

Evolving Architecture for Adaptability

ISRI Practicum Report I
May 18, 2003

Lu Luo
Institute for Software Research International

School of Computer Science
Carnegie Mellon University

 1

Evolving Architecture for Adaptability
(ISRI Practicum Report I)

Lu Luo
Institute for Software Research International

School of Computer Science
Carnegie Mellon University

May 18, 2003

Abstract

Software development methodologies are confronted with frequently changing customer needs
and rapidly developing technologies. It is critical for an organization to minimize the design cost
and time to market of its software products, through innovation in technical, business, and
organizational aspects. In this report, I present an industrial case study on a startup company
that has successfully built an adaptable software framework to address different customer needs.
As a reflection of this study, I present several real-world software engineering issues in hope to
provide useful ideas for future reference.

This report is submitted to the Institute for Software Research International of School of Computer
Science at Carnegie Mellon University, to partially fulfill the practicum requirements of the PhD
program in software engineering.

1. Introduction

Traditional software engineering strategies are challenged in industrial organizations where the
technology is subject to rapid evolution and the requirements are still emerging. Typical
examples of such challenges reside in the area of mobile/wearable computing, where the
computing and communication environments are heterogeneous and complex. It is useful to
study how software should be developed in order to facilitate the organization’s business needs.
In this report, I present an industrial case study that address and discuss a series of software
engineering issues that are derived from the author’s experience at a startup company that
provides customized software solutions to customers in need of mobile computing support. For
the sake of nondisclosure, the identity of the target organization is shielded, and will be
mentioned as “Company A” in the rest part of the report.

The mission of Company A has been motivated by and benefited from the fundamental changes
that increasing computing power and wireless communication can bring to the ways people work.
Under traditional environments, workers involved in the maintenance or operation of large
vehicles such as tanks and aircrafts, or portions of the infrastructure such as bridges and oil rigs,
have great difficulty in using computers to support their working process. The object being
maintained or operated is usually very large, and the worker must operate on it in situ, outside or
in special structures. The fast-growing popularization of wireless infrastructure and portable
computing devices enable the computer support for front line workers. For example, when the
worker is performing some industrial process, instead of referring to paper-formed technical
manuals, or leaving the work site to consult people in the back office, the steps of this process
can be displayed on the worker’s mobile computer. As the environment in which the process is
being performed may be dangerous or cramped, it is very helpful when the worker is equipped
with such computing devices while both his/her hands are free to engage in the operation.

 2

The major challenges that Company A faces are to develop complex enterprise solution for
different customers who are in need of various mobile/wearable support, and to deliver the
solution in a competitively shorter time-to-market. The adaptation of business focus to the
marketplace combined with the immaturity of mobile computing technologies, are the driving
factors in the company behavior. The uniqueness of Company A’s business mode brings several
interesting questions for software engineering practitioners. What strategies should be deployed
to best address the changing customer requirements? How do you choose the right software
engineering techniques to leverage the company’s business needs? What are the influences of
the business and technologies on the organization?

I intend to address these questions in this report based on the author’s experience with the
company and subsequent follow-ups. I focus on reflecting on the practical software engineering
issues and the lessons learned, in hopes of providing “portable” conclusions useful in similar
situations elsewhere. The report is organized as follows: Section 2 gives the background
information about the author’s experience, including the background of the company and the
evolution of the product line. In Section 3, I discuss software engineering issues arising from
reflection on the experience. Section 4 summarizes the report and proposes some potential
research directions.

2. Description of Experience

This case study is derived from the author’s four-month experience working as a student
consultant with Company A. Though the experience is comparably short, the author is able to
access adequate information for this report from follow-ups including interviewing relevant
personnel and studying the company’s technical documentation.

2.1 Organization Background

Company A is formed in 1995 as an outgrowth of the Wearable Computing Project at Carnegie
Mellon University (CMU). Originated in the early 1990s from a summer course, the CMU
Wearable Group has been building and researching wearable computer systems to support
maintenance, manufacturing, and collaborative tasks. By 1995, being one of the pioneer groups
in this new field, the CMU Wearable Group had successfully built several generations of wearable
computer systems, which quickly attracted many requests for customized wearable systems from
various customers. The growth of customer needs had exceeded the scope and ability of a
university research group. Therefore, Company A was founded, taking over from the Wearable
Group those requests and contracts that were not intensively research-oriented. The initial
contracts of Company A were from several fixed customers such as the US government.

During this initial period, the company operates as a solution factory, producing one-of-a-kind
solution for each customer. Each solution is developed as a prototype and then produced as a
stovepipe application. For each different customer, the requirement, architecture, and design of a
new solution had to be built from scratch, which required a fairly large engineering team and took
significant amounts of development time (in the tens of person years).

Focusing only on customizing stovepipe solutions for specific customers does not allow Company
A to be more competitive in product cost and time-to-market. By the end of 2000, a general
framework of reusable software components, which will be mentioned as “Architecture L” in this
report, is constructed and deployed by Company A’s technical team. Architecture L is based on
the Java 2 Enterprise Edition (J2EE) component-based technologies of Sun Microsystems. The
intention of building this architecture framework is to provide a general solution for future products
regardless of specific customer needs. The L framework is composed of a series of highly
reusable components, some of which are reconstructed from previous products. Instead of
devoting the limited technical strength to developing products according to each specific
customer’s requirements at a time, this framework enables a family of solution schemes for

 3

potential customers to choose from, aw well as rapid construction of customized products. The
adoption of Architecture L is proved to successfully address the changing customer needs and
promotes potential business opportunities of Company A. After the completion of the L
framework, the company has greatly expanded the scope of its business and attracted several
important new customers.

In summary, the evolution of Company A’s major technical and business focuses can be divided
into three phases:

Initial Phase (1995 ~ 1999): Initial government contracts inherited from the Wearable Group.
The company’s focuses during this period are highly prototype-oriented, point products.

Evolution Phase (1999 ~ 2001): Construction of Architecture L for current and future
products. Seek new customers while keep providing products and services to existing ones.

Current Phase (2001 ~ present): Common architecture is complete. Reusable components
framework is built. Start to acquire new customers.

