition, the two client headers must include an ‘x-
sessioncookie’ directive with the same value in both
requests. The value is expected to be a globally unique
identifier and it is used by the server to unambiguously
bind the two connections. An optional directive ‘x-server-
ip-address’ is used when the origin site consists of a
server cluster using round robin DNS for load balancing.
Adding the value returned in the header of the GET
response to the header of the POST request insures that
both connections are handled by the same server.

The client control messages sent on the POST
connection represent RTSP [12] commands, such as
DESCRIBE, SETUP, PLAY, PAUSE, and TEARDOWN,
and RTCP messages, such as receiver report (RR) and
application specific (APP) messages. Using HTTP does
not impose any restrictions on RTSP usage; however,
RTSP commands are encoded using the base64 method to
prevent the proxy from classifying them as malformed
HTTP requests. Also, when using HTTP tunnels, existing
players rarely send RTCP messages. The value of the
‘Content-length’ field in the POST request header is set to
an arbitrary large value to impose no restrictions on the

size and number of RTSP commands or RTCP messages
that can be sent to the server.

Most of the traffic on the GET connection consists of
RTP [14] messages carrying the media streams. The RTP
messages are embedded in the RTSP stream (see 10.12 in
[12]), with each media stream using a different channel.
The server control messages include the responses to the
client RTSP commands and RTCP messages embedded in
the RTSP stream, such as sender report (SR) messages.
RTCP messages use a dedicated channel. Media servers
rarely send RTSP commands to clients. Any server
commands would be sent on the GET connection and
responses received on the POST connection.

The request and reply headers of the two HTTP
requests include directives that instruct HTTP proxies to
not cache any elements from the two transactions. A client
may close the POST connection at any given time and
open another one later, when it needs to communicate
with the origin server. HTTP proxies are expected to
handle these cases correctly.

5. Power-Aware Streaming Proxy

The Power-Aware Streaming Proxy (PASP) is an
extension of the PAxP framework designed to handle
RTSP/RTP multimedia streams tunneled over HTTP. In
contrast to PAWP, the streaming proxy is designed to alter
the forwarded content. Although presented as separate
proxies, PASP, PAWP, and future PAxP extensions are
expected to be part of the same executable.

To help the mobile client save energy, PASP acts
similarly to PAWP and schedules incoming WLAN traffic
in intervals of high and no communication. To enable
future energy savings, PASP modifies the server-to-client
media stream tunneled on the GET connection. In
addition, PASP modifies the media stream to adapt it to
the current WLAN link bandwidth. To hide the effects of
traffic shaping or stream transformation from the origin
media server, PASP intercepts and alters the client-to-
server stream, tunneled on the POST connection.

Monitoring & Control Module

D per stream state

I per client state
q |

I SjudlD NVIM I
I SloAlag eIpay I

Client Module Stream Transformation Module Server Module

Figure 8. PASP Architecture

PASP has four major components, which are shown in
Figure 8: the client-side module, the server-side module,
the stream transformation module, and the monitoring &
control module. The client- and server-side modules are
similar to the corresponding PAWP modules. In addition,
the client-side module collects information about the
client link bandwidth and energy level, if available. The
stream transformation module handles both server-to-
client and client-to-server streams. The monitoring &
control module selects the stream transformations using
all the available information.

5.1.Scheduling media streams

Scheduling incoming media streams is significantly
easier than scheduling web responses due to the more
relaxed latency restrictions. More specifically, player
applications buffer tens of seconds of content before they
start playing a stream. Therefore, incoming streams may
be delayed until the player application is close to running
out of content to play. In contrast, any delay in the
download of an embedded web object translates into an
equal increase in the user-perceived delay.

Besides the buffered amount, there are other factors
that determine for how long media content can be
delayed. For instance, delaying content for one or more
seconds may result in the client connection being marked
as idle. This may reduce the rate at which the proxy can
forward content in the future, as the congestion window of
idle connections is reset to the minimum value.

Note that traffic scheduling increases the jitter in the
arrival of packets. As long as there is content to play,
inter-arrival jitter does not affect user experience but high
jitter may determine the player to send (more) Receiver
Report (RR) RTCP messages. To prevent the origin media
server from reacting unnecessarily and possibly
disadvantageously to high jitter reports, the stream
transformation module intercepts and updates client RR
messages accordingly.

