

Formal Specifications of Calendar Scheduler
- The Z and CSP approach

Models of Software Systems, Fall 2000

PhD Project Report

Lu Luo
December 2000

Specifications of a Calendar Scheduler System Lu Luo

 1 of 30

Formal Specifications of Calendar Scheduler
- The Z and CSP approach

Abstract
This report presents formal specifications using Z and CSP for a calendar scheduler system.

Introduction
This report is for a PhD project of the ISRI course Models of Software Systems at School of
Computer Science of Carnegie Mellon University. The report is composed of three parts. In the
first part, a Z specification for the software system of a calendar scheduler is given; in the second
part, the same system is specified using the language of Communication Sequential Processes
(CSP); a comparison of the two specifications will be given in the third part of this report.

The system

Calendar management is one of the beastly problems of computing. The purpose of a calendar
scheduler is to maintain consistent meetings schedules for a number of people. These schedules
record at least the time, duration, and participants in each meeting. Some of the meetings may
include people whose schedules are not maintained by the calendar scheduler. Meetings may be
added or dropped at any time (up to the moment when they occur), and participants of a meeting
can be added or removed. A meeting may be scheduled at any time that is convenient for all (or
enough) of the meeting participants, except that some of the meetings may need to occur in a
particular order. The scheduler may maintain information about the scheduling preference of the
people it involves. [1]

Z specification language

The Z formal specification language is used for the specification of large software systems. The
language is based on set theory with certain extensions, such as types and schemas. The language
draws on the full expressive power of sets and relations and may be used to specify systems at
both an abstract and a detailed level. The most cost-effective use of Z is for abstract specification
of system or software requirements. At this level, it is possible to use Z to create a model of the
system requirements and analyze that model to ensure that the system exhibits desired properties
and does not have undesired properties. [2]

CSP specification language

The language of CSP was designed for describing systems of interacting components, and it is
supported by an underlying theory for reasoning about them. The conceptual framework taken by
CSP is to consider components, or processes, as independent self-contained entities with
particular interfaces through which they interact with their environment. Processes can be
combined to form a larger system, which is again a self-contained entity with a particular
interface – a (larger) process. [3]

Specifications of a Calendar Scheduler System Lu Luo

 2 of 30

Part I The Z Specification for Calendar Scheduler

1. The state space
The calendar scheduler deals mainly with meetings, time, and people. Although scheduling a
meeting in the real world might need to take into consideration details such as its location and
subjects, within the scope of our specification, we only care the time when the meeting is going to
be held, how long will it last and who will attend the meeting. A meeting is distinguished from
other meetings by its id, which is defined as primitive type:

[MEETINGID]

In reality, the format of the time a meeting is held should be at least expressed as the format
“Hour-Minute-Month-Day-Year”. For the sake of focusing on the key points of the specification
and reducing complexity on trivial operational details, the time in this calendar scheduler system
is defined as two abbreviations of the set of natural numbers N, AbsTime and Duration. AbsTime
stands for the set of absolute time of each minutes, e.g. if an natural number 0 stands for the
absolute time of 12:00 am, January 1, 2000, then the number 26 will stands for 12:26 am, January
1, 2000, and so forth. Duration stands for the set of relative time counted in minutes, e.g. 5 stands
for a period of 5 minutes, etc.

AbsTime == N

Duration == N

An abbreviation TimeSlot is defined as the Cartesian Product of AbsTime and Duration, an
element in TimeSlot indicating a time slot which has a begin time AbsTime and a Duration.

TimeSlot == AbsTime x Duration

A global variable Now is defined indicating the current absolute time, as will be explained later
on in this report, some operations will need current time for comparison purposes.

ÆNow: AbsTime

It is required that a meeting should be scheduled at a time that is convenient for all (or enough) of
the meeting participants. The minimum number that meets the requirement of “enough” is
defined as follows:

ÆMinimumSize: N

There will be situations when operating on meetings and personal schedules that two time slots
are overlapped, the axiom of overlapping is defined as follows:

ÆOverlap: TimeSlot j TimeSlot
«_______________
ÆAs1, s2: TimeSlot
Æ • (s1, s2) e Overlap

Specifications of a Calendar Scheduler System Lu Luo

 3 of 30

Æ ¤ s1 = s2 v s1 . 1 < s2 . 1 + s2 . 2 v s2 . 1 < s1 . 1 + s1 . 2

When two time slots overlap, the AbsTime field in one time slot must fall into the other time slot,
that means, the beginning time of one time slot is either equal to the beginning of the other time
slot, or it is later than the beginning time of the other time slot but earlier than its end time, which
is acquired by adding the begin time AbsTime and the Duration.

There are also needs to measure whether an absolute time is within the scope of a time slot, the
axiom is defined as TimeIn as follows:

ÆTimeIn: AbsTime j TimeSlot
«_______________
ÆAt: AbsTime • As: TimeSlot • (t, s) e TimeIn ¤ s . 1 ̄ t ̄ s . 1 + s . 2

Some detailed facts of a person attending the meetings are not in the scope of our problem. The
time slots preferred by this person in which h/she is willing to attend a meeting is defined as
preferredTime and the time slots in which this person is engaged in meetings is defined as
occupiedTime, both of them are finite power set of TimeSlot.

»_Person ___________________________________
ÆpreferredTime: F TimeSlot
ÆoccupiedTime: F TimeSlot
–_______________________________________

A Meeting has a unique meetingId of the type MEETINGID that distinguish this meeting from
other meetings. The local variable time in a meeting is of the type TimeSlot, which contains both
the beginning time and the duration of this meeting. The finite power set of Person, namely
attendance, contains a group of person who will attend this meeting.

»_Meeting___________________________________
ÆmeetingId: MEETINGID
Ætime: TimeSlot
Æattendance: F Person
–_______________________________________

The state space of the calendar scheduler is described with the schema CalendarScheduler:

»_CalendarScheduler______________________________
Æmeetings: F Meeting
Ægroup: F Person
ÆpersonalSchedule: Person ß F Meeting
«_______________
Ædom personalSchedule = group
Æran personalSchedule = F meetings
ÆAm1, m2: meetings
Æ • m1 Î m2
Æ ¤ m1 . meetingId Î m2 . meetingId ¶ (m1 . time, m2 . time) e Overlap

Specifications of a Calendar Scheduler System Lu Luo

 4 of 30

Æ ¤ m1 . attendance Î m2 . attendance
–_______________________________________

The variables declared in above schema represent different observations of the calendar scheduler:

• meetings is a finite set of meetings of the basic type Meeting, where each meeting is
planned and maintained in the calendar scheduler system;
• group is a finite set of Person, the calendar scheduler system only maintains the personal
schedule (defined later in this report) for the members of the group, although any person
outside the group can attend any meetings;
• personalSchedule is a function from Person to F Meeting, which, when applied to a
specific person, gives all the meetings at which this person is to be an attendance. Only the
personal schedule of a member of a certain group is maintained by this calendar schedule
system.