2.2 The Post-L Product Family

Based on the framework of Architecture L, Company A provides a product line of software
solutions that enables frontline workers to access electronic technical support from either
operation manuals or experiential personnel in the back office, depending on different customer
requirements. The product family enables customers to create a collaborative environment,
provides real-time visibility to operations, and helps develop a rich, historical archive. The
solution family can be divided into two major categories, namely solutions M and P.

The M solution is the core technology behind the revolutionary changes that customers are
experiencing in maintenance performance. M enables frontline workers to exchange information
with local or remote experts, supervisors and managers. It includes on-line chat and electronic
white-board for displaying photos, drawings, and diagrams that are needed to resolve technical
problems the workers may encounter. It also provides a collective and continually growing
archive of frontline worker knowledge and expertise for the entire enterprise, promoting best-of-
breed maintenance practices. Solution M makes it easy to regulate the structure of the input of
maintenance incident reports.

The P solution is a standalone yet a complementary product to M. P dynamically distributes and
displays technical content to different frontline workers from a singular source to maximize
efficiency. Technical content is either converted from legacy documentation or created using
Interactive Electronic Technical Manuals (IETMs) authoring tools and then stored in an XML
repository for flexible usage. P ties easily into existing legacy systems and updates incremental
changes to technical manuals to ensure data is current. Content changes can be made in one
location and propagate to all deployments via wide area and wireless networks.

In addition to M and P, the product line includes other products that facilitate the major application
areas. These ancillary products enable data and application management, and provide easy
access to other managerial information such as the team situation and network condition.

This entire product line of Company A covers a very large scope of customer needs in providing
support to frontline workers, yet are very flexible for customization based on different
requirements. For each specific customer, the company provides consulting services including
domain and technical expertise necessary to customize the customer’s project from the planning
stages through implementation. Each customized solution is built from the basic components in
the product family framework, yet is specific to the customer. A five-step component
methodology is used to build each customized solution:

 4

Step 1: Assessment. The company’s Consulting Service team works with the customer to
gain an intimate understanding of how the customer’s enterprise operates. The customer’s
needs are assessed and a direction for a solution is defined.

Step 2: Proposal. Based on the results of the assessment, the company crafts a plan of
action tailored to the customer’s needs. The proposal includes the details of the plan,
objectives, milestones and deliverables.

Step 3: Build. The Solutions and Technology team of Company A are utilized to execute the
proposal and create the solution for the customer. Once the solution is created, the company
will help the customer test and configure the system to their specifications.

Step 4: Transition. The company prepares the customer for the implementation of the
solution, including integration with legacy applications and training, to make sure that the
introduction of new technology goes smoothly.

Step 5: Implementation. The solution is implemented across the customer’s enterprise and
the company’s Consulting Service team continues to answer questions and provide guidance
as the customer makes the transition.

2.3 Description of Experience

From January to May of 2002, the author worked as a student consultant at Company A. During
this period, the company’s Solutions and Technical team is in the process of constructing the set
of necessary components for the P solution. The author took part in various phases including
analysis, re-design, and development of one of the major components of P: the Interpreter.

The ultimate goal of the P solution is to make technical manuals conveniently viewable to the
worker in situ, and to provide interactive instructions and recording functionalities. For desktop
systems, a long time ago, the display of technical manuals and support information has migrated
from paper to electronic documents. Limited by facts like display size and working environment,
mobile solutions for viewing electronic documents require richer forms of user interaction, rather
than just displaying lines of text or illustrations. Company A’s P solution primarily supports the
emerging IETM technology, which offers richer forms of interaction and a more satisfying user
experience. IETM technology is still in its infancy, with conflicting standards existing across
companies in the industry. It is not likely that when one or a few unified IETM standards will soon
be defined.

The P solution family provides the environment for displaying technical manuals on a variety of
heterogeneous mobile computing devices. One of the key ideas is the use of a pluggable
Interpreter to support different types of IETMs. In addition, the display system provides the
overriding context for interacting with the IETM. For instance, it defines a set of states and
interaction metaphors that are common to all IETMs, such as “navigating the table of contents” or
“placing an electronic bookmark.” The display system also provides a framework for hosting
Interpreters, and defines Application Programming Interfaces (APIs) that all Interpreters must
implement. For each IETM type, an Interpreter should be written. Basically, the job of the
Interpreter is to accept IETMs of the corresponding type and make the contents available to the
technical manual display system in well-defined ways. More specifically, the Interpreter must
navigate the IETM and apply the authored behavior to the authored content, based on the
semantics of the underlying language specific to the IETM type.

The author’s work was to design and implement one part of the Interpreter for a specific type of
IETM. This experience can be divided into four phases.

 5

Phase 1: Get familiar with the architecture of the technical manual display system and the
framework for plug-able Interpreters. The outcome is a requirements analysis document for
the plug-able Interpreter module. Provide the technical team with feedback and suggested
design modifications for the framework. Contribute to the design of the architecture
framework depending on the state of development when this project commences.

Phase 2: Complete the design of the Interpreter component with help from the Technical
team. The outcome is a fully documented design followed by a peer review. The design is
modeled using modern OOA/OOD 1 techniques, including UML 2 class and sequence
diagrams.

Phase 3: Complete the implementation of the Interpreter component. Outcome is a fully
functioning module that cooperates seamlessly with other components.

Phase 4: Perform a rigorous testing and evaluation of the implementation followed by
documentation.

Besides the development work, the main purpose of the author is to observe and reflect on the
Technical team as well as the entire company’s software engineering practice. Therefore, close
attention has been paid to the organizational structure and development processes of Company
A, which will be discussed in detail in Section 3.

3. Reflection

In this section, I discuss several software engineering issues as a reflection of this case study.
The discussion will be around the following questions:

 What strategies should be deployed to best address the changing customer

requirements?

 How to choose the right software engineering techniques to leverage the company’s

business needs?

 What are the influences of the marketplace and technologies on the organization?