Similar to PAWP, when scheduling media streams,
PASP does not change forwarded content and it only
needs to know the configuration of the client WLAN
interface. However, PASP needs more information to
effectively transform the server-to-client streams. This
information includes client capabilities, such as screen
resolution, computing resources and battery left, and
characteristics of the WLAN client association, such as
link bandwidth.

5.2. Transforming media streams

A streaming proxy aware of the MPEG-4 stream
structure [13] has ample opportunities for transforming a
stream to reduce client energy consumption, or to adapt it
to the existing WLAN link bandwidth, which is known to
vary significantly and unexpectedly in noisy WLAN
environments. The adaptation of the stream to the link
bandwidth reduces client energy consumption as well,

although indirectly: without adaptation, the player
application periodically stops for buffering content, which
increases total play time and energy consumption.

There is already a significant body of work on
transcoding proxies and more recently, on energy-aware
transcoding techniques [8, 19]. The proposed
transformations selectively drop video frames or alter
their resolution. MPEG-4 defines a hierarchical structure
for the coded video data, which enables a wide range of
stream transformations. For instance, MPEG-4 allows for
both natural and synthetic video to be coded and provides
access to the individual objects in a scene. Video objects
are encoded in one or more video object layers, each one
with a different temporal or spatial resolution. Finally,
video object planes, which are the representation of a
video object in a particular video layer, are segmented
into video packets in a way which minimizes the impact
of packet loss on user experience.

PASP performs several simple transformations on the
media stream. First, it forwards only the video layer that is
most appropriate for the client rendering capabilities and
its current battery level. Second, it selectively drops the B-
and P-video object planes while it forwards as many I-
planes as possible. In MPEG-4, the meaning of I-, B-, and
P-planes is very similar to the one used in previous MPEG
specifications for encoded video frames. Third, for
streams consisting of multiple video objects planes, such
as synthetic video, it may apply different transformations
to different objects. For instance, objects that are too small
to be displayed on the mobile device screen may be
deleted from the forwarded stream. Finally, dropping
individual video packets is the simplest transformation
that PASP can apply to the data stream. However, the
proxy never drops RTP packets that carry stream
configuration information.

The structure of the MPEG-4 video stream and the
specifications of the MPEG-4 RTP payload support the
identification of the video elements mentioned above. As
PASP has a better understanding of the client device and
WLAN conditions than the origin media server, it is
expected that PASP can perform a more effective stream
transformation than the server. The challenge is to hide as
many of these transformations as possible from the origin
media server. Otherwise, the origin server may attempt to
apply its own transformations, which would increase the
complexity of PASP’s task.

To hide its stream transformations from the server and
to preserve the consistency of the stream, PASP intercepts
and modifies the client and server control messages. The
player application sends updates to the origin server on
the characteristics of the stream using RR RTCP
messages. Similarly, the server sends updates to clients
using SR RTCP packets. In addition, the player may use
APP RTCP packets to communicate with the server.
PASP modifies the RR packet fields that refer to lost
packets and inter-arrival jitter. Similarly, PASP modifies
the SR packet fields that refer to packet and octet count.

These packet changes are necessary because both client
and server are aware that the connection between them is
reliable, i.e., media streams are tunneled over HTTP.

In addition, modified players and PASP can
communicate status information, such as battery level,
using RR and SR packet extensions. These exchanges may
require PASP to generate new SR packets and to remove
or modify RR packets. In addition, PASP interprets APP
packets with known formats from select media players
and acts upon, if necessary.

PASP performs two important tasks. First, it shapes the
media stream to reduce the client energy consumption or
to adapt it to changing WLAN conditions. Second, PASP
intercepts and modifies the stream control messages,
which are RTCP messages tunneled over HTTP. It
modifies control messages to hide PASP stream
transformations from the origin media server and from the
client. As a result, the data and the control messages of a
media stream remain consistent, which is expected when
reliable protocols, such as TCP or HTTP are used for
media transport.