The invariants of CalendarScheduler give the relationships between state variables and will be
true in every state of the system and will be maintained by every operation on it. Where:

• The domain of function personalSchedule is group, only the personal schedules of
members in the group are maintained by calendar scheduler system;
• The range of function personalSchedule is a finite subset of meetings, the meetings one
person in the group attends is among the meetings maintained by calendar scheduler;
• The predicate:

ÆAm1, m2: meetings
Æ • m1 Î m2 ¤ m1 . meetingId Î m2 . meetingId
Æ ¶ (m1 . time, m2 . time) e Overlap
Æ ¤ m1 . attendance Î m2 . attendance

gives the relationship between two meetings in the set of meetings. For any two meetings m1

and m2 in meetings, m1 is different from m2 if and only if either the two meetings have
different meeting ids; if the time slots of meeting m1 and m2 overlap, it must be true that not
all the attendance of these two meetings are the same. An interesting fact here is that, one
person can attend two overlapping meetings.

2. Initialization
The initial state of calendar scheduler is defined as follows:

»_InitCalendarScheduler____________________________
ÆCalendarScheduler
«_______________
Æmeetings = 0
Ægroup = 0
ÆpersonalSchedule = 0
–_______________________________________

At the very beginning, the calendar is blank, there is no record for meetings and personal
schedules in the system, and nobody is yet a group member.

Specifications of a Calendar Scheduler System Lu Luo

 5 of 30

3. Operations
The operations in calendar scheduler can be classified into three categories: operation on
meetings, operation on people and operation on the group. Operations in the same category have
similar form and can be encapsulated as follows:

»_MeetingOp__________________________________
Æ∆CalendarScheduler
«_______________
Ægroup' = group
–_______________________________________

The operation on meetings will change most variables in CalendarScheduler, but leave the set
group unchanged.

The operation on person only changes the personal schedule of a person, provided he/she is a
member of group, and leaves the set of meetings and group unchanged.

»_PeopleOp __________________________________
Æ∆CalendarScheduler
«_______________
Æmeetings' = meetings
Ægroup' = group
–_______________________________________

The operation on group changes the composition of the group and the personal schedules of
group members, leaving the set meetings unchanged in CalendarSchduler.

»_GroupOp___________________________________
Æ∆CalendarScheduler
«_______________
Æmeetings' = meetings
–_______________________________________

Plan a meeting

A meeting may be scheduled at any time that is convenient for all (or enough) of the meeting
participants, except that some of the meetings may need to occur in a particular order. The
operation PlanMeeting plans a meeting according to the personal time preferences of potential
attendances and to the schedules of other planned meetings before adding this meeting to the
calendar. The minimum (enough) number of participants is defined above as a natural number
MinimumSize:

ÆMinimumSize: N

The PlanMeeting operation has four input variables:

• id? is a MEETINGID that identifies the meeting being planned;
• who? is a finite power set of Person who are going to attend the meeting being planned;

Specifications of a Calendar Scheduler System Lu Luo

 6 of 30

• expBeginTime? is a finite set of absolute time AbsTime, indicating all the suitable absolute
time on which the meeting being planned is expected to be scheduled. This input variable
reflects the requirement for scheduling a meeting that some of the meetings may need to
occur in a particular order. For example, if we hope this meeting to be scheduled between two
other meetings, the set expBeginTime? should indicate some absolute time that is in the
middle of the time slots of the other two meetings.

The PlanMeeting operation outputs a finite power set of AbsTime, time!, any absolute time in the
set time! is a suitable time to schedule the meeting, without violating personal time preferences
and personal meeting schedules of the group members, therefore, the new meeting can be
scheduled at any absolute time in the set time!.

The PlanMeeting operation does not change the system state since it only gives out a set of
suitable begin time for the meeting:

»_PlanMeeting_________________________________
ÆΞCalendarScheduler
Æid?: MEETINGID
Æwho?: F Person
ÆexpBeginTime?: F AbsTime
ÆprfTimeSlot, ocpTimeSlot: F TimeSlot
ÆprfTime, ocpTime: F AbsTime
Ætime!: F AbsTime
«_______________
ÆAm: meetings • m . meetingId Î id?
ÆprfTimeSlot = { t: TimeSlot | Ap: group • p e who? ¶ t e p . preferredTime }
ÆprfTime = { t: AbsTime | Ats: prfTimeSlot • (t, ts) e TimeIn }
ÆocpTimeSlot = { t: TimeSlot | Ap: group • p e who? ¶ t e p . occupiedTime }
ÆocpTime = { t: AbsTime | Ats: ocpTimeSlot • (t, ts) e TimeIn }
ÆprfTime I expBeginTime? Î 0 ¤ time! = prfTime I expBeginTime?
ÆprfTime I expBeginTime? = 0 ¶ expBeginTime? \ ocpTime Î 0
Æ¤ time! = expBeginTime? \ ocpTime
ÆprfTime I expBeginTime? = 0 ¶ expBeginTime? \ ocpTime = 0 ¤ time! = 0
–_______________________________________

The precondition:

ÆAm: meetings • m . meetingId Î id?

restricts that the meeting being planned should not be already in the set of meetings, in which
every meeting has been scheduled in the calendar scheduler.

Several local variables are needed in order to get more straightforward predicates instead of long,
complicated ones in the schema:

Specifications of a Calendar Scheduler System Lu Luo

 7 of 30

• prfTimeSlot is a finite power set of TimeSlot, which collects the time slots that are preferred
by all the people who are both a group member and an attendance of the meeting being
planned, i.e. the preferred time slots of the people in the intersection of set who? and group;

ÆprfTimeSlot = { t: TimeSlot | Ap: group • p e who? ¶ t e p . preferredTime }

• ocpTimeSlot is a finite power set of TimeSlot, which collects all the time slots that are
occupied by a meeting on the personal schedules of attending group members;

ÆocpTimeSlot = { t: TimeSlot | Ap: group • p e who? ¶ t e p . occupiedTime }

• prfTime is a finite set of AbsTime, which indicating that the meeting can begin on any
absolute time in this set;

ÆprfTime = { t: AbsTime | Ats: prfTimeSlot • (t, ts) e TimeIn }

• ocpTime is a finite set of AbsTime, which indicating that the meeting cannot begin on any
absolute time in this set.

ÆocpTime = { t: AbsTime | Ats: ocpTimeSlot • (t, ts) e TimeIn }

Now we have two sets of absolute time that match the personal preference of everybody in the
group as well as their personal schedules. prfTime tells us when all these people are willing to
attend a meeting and ocptime tells us when all the group members are not available, within the
given expected beginning time of the meeting. If we can find some absolute time in both sets
prfTime and expBeginTime? we are free to choose any time as the beginning time of the new
meeting:

ÆprfTime I expBeginTime? Î 0 ¤ time! = prfTime I expBeginTime?