3.1 Evolving Architecture towards Adaptability

At the beginning of its startup, Company A focuses on government contracts inherited from the
CMU Wearable Group. The targeted user, application and working environment of these
contracts are specific to the corresponding government projects, each differing from one another.
During this period, Company A can be viewed as a solution factory, producing one of a kind
solution for a specific customer. Each solution is developed as a prototype and then produced as
a stovepipe application. For each different customer, the requirement, architecture, and design of
a new solution had to be built from scratch. During this period, although the Engineering team of
Company A was composed of highly experienced and sophisticated software developers, each
stovepipe solution required a fairly large engineering team and took significant amounts of
development time (in the tens of person years).

The funding from government contracts has kept Company A running in a fairly balanced manner
during its first couple of years of business. However, the resource drain on maintaining and re-

1 Object-Oriented Design and Object-Oriented Analysis
2 Unified Modeling Language

 6

engineering the stovepipe solutions prevented the company from easily expending into new
markets to increase its revenue base. If most of the engineering effort were to be put into
redesigning a new solution for a new customer, there would be no space and time left for creating
innovative, competitive, and cost-effective solutions for other customers. With the growing
customer base need, it is essential for the company to create a general solutions family that could
be quickly tailored to a customer’s needs. The architecture of the existing stovepipe solutions
cannot satisfy this growing requirement.

Two sets of complementary requirements define the design of the general architecture. First,
based on the architecture, the applications to be built are enterprise applications for field service
workers. Being directly visible to customers, any failure to meet this set of requirements results in
possible discontent or more seriously, loss of customers whose expectations are not satisfied.
The second set requires that the architecture should be common to all future solutions that
Company A provides. This set of requirements only influences the customers indirectly, but it
affects more fundamental aspects of the company’s business. Failure or difficulty to integrate the
application to the customer’s environment takes more time and/or cost more money for the
vender. More importantly, a common architecture directly affects the architects, the developers,
and therefore ultimately the business. The use of a common product architecture framework
decreases use of resources, the amount of time and effort required to create new applications or
enhance existing ones, the speed of bringing products to market, and the speed of incorporating
new technologies into products. If the common architecture is designed to meeting the second
set of requirements, the company’s future business will be enhanced efficiently by improving the
method of developing products and the quality of the products themselves.

By the end of 2000, the Engineering team of Company A has finished constructing Architecture L,
a general software architecture framework for the company’s future product family. The overall
structure of a solution built on L is shown in Figure 1. Essentially, the solution contains three
main elements: the user interface, the application, and the components.

Browser-Based
User Interface

Custom Web-
Based

User Interface

Application

Component

DataBaseData Flow

Figure 1. Structure of an L Application

 User Interface:

Company A sends a group of domain experts, cognitive psychologists and graphic artists to
work with several clients to understand various customer needs and constraints. Then, the
initial design of the Design Team, including a storyboard, screen shots and a prototype of the
overall user interface, is converted to a working user interface on real devices. This allows
the architecture to support the integration of custom user experiences, and enables creation
of common portions and reuse of software. To turn user experience designs into a general
framework of working user interfaces, a variety of client devices with different screen sizes,
operating systems and input modalities must be supported. The architecture addresses this
by adopting two types of interfaces and supporting flexible interface adaptability for different
customers. To minimize the development resources, interfaces devices are sorted into

 7

classes according to their characteristics and solutions of different fidelities are created for
each class.

This approach is unique compared to how user interfaces are developed for other web-based
applications, and is a core aspect of the company’s business and essential to the adaptability
of the architecture.

 Applications

An L application is responsible for uniting the system into a functional entity. It provides the
user interfaces an API to extend the system features to an end user. The application layer
ties together m components and exposes the aggregated functionality to n user interfaces.
Each user interface decides what and how functionality is exposed to the end users. In order
to rapidly develop and deploy each solution, the application layer is kept as thin as possible
by delegating the bulk of the business work to components. Application code is moved into a
component as far as its functionality is reusable. If a piece of functionality is not likely to be
reused, it is incorporated into the application.

An L application is not a large, one-size-fits-all product but a thin layer that ties together
components to provide the functionality required for a specific solution. The modifiability and
extensibility attributes of the application are emphasized. Customization is localized to the
application layer, reducing the amount of custom code. Components are not customized,
allowing greater reuse and less maintenance costs.

 Components

The components in Architecture L are the primary part for reuse. A library of components is
created and applications can be easily synthesized in short periods of time to create
specialized solutions for specific customers. The library contains core components related to
the client-server frameworks of L, domain specific components such as maintenance, repair,
and overhaul, and generalized utility components such as security, authorization, and user
management. With this library, the development of applications simply becomes an exercise
in creating business logic that composes the necessary set of capability components into a
customized solution for the customer.

This type of engineering significantly reduces the development time of an application when
compared with the creation of stovepipe applications. It also significantly reduces resources
needed for post deployment support of the solutions. This allows the company to create
products and systems that meet increasingly shorter times-to-market, therefore more
competitive in its large markets.

In summary, the Architecture L framework is based on state-of-the-art software engineering and
programming technology. It allows customized solutions to be easily and rapidly developed and
deployed. A new user interface can be created without changing the application or component
layer at all. A new implementation of a component can be integrated into the system without
affecting the user interfaces or the application layer. New functionality can be added to the
system by incorporating another component, adding the necessary API methods to the
application layer, and adding new features to each user interface to expose the new functions.
Over time, the library of components of L has grown and allowed the rapid creation of new
solutions for customers in existing markets as well as the tailoring of existing systems to create
prototypes for potential new customers.

As a result of the architectural innovation, the company actually has gained four major customers
and a total of over $6 million from product and professional services and investment in the year
since the successful construction of the architecture framework without requiring any additional
personnel for the Technical team. Additionally, the company has expanded its European branch

 8

and the software products have filled critical intelligence needs for homeland security applications.
The renovated architecture framework has already brought business and technical benefits to the
company.

Adaptation of a software system is almost an inevitable process, due to the change of customer
requirements, need for faster development of new products, or maintenance of existing systems.
There have been various techniques that deal with adaptation of software systems: architecture-
based, component-based, code-based, generic algorithm, dynamic adaptation, and adaptation
methodologies. As the first step in the development of software solution it is the software
architecture that should be adaptable for the final software system to be adaptable. The
changing customer needs and growing business requirements of Company A have been
addressed in the Architecture L framework, which leverages the high reusability provided by
component-based software development methodologies and successfully enables the company
to achieve the rapid construction of customer support systems.