6. Related work

We believe that our work is the first to take advantage
at the proxy server of the semantics of the HTTP payload
to reduce the energy consumption of the mobile client.
HTTP proxy servers have been developed for many other
purposes. Most commonly, proxies are used for web
caching and as firewall components.

The idea of prefetching web pages to reduce page
download latency was previously explored. The authors
of [7] found that local proxy prefetching could
significantly reduce web latency and that prefetch lead-
time is an important factor in the performance of
prefetching. A survey of 14 related studies on web
prefetching can be found in [4]. The PAWP architecture
focuses on reducing the energy consumption of mobile
clients by prefetching embedded objects.

Proxies are also used for transcoding content to better
suit the capabilities and, more recently, the energy
consumption characteristics of mobile client devices [8,
19]. Our approach uses a different model for the WLAN
interface that is closer to typical implementations and
more appropriate for the mix of web and media workloads
that mobile devices are expected to handle. In addition,
the PASP architecture focuses on the challenges of using
some of the existing stream transformations with the
protocols used for tunneling media over HTTP.

Chandra et al. [2, 3] investigate using a proxy for an
application-specific protocol designed to reduce the
WLAN interface power consumption when streaming
media. Their approach is limited to streaming media
applications and requires proxies at both ends of the
WLAN. Our approach can be applied to any application
that uses HTTP for transport and it does not require
installing a proxy on the client device.

Many techniques that reduce the energy consumed by
the WLAN interface can be found in literature. The
power saving mode of IEEE 802.11b is based on the work
of Stemm and Katz, which shows that leaving the WLAN
card in sleep mode whenever possible can dramatically
reduce the power consumption of the device [18]. At the
transport level, the “Bounded Slowdown protocol” [6],
introduces a power saving mode that dynamically adapts
to network activity and guarantees that a connection’s
round trip time (RTT) does not increase by more than a
preset factor. At the MAC level, Qiao et al. propose to
combine Transmit Power Control and PHY rate
adaptation to pre-compute an optimal rate-power
combination table for a wireless station [11]. Gundlach et
al. describe a transport-level scheduling policy designed
to burst packets to clients [5]. The implementation uses a
transparent proxy placed between the server and the
wireless access point. This approach is similar to ours to
the extent that both enable periodical release of data.
However, as our approach employs HTTP payload
information, it is able to better optimize the data delivery
to the client. Our approach is capable of handling more
complex situations, such as web pages with a lot of
embedded objects while theirs cannot.

At the system level, Shih et al. introduce a technique in
[17] to reduce the idle power, the power that a WLAN-
enabled PDA phone consumes in a “standby” mode.
Their approach is to shutdown the device and its wireless
card when the device is not being used. A secondary,
lower-power wakeup mechanism is used to wakeup the
device only when an incoming call is received. Simunic
et al. describe system-level power management strategies
that turn the network interface off completely during idle
periods to reduce its power consumption [16]. The STPM
algorithm proposed in [1] adaptively manages the power
consumption of the WLAN interface using knowledge
from application, network interface, and mobile platform.

The work presented in [10] employs an idea similar to
ours to manage hard disk power consumption by
suggesting the use of aggressive prefetching and the
postponement of non-urgent requests in order to increase
the average length of disk idle phases.

7. Conclusions

This paper describes a proxy-based approach to
reducing the energy consumed by mobile clients when
running HTTP-based applications, such as web browsing
or media playing. Our approach is to shape the WLAN
traffic directed to the mobile client and use techniques
specific to the HTTP payload to compensate for any
negative impact that shaping may have on application
performance. The HTTP proxies are implemented as
extensions to the PAxP framework. For web payloads,
PAWP aggressively prefetches embedded objects and
pipelines browser and prefetch requests to the origin
servers. For media payloads, PASP applies encoding-

specific transformations to the media stream to account
for the client configuration and its current battery level,
and for the current link bandwidth. In addition, PASP
modifies the associated control messages to ensure their
consistency with the modified data stream.

Experiments with several PAWP implementations have
demonstrated significant reductions in the energy
consumed by the WLAN interface and substantial
reductions in page download time. We expect PASP
implementations to enable similar reductions in client
energy consumption.