It is possible that we cannot find any expected begin time that the attending group members
prefer in common, i.e. prfTime I expBeginTime? = 0, but some expected begin time not
occupied by meetings on the attendances’ personal schedules, then we can schedule the new
meeting on these absolute time, which will not disturb group member’s personal schedule,
although not preferred by all:

ÆprfTime I expBeginTime? = 0 ¶ expBeginTime? \ ocpTime Î 0
Æ¤ time! = expBeginTime? \ ocpTime

If neither any preferred begin time nor non-occupied time is found, the meeting planning
operation fails and returns an empty set of absolute time, in order the begin time of the meeting to
be planned successfully, another expected begin time of the meeting should be chosen.

ÆprfTime I expBeginTime? = 0 ¶ expBeginTime? \ ocpTime = 0 ¤ time! = 0

Specifications of a Calendar Scheduler System Lu Luo

 8 of 30

Assign the attributes to a meeting

By above operation planMeeting, if a set of absolute time (either is preferred by attending group
members, or not occupied by those people) can be found, the beginning time of the new meeting
can be chosen from the set of absolute time. Before adding the new meeting to the calendar
scheduler, all the local variables should be given a value:

The operation AssignTime has following input variables:

• id? is the meeting ID that is unique to this meeting;
• time? is an absolute time chosen from the result absolute time set of PlanMeeting operation,
or a time that doesn’t conflict with most of the group members attending this meeting;
• who? is the set of people who will participate in this meeting, there could be non-group-
member people who want to attend the meeting.

»_AssignMeeting________________________________
ÆΞCalendarScheduler
Æid?: MEETINGID
Ætime?: TimeSlot
Æwho?: F Person
Ægroupmember: F Person
Æmeeting!: Meeting
«_______________
ÆAm: meetings • m . meetingId Î id?
Ægroupmember = { p: Person | p e group ¶ p e who? }
Æ# groupmember ˘ MinimumSize
Æmeeting! . meetingId = id?
Æmeeting! . time = time?
Æmeeting! . attendance = who?
–_______________________________________

The local variable groupmember is a temporary set of Person who are both attendance of the
meeting and a group member, the size of groupmemter should be greater than or equal to
MinimumSize, which makes sure that enough group member attend the meeting.

The post-conditions of AssignMeeting operation simply assign the meetingId, time and attendance
to the output variable meeting!.

Add a meeting to the calendar

After assigning the attributes to a meeting, the schedule and attendance of this meeting can be
added to the CalendarScheduler:

»_AddMeeting _________________________________
ÆMeetingOp
Ænewmeeting?: Meeting
«_______________

Specifications of a Calendar Scheduler System Lu Luo

 9 of 30

ÆAm: meetings • newmeeting? . meetingId Î m . meetingId
ÆNow ̄ newmeeting? . time . 1
ÆAp: group
Æ • p e newmeeting? . attendance
Æ ¤ personalSchedule' p = personalSchedule p U {newmeeting?}
Æ ¶ p . occupiedTime = p . occupiedTime U {newmeeting? . time}
Æmeetings' = meetings U {newmeeting?}
–_______________________________________

The operation AddMeeting has a input variable:

• newmeeting? is the meeting that is ready to be added to and maintained by
CalandarScheduler, where the time, attendance and meetingId of this meeting have been
assigned by AssignMeeting operation defined above.

The precondition of the AddMeeting operation is that no existing meeting in the set meetings has
the same meeting Id as the new meeting, this makes sure that the meeting is new to the system
and no existing meeting and personal schedule is modified during this operation.

ÆAm: meetings • newmeeting? . meetingId Î m . meetingId

The time that a new meeting is added to the system should be no later than the beginning time of
this meeting. As defined above, the global variable Now indicates current absolute time, and the
first element of a TimeSlot is an absolute time, which, when used on meeting, tells us the
beginning time of the meeting:

ÆNow ̄ newmeeting? . time . 1

On adding a new meeting to the system, the personal schedules of group members will be
changed, i.e. the new meeting is added to the personalSchedule of those who are both a group
member and the attendance of the new meeting, the time slots this new meeting takes will also be
marked on the occupiedTime list of those group members:

ÆAp: group
Æ • p e newmeeting? . attendance
Æ ¤ personalSchedule' p = personalSchedule p U {newmeeting?}
Æ ¶ p . occupiedTime = p . occupiedTime U {newmeeting? . time}

The new meeting is also added to the set meetings:

Æmeetings' = meetings U {newmeeting?}

Drop a meeting from the calendar

If, for some reason, a meeting has to be cancelled, it is necessary to remove the schedule for this
meeting from the calendar. The DropMeeting operation serves this purpose:

Specifications of a Calendar Scheduler System Lu Luo

 10 of 30

»_DropMeeting_________________________________
ÆMeetingOp
Æabortmeeting?: Meeting
«_______________
Æabortmeeting? e meetings
ÆNow ̄ abortmeeting? . time . 1
Æmeetings' = meetings \ {abortmeeting?}
ÆAp: group
Æ • p e abortmeeting? . attendance
Æ ¤ p . occupiedTime = p . occupiedTime \ {abortmeeting? . time}
Æ ¶ personalSchedule' p = personalSchedule p \ {abortmeeting?}
–_______________________________________

The input variable abortmeeting? is the meeting that is being cancelled.

The preconditions of this operation restrict that the abortmeeting? must already be an element of
meetings set, i.e. the meeting being aborted is already a meeting maintained by calendar scheduler
system. It is also required that the time Now to drop the meeting should be before the time the
meeting begins or during the process of this meeting:

Æabortmeeting? e meetings
ÆNow ̄ abortmeeting? . time . 1 + abortmeeting? . time . 2

The post-condition of DropMeeting eliminates the dropped meeting from calendar scheduler. The
post-condition

Æmeetings' = meetings \ {abortmeeting?}

The post-condition

ÆAp: group
Æ • p e abortmeeting? . attendance
Æ ¤ p . occupiedTime = p . occupiedTime \ {abortmeeting? . time}
Æ ¶ personalSchedule' p = personalSchedule p \ {abortmeeting?}

maintains the personal schedule of group members who planned to attend this meeting. For every
person in the group, if this person is the attendance of the meeting being aborted, the meeting
should be removed from the set of meetings (personalSchedule) this person attends. All the time
slots this meeting occupied on this person’s schedule should also be removed indicating the
person will not be engaged in these time slots.

Add a participant to a meeting

A new participant can be added at any time to the participants of a meeting, provided that the new
attendance must be added before the meeting ends.