3.2 Merge Architectural Styles with Component Models

Component based software development technologies are twofold. In academia, software
architecture views software system as a collection of computational components together with a
description of the interactions among these components (connectors)3. An architectural style
defines a certain vocabulary of components and connectors and the constraints on how they can
be combined. Architectures styles help developers focus on system level requirements and the
interconnection of components in a large-scale software system. However, architectural styles do
not provide developers with particular design and implementation details, such as component
packaging approaches.

In parallel with academic research on architectural styles, there has been considerable industrial
work in the development of component interoperability models, such as ActiveX4, CORBA5 and
Sun’s JavaBeans. These models help developers deal with the complexity of software and
promote reuse, as well as make a positive move toward standardization of components, and the
creation of a software component marketplace. Component interoperability models focuses on
specifying interfaces, packaging, binding, mechanisms, inter-component communication
protocols, and expectations regarding the runtime environment. Compared with architectural
styles, component models do not provide insights in the system level.

Naturally, it is beneficial to merge architectural styles with suitable component interoperability
models to leverage the advantages from both technologies, and to develop a comprehensive
approach software development. In this section, I discuss how the Interpreter architectural style
is addressed, adapted to the L architecture framework based on the company’s specific technical
and business requirements, and merged into the Enterprise JavaBeans (EJB) component model.

3.2.1 Interpreter: the Architectural Style

Interpreter is discussed in Shaw and Garlan’s book as one of the major architectural styles.
Figure 2 is the original representation of this architectural style. An interpreter generally has four
component: an interpretation engine, a memory that contains the program to be interpreted, a

3 Shaw and Garlan, Software Architecture, Perspectives on an Emerging Discipline
4 ActiveX is the name Microsoft has given to a set of "strategic" object-oriented programming
technologies and tools. The main technology is the Component Object Model (COM).
5 Common Object Request Broker Architecture (CORBA) is an architecture and specification for
creating, distributing, and managing distributed program objects in a network.

 9

representation of the control state of the interpretation engine, and a representation of the current
state of the program being simulated. Basically, in an interpreter organization, a virtual machine
is produced in software.

Program
being

interpreted
Data

(program state)

Simulated
interpretation

engine

Internal
interpreter

state

Inputs

Outputs Selected instrustion

Selected data

Memory

Computation
(state machine)

Data Access
(fetch/store)

Figure 2. Architectural Style: Interpreter

Interpreters are commonly used to build virtual machines that close the gap between the
computing engine expected by the semantics of the program and the computing engine available
in hardware. The Technical team of Company A adopts this architectural style for one of the sub
modules of the P product. At the architectural level, the overall system properties are determined
by the style. It is the Technical team’s job to put more details into the architectural design for the
Interpreter component in the P solution family. The requirements and considerations of the
Interpreter component design are explained in the following section.

3.2.2 Interpreter: the Component Design

Compared with the architectural style, the actual design for the Interpreter has to take into
consideration many requirements and restrictions and has to be adaptable to heterogeneous
customer needs. The P solution family is intended to display conventional technical manuals as
well as IETMs on mobile devices for different customers. The manuals may come from various
resources and may be authored according to a variety of different standards. The display system
may be authored accessible from a variety of different computing devices, including portable,
mobile and wearable computer systems. The appearance of the manual is not dictated solely by
the authored content and may vary according to the interface characteristics of the client device.
The display system supports different ITEM types through the use of plug-able interpreters that
adhere to a uniform interface. Although the display system may be used to view a wide variety of
technical manuals of various types, it provides a standard framework and context for doing so. In
particular, it introduces a set of states, metaphors, and operations that are supported by all
manuals. Figure 3 illustrates the top-level architecture design for solution P. The Interpreter
component is highlighted in gray.

 10

User Input

Controller

Manual
Navigation

Information

State
Navigation

Interpreter

Navigation

Context

View Generation

State Logic Display
Generator

State Navigation
Input

Manual Navigation
Input

Information Input

State

Content

View

Structure Behavior

Manual Content

Manual

Figure 3. Architectural Design of P

The architecture design of P is composed of four major components: the Controller, the State
Logic, the Display Generator, and the Interpreter. I first briefly introduce these components below,
followed by discussion on how the Interpreter design is mapped with the architectural style.

 Controller accepts input from the client and dispatches it to other elements of the system.
There are three types of input: manual navigation input, which represents requests by the
client to navigate within the manual; information input, which is input to the manual; and
state navigation input, which requests state changes.

 State Logic calculates the current system state, which is picked up from a set of states

common to all manual types supported by the system. The display system is designed
around these specific states, which provide a common context for interacting with
technical manuals.

 Display Generator calculates the current view of the system. This view presents the

manual content in the context of the application. The output of the Display Generator is a
specification of the view in a format specific to the client device (e.g. HTML for web-
browser clients). There is one Display Generator per display device class that will work
with all manual types.

 Interpreter is the element that accepts an authored manual and is responsible for its

display. This involves interpreting the authored behavior and applying it to the structural
elements of the Manual. There is one Interpreter per manual type, as the operation of
the Interpreter is highly coupled to the language used to express the technical manual.
Every Interpreter includes three conceptual subsystems. The Navigation subsystem is
responsible for calculating the subset of the manual that is currently active (i.e. the place
in the manual that is currently being accessed, such as the current task or step). Context
refers to the set of all information relevant to the current use of the manual. View
Generation provides the manual information that will be displayed by the Display
Generator to the user. An Interpreter is a plug-able element to the display system. The
display system may support any number of interpreters and, therefore, support any
number of manual types.

 11

Each Interpreter takes a specific type of Manual as input. The Manual contains
information describing the content of a technical manual, including both the structural
elements (e.g. steps and tasks) and the behavior (e.g. a pre-condition for activating a
step). A manual is written according to some well-defined language, and all manuals
written in this language constitute a “manual type.”