The PAxP framework was designed for low latency
802.11-based WLANs. Although some of its elements
may provide benefits when used with other wireless
technologies, such as CDMA2000, others may not. We
plan to experiment with our proxies in networking
environments that emulate different wireless technologies.

Acknowledgements. We would like to thank Steve
Wood for many useful discussions on MPEG-4.

8. References

1. M. Anand, E. B. Nightingale, and J. Flinn, “Self-Tuning
Wireless Network Power Management,” In Proceedings of
ACM MOBICOM 2002.

2. S. Chandra, “Wireless Network Interface Energy
Consumption Implications of Popular Streaming Formats,”
In Proceedings of MMCN 2002.

3. S. Chandra and A. Vahdat, “Application-Specific Network
Management for Energy-Aware Streaming of Popular
Multimedia Formats,” In Proceedings of The 2002 USENIX
Annual Technical Conference.

4. D. Duchamp. “Prefetching Hyperlinks,” In Proceedings
USITS 1999.

5. M. Gundlach, S. Doster, D. K. Lowenthal, S. A. Watterson,
and S. Chandra, “Dynamic, Power-Aware Scheduling for
Mobile Clients Using a Transparent Proxy,” In Proceedings
of ICPP 2004.

6. R. Krashinsky and H. Balakrishnan, “Minimizing Energy for
Wireless Web Access with Bounded Slowdown,” In
Proceedings of ACM MOBICOM 2002.

7. T. M. Kroeger, D. D. E. Long and J. C. Mogul, “Exploring
the Bounds of Web Latency Reduction from Caching and
Prefetching,” In Proceedings of USITS 1997.

8. S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N.
Venkatasubramanian, “Integrated Power Management for
Video Streaming to Mobile Handheld Devices,” n
Proceedings of ACM Multimedia 2003.

9. Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications, ANSI/ IEEE Std
802.11, 1999.

10. A. E. Papathanasiou and M. L. Scott, “Energy Efficiency
through Burstiness,” In Proceedings of IEEE WMCSA 2003.

11. D. Qiao, S. Choi, A. Jain, and K. G. Shin, “MiSer: An
Optimal Low-Energy Transmission Strategy for IEEE
802.11a/h,” In Proceedings of ACM MOBICOM 2003.

12. H. Shulzrinne, A. Rao, and R. Lanphier, Real Time
Streaming Protocol, RFC 2326, IETF, April 1998.

13. Y. Kikuchi, T. Nomura, S. Fukunaga, Y. Matsui, H. Kimata,
RTP Payload Format for MPEG-4 Audio/Visual Streams,
RFC 3016, IETF, November 2000.

14. H. Shulzrinne, S. Casner, R. Frederick, V. Jacobson, RTP: A
Transport Protocol for Real-Time Applications, RFC 3550,
IETF, July 2003.

15. M.C. Rosu, C.M. Olsen, C. Narayanaswami, and L. Luo,
“PAWP: A Power-Aware Web Proxy for Wireless LAN
Clients”, In Proceedings of IEEE WMCSA 2004.

16. T. Simunic, L.Benini, P. Glynn, and G. De Micheli,
“Dynamic Power Management for Portable Systems,” In
Proceedings of ACM MOBICOM 2000.

17. E. Shih, P. Bahl, and M. J. Sinclair, “Wake on Wireless: An
Event Driven Energy Saving Strategy for Battery Operated
Devices,” In Proceedings of ACM MOBICOM 2002.

18. M. Stemm and R. Katz. Measuring & Reducing Energy
Consumption of Network Interfaces in Handheld Devices.
In [EICE Trans. on Fundamentals of Electronics,
Communications, and Computer Science, August 1997.

19. P. Shenoy and P. Radkov, “Proxy-Assisted Power-Friendly
Streaming to Mobile Devices,” In Proceedings of the 2003
Multimedia and Networking (MMCN) Conference.

	Introduction
	Power management in 802.11 WLANs
	Power-Aware Web Proxy
	Multimedia streaming over HTTP
	Power-Aware Streaming Proxy
	Scheduling media streams
	Transforming media streams

	Related work
	Conclusions
	References