Specifications of a Calendar Scheduler System Lu Luo

 11 of 30

»_AddParticipant _______________________________
ÆPeopleOp
Æexistmeeting?: Meeting
Ænewperson?: Person
«_______________
Æexistmeeting? e meetings
Ænewperson? e group ¶ existmeeting? ‰ personalSchedule newperson?
Æv newperson? ‰ group
ÆNow ̄ existmeeting? . time . 1
Æif newperson? e group
Æthen personalSchedule' newperson?
Æ = personalSchedule newperson? U {existmeeting?}
Æ ¶ newperson? . occupiedTime
Æ = newperson? . occupiedTime U {existmeeting? . time}
Æelse personalSchedule' = personalSchedule
–_______________________________________

The operation AddParticipant has two input variables:
• existmeeting? is the meeting that the new participant wants to attend;
• newperson? is an element of the set Person, who wants to attend a meeting that is already
scheduled on calendar. It doesn’t matter whether the person is a member of the group or not;

The preconditions of AddParticipant constraint on the input variables:

• The meeting the new participant wants to attend must be in the set of meetings that is
maintained by calendar scheduler;

Æexistmeeting? e meetings

• If the new attendant is a member of the group, the meeting he/she wants to attend shall
not be already on his/her personal schedule, i.e. a person cannot attend the same meeting
twice. If the new attendant is not a group member, the system doesn’t examine his/her
personal schedule.

Ænewperson? e group ¶ existmeeting? ‰ personalSchedule newperson?
Æv newperson? ‰ group

• The time this new participant wants to join the meeting should be no later than the time
the meeting is over, that means the new participant attends the meeting before it begins or
during its process, it is nonsense for a person to attend a meeting after the meeting is over.

ÆNow ̄ existmeeting? . time . 1 + existmeeting? . time . 2

If the new attendant is a member of the group whose schedule is maintained by the system, the
personal schedule of meetings and time will be updated by the post condition:

Æif newperson? e group
Æthen personalSchedule' newperson?

Specifications of a Calendar Scheduler System Lu Luo

 12 of 30

Æ = personalSchedule newperson? U {existmeeting?}
Æ ¶ newperson? . occupiedTime
Æ = newperson? . occupiedTime U {existmeeting? . time}

where the new meeting this person will attend is added to his/her personal schedule and the
personal schedule is marked with the time slots this meeting occupied indicating that this person
will be engaged in these new time slots.

If the new attendant is not a group member, the set personalSchedule and occupiedTime stay
unchanged: the system won’t maintain the personal schedule of non-group members.

Æelse personalSchedule' = personalSchedule

Remove a participant from a meeting

Similarly, an existing participant can be removed from the participant list of a meeting, if the
meeting has not been held yet.

The operation RemoveParticipant has three input variables:

• existmeeting? is the meeting that a participant wants to quit attending;
• existperson? is an element of the set Person, who wants to quit a meeting that is already
scheduled on calendar, it doesn’t matter whether the person is a member of the group or not;

»_RemoveParticipant______________________________
ÆPeopleOp
Æexistmeeting?: Meeting
Æexistperson?: Person
«_______________
Æexistmeeting? e meetings
Æexistperson? e existmeeting? . attendance
ÆNow ̄ existmeeting? . time . 1 + existmeeting? . time . 2
Æexistmeeting? . attendance = existmeeting? . attendance \ {existperson?}
Æif existperson? e group
Æthen personalSchedule' existperson?
Æ = personalSchedule existperson? \ {existmeeting?}
Æ ¶ existperson? . occupiedTime
Æ = existperson? . occupiedTime \ {existmeeting? . time}
Æelse personalSchedule' = personalSchedule
–_______________________________________

The preconditions of RemoveParticipant give some constraints on the input variables:
• The meeting the participant wants to quit must be already in the set of meetings, which is
maintained by calendar scheduler;

Æexistmeeting? e meetings

Specifications of a Calendar Scheduler System Lu Luo

 13 of 30

• The person who wants to quit the meeting must be on the attendant list of the existing
meeting he/she wants to quit.

Æexistperson? e existmeeting? . attendance

• The time the person wants to quit the meeting should be no later than the time the
meeting is over.

ÆNow ̄ existmeeting? . time . 1 + existmeeting? . time . 2

The system updates the attendance function for the existing meeting by removing the person from
its attendance set.

If the quitting attendant is a member of the group whose schedule is maintained by the system,
the personal schedule of meetings and time will be updated by the post condition:

Æif existperson? e group
Æthen personalSchedule' existperson?
Æ = personalSchedule existperson? \ {existmeeting?}
Æ ¶ existperson? . occupiedTime
Æ = existperson? . occupiedTime \ {existmeeting? . time}

where the exist meeting this person will quit is removed from his/her personal meeting list and
the time slots this meeting occupied on this person’s personal schedule are released which
indicates that this person will be free in these time slots.

If the quitting attendant is not a group member, the sets personalSchedule and occupiedTime in
the person’s stay unchanged, the system won’t maintain the personal schedule of non-group
members.

Æelse personalSchedule' = personalSchedule

Add a member to the group

The group of people whose personal schedules are maintained by the calendar scheduler can be
added to new members at any time:

»_AddMember__________________________________
ÆGroupOp
Æmember?: Person
«_______________
Æmember? ‰ group
Æmember?. occupiedTime = 0
Ægroup' = group U {member?}
ÆpersonalSchedule' = personalSchedule U {(member? å 0)}
–_______________________________________

Specifications of a Calendar Scheduler System Lu Luo

 14 of 30

The input variable of AddMember operation, member?, is an element of set Person.

The precondition of AddMember operation restricts that the person joining the group should not
be an existing member in the group. There should be no record of occupied time slots in the new
member’s personal schedule.

The post-condition of AddMember updates the group set by adding the new member in it. When a
member is newly added to the group, there is nothing in his/her personal schedule of meetings
and time slots engaged to meetings:

ÆpersonalSchedule' = personalSchedule U {(member? å 0)}

Remove a member from the group

The member in the group of people whose personal schedules are maintained by the calendar
scheduler can be removed at any time:

»_RemoveMember ________________________________
ÆGroupOp
Æmember?: Person
«_______________
Æmember? e group
Ægroup' = group \ {member?}
ÆpersonalSchedule' = {member?} y personalSchedule
–_______________________________________

The input variable of RemoveMember operation, member?, is an element of set Person.

The precondition of RemoveMember operation restricts that the person leaving the group shall be
an existing member in the group.

The post-condition of RemoveMember updates the group set by getting rid of the old member in it.
When a member is newly removed from the group, his/her personal schedule of meetings should
not be maintained by the system any longer, therefore it should be removed from calendar
scheduler. We update the personalSchedule by domain subtraction:

 ÆpersonalSchedule' = {member?} y personalSchedule

4. Issues
The part has demonstrated the feasibility of formally specifying the calendar scheduler system.
Some key points are taken into consideration when specifying the system using Z, as follows:

What can this specification do?

• Maintains consistent meetings schedules for a number of people;

Specifications of a Calendar Scheduler System Lu Luo

 15 of 30

• Records the time, duration, and participants in each meeting includes people whose
schedules are not maintained by the calendar scheduler;

• Meetings may be added or dropped at any time (up to the moment when they finish);

• Participants of a meeting can be added or removed;

• A meeting can be scheduled at any time that is convenient for all (or enough) of the

meeting participants;

• The set of individual preferences on time is expressed and accommodated;

• Different personal calendar schedules are maintained;

• It is easy to define and manipulate the time of meetings, provided that a suitable time slot

can be found within the expected time scope;

What is missing/difficult in this specification?