The Interpreter for the P solution is designed to map the Interpreter architectural style. The
Manual represents the “Program Being Interpreted”. An Interpreter reads the input from its
corresponding manual and internally represents the “Data (program state)” component using a
data structure called Content Tree (Content). The Content Tree provides the rest of the
Interpreter with read-only access to the authored content. The “Internal Interpreter State”
component of the style is represented in the P Interpreter using a data structure called Context
Tree (Context). The Context Tree contains the runtime state information maintained and
manipulated by the Interpreter. For the “Interpretation Engine”, a data structure called Semantics
Classes (Behavior) is used in the P Interpreter. The Semantics Classes are a collection of
classes that define the behavior of each node in the content tree.

Besides the data structures, the behaviors of a P Interpreter can be viewed as three conceptual
subsystems. The Navigation subsystem is responsible for calculating the subset of the manual
that is currently active. The Context subsystem includes the set of all information relevant to the
current use of the manual. The View Generation subsystem provides the manual information to
the Display Generator, another major component in P. Note that the content delivered from the
Interpreter to the Display Generator is uniform and applies to all manual types. This ensures that
the rest of the components in the P architecture can be reused regardless of Interpreter types.

3.2.3 Interpreter: the Implementation

The Interpreter and all other components of the P solution are implemented in Sun’s J2EE
technology, which is designed to allow users access to business software applications using
Internet browsers, in contrast to older technologies that required installation of software on the
desktop PC. J2EE tends to increase the reuse of existing software functionality, thereby
decrease development time and cost. In a developing organization like Company A, solution
development must be provided not only quickly, but also frugally. Another advantage of building
the architecture upon J2EE is that J2EE is an open standard, with a series of supports, services
and training programs from Sun. Compared with other technologies, J2EE makes sure that the
company is not locked into obsolete non-standard proprietary technologies so that the company
can easily adopt the new products without significant re-work. J2EE also facilitates the packaging
of domain-specific application capabilities into reusable components that can be combined in
different ways for the specific needs of individual customers.

By carefully selecting the Interpreter architectural style and elaborately designing of the P
Interpreter component, creating a J2EE implementation turned out to be rather simple. The
properties of the design coupled with the Technical Team’s understanding of J2EE results in an
obvious mapping of components to proper implementation technologies. I use the Interpreter as
an example for introducing the Technical Team’s decision process and design rationale. The P
Interpreter is implemented as a Stateful Session EJB 6 . Written in the Java programming
language, an enterprise bean is a server-side component that encapsulates the business logic of
an application. The business logic is the code that fulfills the purpose of the application.
Enterprise beans are the J2EE components that implement EJB technology. Enterprise beans
run in the EJB container, a runtime environment within the J2EE server. Although transparent to
the application developer, the EJB container provides system-level services such as transactions
to its enterprise beans. A session bean represents a single client inside the J2EE server. To
access an application that is deployed on the server, the client invokes the session bean's
methods. The session bean performs work for its client, shielding the client from complexity by

6 Enterprise JavaBeans. For more information about J2EE, refer to http://java.sun.com/j2ee/

 12

executing business tasks inside the server. As its name suggests, a session bean is similar to an
interactive session. A session bean is not shared – it may have just one client, in the same way
that an interactive session may have just one user. Since the Interpreter needs to track the
current state of both the Content and Context data to decide the current display content,
apparently a Stateful Session EJB is the most logical implementation choice.

There have been some rationales and tradeoffs in the context of using J2EE. Although the J2EE
environment provides the designer with some flexibility, allowing designers to make choices,
especially when designing a component, there are many design decisions constraint by the rules
and structure of J2EE. Secondly, implementations of the J2EE specification provide many
beneficial but complex services. Developers have to fully understand the J2EE environment to
avoid conceptual mistakes. For large systems, considerable problems with performance,
scalability and reusability may arise. I will cover a bit more of this topic in later sections.

3.2.4 Summary

In this section, I introduced three stages of the design and implementation for the P solution,
using the Interpreter component as an example. This engineering effort combined the
advantages of software architectural style and component interoperability models and turned out
to be a successful practice. The architectural style is not only nice in theory, but also proved
helpful in practice. Based on the basic L framework, the design of the P Interpreter component
started with analyzing and adopting the Interpreter architectural style. Ensuring that the system-
level properties addressed in the Interpreter architectural style fit the need of the requirements of
the P solution, a detailed architectural design is created, closely coupling the entire L framework
and the backbone J2EE technology. Given the design, it was very straightforward to implement
the P Interpreter component using J2EE. Although I did not discuss how the Interpreter
component was deployed in the entire P system, it is actually as effortless as it should be. This
successful practice is a good example of applying the advanced results of academic research to
real world solutions, in combination with state-of-the-art industrial technologies.

3.3 Discussions on Patterns

Company A’s Technical Team features a close coupling with the Core J2EE Patterns throughout
the post-L development process. As the L framework is based on J2EE, it is natural that the
designers keep taking the supports and features that come along with the technology. J2EE
patterns are a collection of J2EE based solutions to common problems that reflect the collective
expertise and experience of Java technology. Basically, a core J2EE pattern can be classified
into three logical architectural tiers: Presentation, Business, and Integration, with detailed
functionality categories. These patterns describe typical problems encountered by enterprise
application developers and the solutions to these problems. The L framework and its
components make use of many relevant J2EE patterns. In this section, I focus on discussing how
the company has benefited from applying patterns in the development, both technically and
organizationally. Most of the discussion is based on the author’s experience as a new developer
with limited background information and skills.

3.3.1 Benefits

I first discuss the benefits that using patterns brings to Company A’s development practice.

 Component Reuse

Patterns capture the essence of working designs in a form that makes them usable in future
work, including specifics about the context that makes the patterns applicable or not. As I
have mentioned in previous sections, prior to the L framework, there have been numerous
stovepipe products created to satisfy different customer needs. Architecture L constructs the

 13

top-level framework that clearly divides the existing modules into the three functional layers in
L. However, the heterogeneous nature of the existing modules makes it very difficult to
create the detailed design for each product family, as well as the components.

Fortunately, there are adequate J2EE patterns that can be referred to when constructing
these components. For example, the P Interpreter takes great advantage of the instructions
provided in the Java Interpreter pattern. Given the complete framework of interface, structure,
configuration and deployment that are defined and explained the pattern, all that developers
need to do is to fill in the functionalities. It also makes it easy to reuse the preexisting
functional modules inherited from pre-L products. Patterns also serve as risk mitigators in the
sense of providing components that are already proven in practice. It reduces discovery
costs as well as software scrap and rework.

 Design Rationale

Patterns are the media of expression of experience. It is often the case that developers do
not know why a design was the way it was. No one bothered writing down the reasons for
each major change to the design, let alone the incremental ones. As a result, reverse
engineering of the design choices has to be done time and again, false starts, iteration, and
delays were the norm. Although these recurrences are somewhat beneficial, they often
reflect the shallow design rationale of most development teams.

Patterns promote development team to clarify their design rationales. Patterns help
designers focus their thinking so that they could more readily identify designs based on what
is needed to do. It offers something concrete to explain designs. If I use the P Interpreter as
an example, the instructions on Java Interpreter pattern help the developers a lot on the
detailed data organization, object structure, as well as implementation details. After
developers understand a handful of patterns, when they discuss problems, they can quickly
discover the complexity of architecture by asking which patterns apply.

 Communication and Documentation

The biggest payoff of using patterns is the high level of communication designers can
achieve. With the general vocabulary defined in the patterns, designs are discussed not in
terms of classes, objects and methods, but to a great extent in terms of design patterns
concepts: participants, applicability, consequences, and tradeoffs. Developers become
productive more quickly within the culture of existing patterns and frameworks. At the
beginning of working with Technical Team of Company A, the author experienced a short
period of frustration since the rest of the team talked in a way that the author “could not
understand”, i.e. the pattern terms. But after the author learned a couple of core Java
patterns, it became fairly easy to communicate and discuss with other team members using
the concepts defined in patterns. Achieving more knowledge of patterns, it also became
easier for the author to understand existing designs that are expressed in terms of patterns.
The ambiguity that could be brought by inefficient communication is to some extent amended
by using patterns.

The core Java patterns intensively uses UML7 for documentation, which closely matches the
common design language that most development organizations use today. The pattern
catalog is composed of Class Diagrams, which show the structure of the pattern solution and
the structure of the implementation strategies and provide the static view of the solution;
Sequence Diagrams, which show the interactions between different participants in a solution
or a strategy and provide the dynamic view of the solution; and Stereotypes, which indicate
different types of objects and roles in the class and interaction diagrams.

7 Unified Modeling Language. For more information, refer to www.rational.com/uml/index.jsp

 14

 Learning Experience of Developers

As I have mentioned in last bullet, patterns shorten the learning curve of new developers.
People who are new to a project need to gain an understanding of the paradigm, application
domain, language, library of available components and the development environment. They
discover how a system works by reading documentation, interacting with other staff and
starting with building a simple example. There are abundant, detailed resources on core
Java patterns (as well as other design patterns) and it is comparably easy and fast for new
developers to get familiar with the common language defined by patterns, as well as the
claimed properties. Of course, very well written system documents serve the same purpose,
but it is not very common practice in most development projects. When new developers are
equipped with the basic knowledge of relevant patterns, they make progress much more
quickly than when they have to just start by looking into and asking questions about a sea of
code.

The L framework and the use of patterns have required each full-time developer to build a
complete set of skill in response to the framework. In the order of difficulties, the developers
have to:

1. Learn Java
2. Become Sun Java Programmer certified
3. Learn the J2EE application architecture
4. Learn how to package capabilities as J2EE Enterprise Java Beans (EJB)
5. Learn how to create Java servlets and Java Server Pages (JSP)
6. Learn how to use the various J2EE services provided by J2EE implementations
7. Become Sun Java or Web Component Developer certified
8. Become Sun J2EE Architect certified

It takes a lot of time and efforts to achieve all targets in the above skill set, but a developer
does not have to be at the bottom of the list to be able to create great outputs. In particular, it
takes a developer with a Bachelor’s degree in CS or CE8 less than one month to grasp item 1
to 4, provided he had no knowledge on Java at all. In the long term, this brings potential
increase of productivity to the entire organization.

3.3.2 Challenges

The adoption of patterns, as well as the J2EE-based framework has brought some challenges.
The Architecture L framework is domain specific in the context of providing mobile information
access to the frontline workers. It was created in order to maintain the funding and survival of the
company, targeting at expending to new market. Instead of constructing everything from scratch,
the L framework was largely “married” to the early versions of the company’s products. These
existing heterogeneous products, however, were designed specifically for individual customers
without predictive consideration of the general framework to-be. The framework has to reuse the
existing products and modules as much as possible. Therefore, the new product family built
under the general framework is motivated to make expedient specializations and other framework
changes that compromise the generality. Unless there are specific mechanisms in the new
framework for sustaining the domain independent pieces out of the existing components, new
solutions may end up redeveloping these pieces. For Company A’s L framework, although a
certain number of modules in the existing products remain logically reused, they are in fact totally
rewritten in the component-based product family. There have also been several iterations on
defining the main components the product family. During the four months the author worked with
the company, there were at least two major changes of business and technical focus, which to
some extent brought disruption to the development work. Were the framework mature enough,
there could have been no such disruptions. It takes time for an architectural framework to

8 Computer Science or Computer Engineering

 15

become more mature. The path to a mature architectural framework can be rocky and requires
expert navigators, but is necessary to the development process of any startup organization. As
with software reuse and software developments in general, the success of a framework is often
more tied to organization and cultural issues than the technical concerns.

The implicit claim of all design patterns is to reduce discovery cost in the design phase, even
throughout the software lifecycle. It is true that design patterns reduce the developer’s overall
development time by reducing the discovery cost of the technology, the paradigm and other
design information. Unfortunately, the author does not have access to any measurable data on
the cost benefit of Company A by adopting the core J2EE patterns, but the discussion in the
previous section supports this. Patterns and frameworks work well if they can predict well on
what will change and what will not in the general market place. Most of the patterns are for
technical problems, they will not help analyze a problem and learn the application domain.
Therefore, the maturity of the framework, thus the maturity of higher-level business schemes, is
essential to ease the discovery and development costs. In the next section, I focus on the mutual
effects of the architecture and the organization.