• When scheduling a meeting, there is the risk that no proper beginning time can be found
according to the expected begin time chosen for the meeting, the expected time scope
should be revised under this situation.

This is one of the problems that cannot be solved by a better specification with more
complicated operations, a system cannot do everything automatically, and sometimes it’s
necessary that the user intervenes the system operations.

• Limited by the scope of this class report, only the personal schedules of one group of
people are maintained, however it is easy to maintain several different groups.

• The representations of personal calendar are not distinguished and personalized, it is

possible to do so with longer time and more detailed design.

• There are chances that some aspects of a meeting (e.g. time, attendance) need to be

changed instead of being simply dropped, where there’s no ChangeMeeting operation in
this specification. However this can be acquired by first dropping the meeting, then
assigning new attributes to it and adding it back to the system.

• It is hard to reflect in this specification how to solve the conflicts between personal

schedules and the schedules of meetings. For example, if some one wants to attend a
meeting scheduled on a time slot that this person is already engaged in other meetings.
Currently no solution for this problem is provided in this specification, but I am sure it is
possible to solve it with Z specification without too much pain.

• When failed to schedule a meeting (cannot find a proper time), it is not clearly answered

in this specification how many personal schedule mismatch the expected time scope, one
or one hundred. However it is possible to tell by further working given enough time.

Specifications of a Calendar Scheduler System Lu Luo

 16 of 30

Part II: The CSP Specification for Calendar Scheduler

1. General ideas of the specification
Using the language of CSP, I specify the calendar scheduler system with a top-down approach,
i.e. beginning with a primary system function description process as the “root”, then decompose
and detail the process into sub-processes corresponding to different operations on the system.
Some of the sub-processes will be further divided into smaller processes and thus be described
with detail, which helps better understand the specific operation.

2. The system
The Calendar Scheduler system deals mainly with meetings, time and people, it maintains the
records of meetings, schedules and attendance of meetings, the personal schedule of group
members and, of course the group membership. It is not absolutely necessary to define the state
spaces delicately but definitions on some sets that will be used in future specification are helpful.

Set definition

There are two kinds of time concepts in my specification, absolute time and time duration,
defined as AbsTime and Duration accordingly. When the system is being implemented, the format
of both sets should be closer to the time format in the real world, but in a system specification the
conceptual aspects serve enough.

AbsTime = {t | t is a moment}
Duration = {d | d is a time period}

The Meeting set is a gathering of all meetings that can be maintained by the calendar scheduler
system. Every meeting in Meeting has a begin time of the type AbsTime, a duration of the type
Duration and some attendance of the type People (defined below).

Meeting = {m | m is a meeting}

The People set stands for the whole universe of man-kind, under the context of this specification,
it is the set of people who can attend the meetings in the system. Every person in People has a
“preferred time slots set” and an “occupied time slots set”, which are subsets of AbsTime x
Duration, on these time slots this person is willing to attend a meeting, or is engaged in a
meeting, accordingly.

People = {p | p is a human being}

The Group set is a group of people whose personal calendar is maintained and whose preferences
towards meetings are taken care of by the system.

Group = {p | p e People and p’s personal schedule is maintained}

The Calendar

The calendar scheduler system is initialed at the very beginning with the event initCalendar.
After the initialization different operations can be performed on the system. The process
OPERATION will be further decomposed in following sections.

Specifications of a Calendar Scheduler System Lu Luo

 17 of 30

CALENDAR_SCHEDULER = initCalendar f OPERATION

There are three kinds of operations on the system. The operation on meetings selects time slots
for a meeting to be scheduled on, adds a new meeting to the calendar, or removes an existing
meeting from the calendar. The operation on people makes a person to be a new participant of a
meeting, removes the person from meeting attendance and updates his/her personal schedule. The
operation on group adds and removes member of the group, once being removed, the person’s
schedule is no longer maintained by the system.

OPERATION = MEETINGOP p PEOPLEOP p GROUPOP

The OPERATION process is composed of MEETINGOP, PEOPLEOP and GROUPOP. When to
perform which sub-process is up to the users so that the external choice is used here.

3. Operating on meetings

Description

The meeting process deals with the consistent schedules for a number of meetings. These
schedules record the time, duration, and participants in each meeting. The scheduling of a
meeting should take into consideration a common time that is preferred by the participants who
are the members of the group, or at least the meeting should be scheduled at a time that all of the
group member participants are free. People out of the group can also take part in meetings but
their scheduling preferences are not considered. Up to the moment a meeting occurs, it can be
added to or dropped from the system.

The MEETINGOP process

A meeting operation can be either adding a meeting to the calendar or dropping a meeting. The
MEETINGOP process is the external choice between these two processes: ADD_MEETING and
DROP_MEETING.

MEETINGOP = ADD_MEETING p DROP_MEETING

Add a meeting

In order to add a meeting to the calendar scheduler system, we should first schedule a time for the
meeting. The time slot to be selected should be based on the personal preferences of attendance
that are members of the group, if no time is preferred by all group-member attendance, the
meeting should be scheduled at a time that no attending group member is engaged in other
meetings. After successfully selecting the meeting time, the record for the information of this
meeting is added to the calendar.

ADD_MEETING = CHECK_SCHED; SELECT_TIME; ADD_TO_CALENDAR

The ADD_MEETING process is the sequential composition of processes CHECK_SCHED,
SELECT_TIME and ADD_TO_CALENDAR. When a meeting is added to the calendar scheduler

Specifications of a Calendar Scheduler System Lu Luo

 18 of 30

system, all these processes will execute in accordance with the order as showed in
ADD_MEETING.

The CHECK_SCHED process checks the personal schedules of all the group members who will
attend the meeting, and gives out a preferred time set, the elements of the preferred time set are
time slots preferred in common by these attending group members.

CHECK_SCHED =

participant? p: People f (NON_MEMBER p MEMBER)

The process has an input channel participant?, through which the information of one potential
participant is input at a time. For each person p, the process makes an external choice whether to
execute NON_MEMBER process or MEMBER process, depending on the membership of p,

NON_MEMBER = not_group_member . p f (ANY_MORE p NO_MORE)

The NON_MEMBER process makes a judgment that the person p is not a group member, which
means that the CHECK_SCHED process doesn’t care p’s scheduling preference. If there are
meeting participants whose schedules are not checked yet, the CHECK_SCHED process
continues; if no more checking is needed, the process ends successfully

ANY_MORE = any_more_participant f CHECK_SCHED

NO_MORE = no_more_participant f SKIP

If the person p is a group member, CHECK_SCHED process chooses to execute MEMBER
process.

MEMBER = group_member . p f check_schedule . p f preferredtime! p . preferredtime f
occupiedtime! p. occupiedtime f (ANY_MORE p NO_MORE)

The MEMBER process has two out put channels: preferredtime! and occupiedtime!. According to
the information of a person p via the input channel of CHECK_SCHED, MEMBER process
checks the personal schedule of p, and outputs p’s preferred time slots p.preferredtime and
occupied time slots p.occupiedtime via the two output channels preferredtime! and occupiedtime!
correspondingly. Again, if all participants’ personal schedules have been checked, the process
gets a successful termination, otherwise continues checking.