3.4 Mutual Effect between Architecture and Organization

I have observes the mutual effect between the architecture and organization from Company A’s
engineering practices. The changing requirements in business bring major technical innovation,
which in turn affects the business themes. Software architecture is a result of technical, business,
and organizational influences, and in turn affects the technical, business, and organizational
environments that subsequently influence future architectures. This cycle of influence is called
Architecture Business Cycle (ABC) 9. In this section, I examine how the ABC can be identified
from Company A’s case.

3.4.1 Adjustment in Business Themes

At its initial stage, Company A is a pure product factory that builds stovepipe style software
applications for governmental contracts. The requirements of each contract are fixed, yet very
different from one another. The company has to move rapidly to embrace new technologies and
attract new, potential customers in order to easily expand into new markets to increase its
revenue base. If the company keeps operating as a solution factory, neither the time nor the
resources are available to embrace new technologies and customers and break the cycle of
continuously building new products from scratch. Obviously, increase the reusability of the
existing products and make the product more adaptable to various customer needs are very
important to keep the company growing. Given the discussions I had in previous sections, it
appears that the specification of an easily adaptable software application is primarily a business
problem, not a technical one.

In fact, the most important questions have to do with the underlying business. It is the Business
Team, rather than the Technical Team of Company A, that should find out the places where the
software application should be adaptable; rather than guessing where the software is likely to
change, to find those aspects of the underlying business that are unlikely to change. It is not until
after the appropriate business themes are understood and catalogued that an adaptable software
framework can be constructed. After that, the framework can enable the rapid construction of
business objects and business applications that support the corresponding business themes that
will endure.

The Business Team of Company A had been adjusting the business theme in parallel with the
construction of the Architecture L framework. While the Technical Team focuses on recognizing

9 Software Architecture in Practice / by Len Bass, Paul Clements and Rick Kazman.

 16

the reusable components that are in common among the existing products and rebuilding or
enhancing them into the architecture framework, the Business Team intensively reaches out to
communicate with current and potential customers. With the existing products from previous
contracts, and the completed components from the architecture framework, it is feasible for the
company to give demonstrations with the most recent updates to current and potential customers.
The demonstrations are shown on an experimental wearable computer platform designed by the
CMU Wearable Group. The customers’ comments and requirements are collected by the
business team and provided back to the technical team after each demonstration. Important
customer requirements trigger iterations of the technical team’s component design. Existing
components are modified, and new components are added according to the customer feedbacks.
An integrate product family is then constructed, covering a very large scope of potential customer
needs.

This approach essentially changes the business themes of Company A. Compared to the old
business mode as a product factory, the new business mode of the company as a customized
solution provider greatly increases the competing power in the sense of product cost and time-to-
market. As a result, the architectural framework is based on the fundamental constraints of the
underlying business rather than purely technological considerations or the peculiarities of the
problem being solved. This makes the software architecture somewhat more robust than if it
were based on the stovepipe-flavored products. The best way to find the true business is to look
at the organization from its customer’s viewpoint, not its employees.

3.4.2 Changes in Organization Structure

Company A has a comparably flat organizational structure. There is only one level of
management, the Executive Team, together with the Technical Team. Figure 4 shows the
composition of the Executive Team of Company A, and Figure 5 the Technical Team structure
prior to the creation of the L architectural framework. Without the complexity in large companies,
the organizational structure of Company A enables more efficient and effective communication
between the management and engineers. Ideas are quickly and directly exchanged between
developers and the management. The management frequently makes announcements about the
company business policies and funding situations to all employees. This open and direct
atmosphere of the company highly promotes the mutual understanding of engineering and
business.

Executive Team

President and
CEO

Chairman and
CTO

VP of Operatinal
Quality

VP of Finance
and CFO VP of Sales

Figure 4. Organization Chart of Company A

Technical Team

Software Engineers

Figure 5. The Pre-L Structure of Technical Team

The engineering force in Company A has been comparably small and it is essential to organize
the limited engineering resource efficiently to yield maximum productivity. Before the L

 17

architectural framework was created, the Technical Team was primarily composed of software
engineers. Although a couple of engineers worked as technical leaders who had more
responsibilities on technical issues of the contracts, there was no detailed distinction among all
technical staff. Basically, all software engineers in the Pre-L Technical Team worked as a
Solution Group, which at that time was the largest engineering group in the company. For each
specific customer, the entire Solution Group (Technical Team) had to focus intensively during the
development period for the contract. It was unusual that multiple contracts overlapped, in which
case some members of the Solution Group had to work across the boundaries of different
projects.

As the business theme of the company changed to a product line and service provider, the
construction of the L architectural framework has brought fundamental changes to the structure of
the Technical Team of Company A. Of course, there has been other organizational changes in
the company, e.g. the Sales Team, I focus on the Technical Team in this report, which is of more
interest to the targeted readers. Figure 6 briefly illustrates the new team structure. Instead of a
flat organization of software engineers, the Technical Team is now consisted of three major
teams working on component developing, solution providing and domain specific customizing,
and technical supports (customer services). The Technical Development Team is responsible for
creation of the product architecture, development and lifecycle management of the components.
The Product Development Team takes care of the creation of new solutions, including achieving
user experience and maintaining the encapsulation components of the architecture, it is also
responsible for testing and installation of the products at the customer’s site. In each sub-team,
there is one director leading several developers. The Technical Directors have the
responsibilities of leading the company’s innovation process with more focus on high-level
designs, but they also work as developers when necessary. In the Product Support Team,
people provide support to existing customers by answering phone calls in office or fixing
problems in the field.

Technical Team

Director of
Technology

Development

Director of
Product

Development

Director of
Product Support

Software Engineers
Software Testers
Student Co-ops

Software Engineers
Web Designers
Testers

Technical Supporters

Figure 6. The Post-L Structure of Technical Team

Although there are distinct boundaries between teams, the technical roles of each engineer
overlap based on the requirements of the underlying architecture. Basically an engineer could be
one or more of the following:

• Application Component Provider. Creates components, which are the underlying
building blocks of an application.

• User Experience Engineer. Responsible for all aspects of the user experience of the

company’s products, including creating and customizing user interfaces.

• Application Assembler. Takes components and the user interface and assembles
them into a complete application. Writes the application-specific code and customize /
integrate the interface with a User Experience Engineer.