The SELECT_TIME process accepts a scope of abstract time as input via the channel
exptimescope?, the input time scope within this scope is an absolute time set, indicating that the
organizers of the meeting want it to be scheduled on some special time instead of scheduling the
meeting freely. The preferred time and the occupied time slots output from CHECK_SCHED
process are also input via the input channels with the same channel name corresponding to the
output channels in CHECK_SCHED process.

SELECT_TIME = exptimescope? ts: F AbsTime f FIND_TIME_P

SELECT_TIME executes process FIND_TIME_P first. The process looks for a suitable time that
meets the requirements of both the preferred time set and the time scope set, if the event

Specifications of a Calendar Scheduler System Lu Luo

 19 of 30

find_suitable_time_p, succeeds, FIND_TIME_P puts the select time in the value result, outputs
the result via an output channel meetingtime!, and terminates successfully.

FIND_TIME_P = preferredtime? pt: F AbsTime f ((find_suitable_time_p f meetingtime!.
result f SKIP) p (not_found_p f FIND_TIME_O))

If FIND_TIME_P cannot find a compatible time that satisfied both the preferred time set and the
expected time scope, as indicated by event not_found_p, the process turns into process
FIND_TIME_O.

FIND_TIME_O = occupiedtime? ot: F AbsTime f (find_suitable_time_o f meetingtime!
result f SKIP) p (not_found_o f SELECT_TIME)

FIND_TIME_O checks the input from the other channel occupiedtime?, event
find_suitable_time_o indicates that an expected time slot can be found on which all the attending
group members are not engaged in meetings, and the process ends up with outputting the result
via the same channel meetingtime!.

It is quite possible that a suitable time cannot be found during FIND_TIME_O process. Under this
situation, the FIND_TIME_O process goes back to SELECT_TIME process, the meeting has to be
re-planned by choosing some other expected time slots and do the same time selection again until
a good time is found.

After successfully selecting the time slot that a meeting could be scheduled in, the meeting with
its information, i.e. begin time, duration and attendance, can be added to the calendar system
now:

ADD_TO_CALENDAR = meeting?m : Meeting f time?t : AbsTime f duration?d :
Duration f check_calendar.m f (ERROR_MTN_EXIST p ERROR_OVERDUE p
SUCCESS_ADD)

The process adding a meeting to the calendar system inputs the meeting from a channel meeting?.
The meeting is a component of the set Meeting, the begin time t of the meeting, scheduled with
above processes, and the duration d of the meeting are also input via channel time? and duration?
correspondingly.

Having the input information of the new meeting, the process checks the calendar. This checking
procedure can be either successful or erroneous. If the process gets to know by meeting_exist that
the meeting being scheduled is an existing meeting in the system , the process gives out an error
message “meeting exists” via the output channel error! and returns to the process OPERATION.
The output shows the meeting m has already existed.

ERROR_MTN_EXIST = meeting_exists.m f error! mtnexist.m f OPERATION

If the time when this meeting is added to calendar is later than the time it is supposed to finish, it
is nonsense to add this meeting to the system any more, so if the process finds that the meeting is
overdue, overdue.m, the process gives out an error message “overdue” via the output channel
error! and return to OPERATION.

Specifications of a Calendar Scheduler System Lu Luo

 20 of 30

ERROR_OVERDUE = overdue.m f error! overdue.m f OPERATION

If the meeting is neither an existing meeting nor overdue, the ADD_TO_CALENDAR process gets
the event add_to_calendar.m by marking the new meeting on the calendar. Then the process
inputs the attendance set made up of group members, which should be a subset of the real
attendance of the meeting, since we don’t care the personal schedules of those participants who
are not group members. For every person p in the input set, the process updates his/her personal
schedule using the event mark_on_schedule.m.p, and terminates successfully. These processes
adding meeting information to personal schedules synchronize with each other.

SUCCESS_ADD = meeting_not_exist.m f not_overdue.mf add_to_calendar.m f

attendance?attd : F Group f || p em. attd (mark_on_schedule.m.p f OPERATION)

Of course there are often the needs to change the schedule of a meeting, limited by time and
space, I do not specify an operation like CHANGE_MEETING_SCHEDULE in this report,
however it is very easy to specify such kind of operation. By using the DROP_MEETING and
ADD_MEETING operations specified in this report, the same functional target can be acquired
with only a little more effort.

Drop a meeting

In order to drop a meeting, the DROP_MEETING process inputs a meeting m through channel
meetings?.

DROP_MEETING = meeting?.m : Meeting f check_calendar.m f

(ERROR_MTN_NOT_EXIST p ERROR_OVERDUE p SUCCESS_DROP)

It checks the calendar first, if the meeting does not exist in the system, it is impossible to drop it
any way. The process ERROR_MTN_NOT_EXIST leads an end to dropping meeting process
giving out an error message “meeting does not exist” and return.

ERROR_MTN_NOT_EXIST = meeting_not_exist.m f error!mtnnotexist.m f

OPERATION

Similarly, if the meeting is being dropped when it is already overdue, the overdue(m) events gives
out error message “overdue” via output channel error! , terminates this dropping meeting
operation and returns to the beginning of OPERATION. The overdue process is defined in the last
section.

If the meeting is an existing meeting and is not overdue, the process removes the meeting from
the calendar. Then the process inputs the attendance set made up of group members, which
should be a subset of the real attendance of the meeting, since we don’t care the personal
schedules of those participants who are not group members. For every person p in the input set,
the process updates his/her personal schedule using the event remove_from_schedule.m.p, and
terminates successfully. These processes synchronize with each other.

SUCCESS_DROP = meeting_exists.m f not_overdue.m f remove_from_calendar.m f
attendance?attd : F Group f || p e attd (remove_from_schedule.m.p f OPERATION)

Specifications of a Calendar Scheduler System Lu Luo

 21 of 30

4. Operation on people

Description

The people process deals with the personal schedules for a number of people. These people
should be members of the group.

The PEOPLEOP process

The operation on people should pay attention to the membership of this person. A people
operation can be either adding a person to the attendance of a meeting, or removing the person
from the participant list of the meeting. The PEOPLEOP process is an external choice between
these two processes: ADD_PARTICIPANT and REMOVE_PARTICIPANT.

PEOPLEOP = ADD_PARTICIPANT p REMOVE_PARTICIPANT

Add a participant to a meeting

The process adding a participant to a meeting inputs the person p from the input channel
input_people?. The person can either be a group member or not. A meeting m that this person
wants to attend is also an input of the process via the channel input_meeting?.

ADD_PARTICIPANT = input_people? p: People f input_meeting? m: Meeting f
check_calendar.m.p f check_participant.m.p f (ERROR_MTN_NOT_EXIST p
ERROR_OVERDUE p ERROR_PARTICIPANT_EXIST p
SUCCESS_ADD_PARTICIPANT)

Based on the information of the two inputs, the process checks the calendar, if the meeting is
overdue, the process gives out the error message “overdue”, then returns. Similarly, if the meeting
isn’t in the system at all, “meeting doesn’t exist” error will be given out, process returns (these
two error handling processes are defined in previous sections); if the person is already a
participant of the meeting, the process returns with error “participant exists”. All the error
messages are given out via channel error!.

ERROR_PARTICIPANT_EXIST = participant_exists.m. p f error! pttexist f
OPERATION

If the both the meeting and the participant are good enough that they satisfy all the requirements,
i.e. the meeting is neither overdue nor non-exist in the calendar, and the person is not already a
participant, then the process add this new participant to the meeting.

SUCCESS_ADD_PARTICIPANT = not_overdue. m f meeting_exists. m f
participant_not_exist.m. p f add_participant. m. p f (NON_MEMBER p
ADD_MEMBER)

If the person is not a group member, the process terminates successfully without further action; if
the person is a group member, the process mark the meeting and its parameters to the personal
schedule of this new participant.

Specifications of a Calendar Scheduler System Lu Luo

 22 of 30

NON_MEMBER = not_group_member. p f OPERATION

ADD_MEMBER = group_member.pf mark_on_schedule.m. p f OPERATION

Remove a participant from a meeting

The process removing a participant from a meeting inputs the person p from the input channel
participant?. The person can either be a group member or not. A meeting m that this person
wants to attend is also an input of the process via the channel meeting?.

REMOVE_PARTICIPANT = participant?. p: People f meeting?. m: Meeting f
check_calendar.m f check_participant.m.p f (ERROR_MTN_NOT_EXIST p
ERROR_OVERDUE p ERROR_PARTICIPANT_NOT_EXIST p
SUCCESS_REMOVE_PARTICIPANT)

Based on the information of the two inputs, the process checks the calendar, if the meeting is
overdue, the process gives out the error message “overdue”, then returns. Similarly, if the meeting
isn’t in the system at all, “meeting doesn’t exist” error will be given out, process returns; if the
person is not a participant of the meeting, the process returns with error “participant doesn’t
exist” therefore the participant cannot be removed. All the error messages are given out via
channel error!. Except for process ERROR_PARTICIPANT_NOT_EXIST defined below, other
error outputting processes are defined in previous sections.

ERROR_PARTICIPANT_NOT_EXIST = participant_not_exist.m. p f error! pttnotexist
f OPERATION

If the meeting is neither overdue nor non-exist in the calendar, and the person is a participant to
this meeting, then the process remove this new participant from the attendance of the meeting. If
the person is not a group member, the process terminates successfully without further action; if
the person is a group member, the process get rid of the meeting and its parameters from the
personal schedule of this quitting participant.

SUCCESS_REMOVE_PARTICIPANT = not_overdue . m f meeting_exists. m f
participant_exists.m. p f remove_participant. m. p f (NON_MEMBER p
REMOVE_MEMBER)

REMOVE_MEMBER = group_member.pf remove_from_schedule . m. p f OPERATION

5. Operation on group

Description

The group process deals with the membership of people.

The GROUPOP process

Specifications of a Calendar Scheduler System Lu Luo

 23 of 30

The operation on group adds a person as a new member of the group, or removes the person from
the group. The GROUPOP process is the external choice between processes ADD_MEMBER and
REMOVE_MEMBER.

GROUPOP = ADD_MEMBER p REMOVE_MEMBER

Add a person to the group

This process adds a person to the group, after the person has the new membership, his/her
personal schedule will be maintained by the system.

The process inputs the person p from the input channel input_people?. If the person is an existing
member of the group, the process gives out the error message “member already exist” and returns.
For a new member, the person is added to the group and the process terminates successfully.

ADD_MEMBER = input_people? p: People f ((member_exist.p f error_mbrexist! p f

OPERATION) p (member_not_exist.p f add_to_group. p f OPERATION))

The personal preferences and engagements of the new group member are not input explicitly
here, by default, these personal schedule -related things are maintained.

Remove a pe rson from the group

This process removes a person from the group, the person should be an existing group member
but after the person quits the group, his/her personal schedule is no longer maintained by the
system.

The process inputs the person p from the input channel input_people?. If the person is not an
existing member of the group, the process gives out the error message “member doesn’t exist”
and returns. For an old member, the person is removed from the group and the process terminates
successfully.

REMOVE_MEMBER = input_people? p: People f ((member_not_exist . p f
error_mbrnotexist! p f OPERATION) p (member_exist.p f remove_from_group.p f
OPERATION))

6. Issues

This part has demonstrated a specification of a Calendar Scheduler system using the language of
CSP. For the sake of comparing these two kinds of specification on the same system, the
operations in this CSP specification is intentionally written in the same way as in the previous Z-
spec part, although the CSP approach can be written otherwise.

What does this specification do?

• Maintains the schedules and attendance of meetings, maintains personal schedules of a
group of people, while the attendance of meeting can be non-group-member;

Specifications of a Calendar Scheduler System Lu Luo

 24 of 30

• Chooses a suitable time to arrange a new meeting, maintaining the personal preference of
group members and avoiding conflicts;

• Adds or drops meetings if the meeting is not overdue at the time; adds or removes

participants of a meeting, no matter they are group member or not; adds or removes
people from the group;

• Gives out detailed error messages whenever an error or an abnormal event occurs;

• The processes of how an operation works is given in detailed in each sub-processes of the

specification.

• The concept of parallel processes is well expressed when adding/removing a meeting

to/from many people’s schedule, although there are limited number of processes in this
system that can be paralleled.

What is missing/difficult in this specification?

• The number of “enough” participants is not explic itly given, also, it could not be seen
from this specification how the personal scheduling preference is like. The specification
just tells us there are personal scheduling preferences according to which to arranging
meeting time, but we don’t know in detail how the preferences looks like. There is no
process on adding/changing/removing the personal preferences, too, given enough time it
is not difficult.

• If a suitable time cannot be found, this specification requires iteratively input expected
time scope until a time is found, this may lead to endless loop of the system if expected
time is indeed cannot be changed;

• It is hard to express the concept of storage in CSP, i.e. the state space in Z, sometimes it

will make things clear if we have state spaces in CSP. For example, when we check the
calendar to give out the preferred time of all the participating group members, we can
only say: perform this process until all members’ scheduling preferences are covered and
output. There is no way to know how the personal preferences will be like if we put all of
them together and make an intersection, since the outputs are merely flowing to the next
process;

• It is hard to express the idea that two processes are in sequential no matter the first

process terminates successfully or not, the sequential operator (;) only permits the first
process to end with success. It is clumsy to have a long queue of events.

Specifications of a Calendar Scheduler System Lu Luo

 25 of 30

Part III: Comparison of Z and CSP Specification

A comparison of the two specifications is presented in this part, where the pros and cons of each
approach are analyzed and compared with the other. The common advantage and weakness of
these two approaches are presented. Some comments on the methods learned during the course
are also briefly stated.