 18

• Deployer. Configures an application for a particular environment and client. Installs the

application into the on-site server of the clients.

• System Administrator. Responsible for configuring and managing the J2EE server and
providing access to deployed applications.

• Tool Provider. Provides an assortment of tools for assisting the various roles.

The introduction of a new architecture framework has brought fundamental changes to the
organization, especially to the engineering team. The roles of each developer have changed
from a single-dimensional mode, to an overlapped, multi-dimensional mode. As each engineer
has increasingly built his knowledge base and therefore taken more responsibilities, the
productivity of the Technical Team has basically increased without further strengthening the
engineer power. This optimization of team structure, along with the technical strength and
engineering practices described in the next sections, contribute to the success of the architecture
framework.

3.4.3 Technical Strength of Company

The software engineering practice in Company A has benefited from the unique advantage of the
strong software engineering background of the company’s management and technical teams. As
the natural outgrowth of one of the nation’s best computer science and engineering programs,
most members of both the executive and the technical teams in Company A have solid
knowledge on software engineering. Among the executive members of the company, there are
chaired professors who have highly accomplished academically in the field of computer system
technology, human computer interaction, and software engineering. Another two of the company
cofounders and current executive members have served respectively as founding director and
research project leader at the Software Engineering Institute (SEI) of CMU. Both of them have
led many programs that aim at various practical software problems in industry. The technical
teams of the company are also composed of outstanding engineers who really understand
software engineering. All three technical directors are equipped with profound software
engineering expertise gained from numerous years of leadership experience on large-scale
software systems, in both industry and academia.

One of the most glaring problems with organizations in software industry has been the failure of
management to exercise its proper role in the development process. While the new technologies
are well understood by the developers, the IT management is often left behind. It is not unusual
that the management teams are composed of mainly “professional executive” type of people
whose background focuses mainly on business during their education and real world experience.
The lack of technical background of the management leads more or less to inadequate insight
into the connection between good software engineering practice and the successful future of a
project or the whole company. It is not rare that the only targets of the management are to
minimize any possible cost, and to maximize the productivity per developer per unit time. They
tend to focus more on the schedule, feature and quality of the final product, while thinking of
design and process as a waste of time. The management struggles to seek the “silver bullet”
technology, while underestimating the effect of slower but more fundamental improvement, even
though there are usually some efforts pushed by the technical team to adopt good software
engineering practices. As a result, the software engineering practices in many industry
organizations are often very primitive.

Being equipped with a strong software engineering background, the executive team in Company
A understands how good software engineering practice will benefit the company in the long run,
and is willing to push this effort from the top level. There leaves enough space for the technical
team to carry out good software engineering techniques and adapt to better practices whenever
necessary. The communication between the technical and the management teams is usually

 19

direct and effective. In particular, the effectiveness of this communication is reflected by the
success of innovative evolution of the L architecture, when the technical team feels the need to
build a general architecture for future products. It is arguably possible though, that the freedom of
research and innovation of the technical team comes partly from the fact that the company has
not been facing much external pressure on requirements, costs and schedule. Therefore not
much tradeoff has to be made by the executive team between the short-term business goals and
the long-term well being of company.

3.4.4 Engineering Processes

It is tricky to balance between technology and ceremony in a developing organization. In high
ceremony organizations the use of engineering processes becomes bureaucratic that any
opportunity for benefit is crushed. In low ceremony organizations, the use of processes becomes
so informal that their impact often never reaches beyond the individual developer. In the optimal
case, the use of processes is institutionalized, but in a manner that balances the need for control
and creativity.

The development team at Company A has been following proper processes in their work, during
the period I was working with them. A set of customized rules has been established for every
engineer to follow. In particular, the routine processes all engineers follow include:

 Regular meetings. The overall goals, major milestones for a specific project and
detailed schedules for each participant are discussed and set up during the planning
phase of a project in this meeting. Each week, engineers should report their progress
toward the milestone for all members in the same project to discuss. The milestones are
flexible enough to be modified according to changing situations.

 Design reviews. Design review and peer discussion are considered to be among the

most effective processes in software development. In Company A, periodical design
reviews and peer evaluations are executed rigorously at the end of each design
milestone. The engineer who owns the module that is being reviewed provides
documentation explaining the design methodologies and implementation details to peer
engineers. The design reviews are very effective since most of the problems are found
during this process.

 Documentation. Documentation are generated and maintained at different development

phases in Company A. During the architecture-building phase, only natural language
descriptions along with necessary diagrams explaining the design ideas of the architects
are generated. After the top-level architecture has been fully verified and the component
design has started, UML is used as the major documentation language. The component
design is documented in User Case diagrams, Class diagrams, and Sequence diagrams,
which also serve as the major media for peer reviews. In addition, effective design tools
that support UML design documentation and automatic code generation, such as
Together (TM) from Boland® are intensively used.

The engineering team produces higher quality products, since the process enables engineers to
remove defects early, at the source. The regular checkpoints keep the cost and schedule on
track, help them to formulate accurate plans and eliminate rework. Although the productivity of
individual engineers tends to remain unchanged, the overall productivity increases because of
shorter cycle time and less iteration cost.

4. Conclusions

 20

This report studies the technology, business, and organizational evolution of a startup software
company. Being a spin-off from a university research project, the company has been actively
adapting its technical and business schemes toward scaling up and being more competitive in the
market. Even under the circumstances of the IT recession, the company has been well situated
and has attracted venture capital and customers.

In conclusion, I identified that the following engineering practices are essential to the success of a
company like Company A:

 Adapt business and technical organizations toward real customer needs

 Strong software engineering background of executives and engineers

 Rigorous, institutionalized development processes

 Adaptive, flexible and compact organization structure

I try to address as many interesting software engineering issues as possible in this report. As the
author has worked with Company A as a part-time student consultant for only four months, the
observation and reflection that are given in this report must be limited.

5. Acknowledgement

Many thanks to Jim Beck, Dick Martin, Will Ross, and Greg Zelenik, without their help this report
could not have been would be no chance for this report to be written. I appreciate all the great
suggestions and advice from my advisor, professor Dan Siewiorek. Many thanks to Priya
Narasimhan also, who is the second faculty reader of this report.