1. Z versus CSP in the context of the same system
The Calendar Scheduler System itself is not complicated, but it has some practical features that
can raise interesting questions when specifying the system, especially from different points of
view of different specifying methods. In this section, approaches specifying the same system
features using Z and CSP are compared, the advantages of one approach over the other are
presented. In the next sections, the overall strongpoint and weakness of the two specification
methods are analyzed.

1.1 Advantage of Z over CSP

Delicate description of system states

Every software system can be intuitively modeled and understood as state machines, the basic
ideas of state machines is the changing of states in the system and the transitions between states.
As a formal method, the Z notation can by nature provide precise, unambiguous descriptions of
the states when specifying a system. The basic infrastructure in Z is schema, a pattern of
declaration and constraint. When specifying a system with Z, schemas are used to describe the
states of the system, and the ways in which the states may change.

The schemas can also be used to describe system properties. In Z, constraints on the changing of
states changes are reflected by pre-conditions and post-conditions on state variables. The pre and
post conditions draw a limit to the operations causing system to change states that some particular
conditions are needed to make this operation, and the operation will not lead to unexpected
system actions.

Having the delicate description of system states, we get a clear idea on the composition of the
whole system, which can lead to further design details (with an object oriented approach) such as
the demarcation of objects, the definition of data structure, local and global variables, etc.

In contrast, CSP doesn’t provide any mechanism to describe the states in the system. From a CSP
specification it is impossible to know what the objects the processes are working on, and how the
processes affect the characters of them. From this point of view, CSP is less feasible than Z for a
possible object oriented system design and implementation in the future.

Mathematical representations

In Z, mathematical languages based on set theory, prepositional and predicate logic are widely
used to state the problem, to discover solutions and to prove that the chosen design meets the
specification. The nature of mathematics provides Z the ease to restrict, map and prove the
design, at the same time providing a useful link to programming practice. For example, a

Specifications of a Calendar Scheduler System Lu Luo

 26 of 30

characteristic feature of Z is the use of types, with the mathematical language used in Z, every
object has a unique type, represented as a maximal set in the current specification. This notion of
types means that an algorithm can be written to check the type of every object in a specification.
Another example is the mapping used in Z from one set to another, which gives a precise idea of
the relationships between system objects for later design and implementation stages.

Although the notations in CSP are more intuitive than in Z, they don’t facilitate the describing of
detailed objects construction and communication (very possibly) needed for future design. There
are notations such as input and output, channels and alphabetized process operations, but precise
mathematical notations lack very much.

No risk of introducing deadlock

It is true that Z is not intended for concurrent behavior, but no deadlock will be introduced
because of this feature of Z. In Z, the way making sure the state changes is to use state invariants
defined in the state space of the system. Once an operation is consistent with the state invariants,
we can say that the state operations satisfy expects on the system. No further interacting or
paralleling of these operations are needed. Thus deadlocks won’t be introduced. While in CSP, it
is very easy to have two deadlocked processes when they parallel with each other.

Clear segments leading to less brain work

This may not be a functional key point in modeling a system but it helps if a specification is clear
enough for people with little idea of the intricate structure of the system to understand without too
much pain what’s going on in the specification. In Z, the distinction among schemas are clear,
when you are reading one schema, you may only focus on the content of this very schema,
without thinking too much on the other schemas. Even if there is some common operation shared
by other operations, it is still not hard to understand the operation schema using this common
operation. In CSP, due to the nature of process definitions, a process will inevitably parallel with,
or become part of the internal/external choices for other processes. Even a process as simple as
the process SHOP defined in [3] takes me quite a while to understand how the events will be like
when all the sub-processes parallel together. As is mentioned in last item, deadlock will be
introduced with great ease this way.

1.2 Advantage of CSP

Support of concurrent behaviors

The biggest advantage of CSP over Z is the support of concurrent behaviors. Although in the
calendar scheduler system I specified in part II only a couple of processes are in parallel with
other processes, it is indeed the most important feature of CSP, which is not supported at all in Z.
In the real world, a very large portion of systems have concurrent behaviors, these processes
synchronize by sharing system resources or communicating with one another. If not handled
properly, the introduction of parallel will either lead to combinatorial explosion or dead lock. CSP
puts a limitation on the parallel of processes to (some of) the events these processes have in
common, which models the processes executing at the same time. The FDR checker makes sure
that the parallel processes won’t deadlock.

Detailed operation steps described by events

Specifications of a Calendar Scheduler System Lu Luo

 27 of 30

In Z, how an operation makes changes on the states of the system is presented by pre-conditions
and post-conditions. Though it is true that a more rigorous specification can be built via the
consistency of operations over pre and post conditions, only WHAT the operation does on the
state is modeled. In CSP HOW the processes operate on the system is presented by events. The
events can be from a skeleton of system behaviors to very detailed operation steps. By this means,
how the behaviors are like in the systems are very obvious.

Easier to understand for people with less mathematical background

The events in CSP processes are written with a natural-language-like way, e.g. leave, shop, etc.
There are not too many notations that have abstruse meanings on sets or functions as used in Z,
even a people with few mathematics background can understand what is going on in the process
with great ease, provided there are not too many intricate parallel interactions between processes,
while in Z, understanding a schema needs good knowledge of the symbols used.

Clear clue of inputs and outputs among processes

The concept of channel in CSP makes it possible to know where the outputs from a process will
go to another process, if applicable. Two processes are connected like a “pipeline” by using the
same channel name. In Z, this input/output connection between operations is not explicitly shown.

Internal choices

A remarkable feature of CSP is the using of internal choices. In all software systems there exists
non-determinism, under which circumstance the user has no control over the choice the system
will make. In the context of the calendar scheduler system though, this feature is not so obvious
that a sound comparison can be performed. But internal choice does provide a good
representation of modeling non-determinism.

2. Sharing features of Z and CSP

2.1 Common advantage

Both methods have refinement

Good understanding of basic system characteristics can be gained from a simple description, but
we may also wish to develop a specification in such a way that it leads us towards a suitable
implementation, which is more favorite from a practical points of view. Without a good
mechanism leading to implementation, a “good” specification language is only something
interested by researchers. Fortunately both Z and CSP have refinement, by which more precise
information can be added to the primitive but correct specification. Whether the detailed
description is consistent with the original one should be proved in both Z and CSP. The process
of improvement brought by refinement also involves the removal of non-determinism.

Both methods have supporting tools

It facilitates me greatly using Zed and FDR as syntax and proof checkers for my specification.
With the help of the tools, the consistency of my specification is checked, some of the defects
mentioned above, such as deadlock, can be avoided.

Specifications of a Calendar Scheduler System Lu Luo

 28 of 30

2.2 Common weakness

Too much natural language explanation

Both Z and CSP need a great deal of natural language as the explanation of the schemas and
processes, which should be the REAL main part of a specification. It seems that without the bulky
explanations neither specification will make better sense or even be correctly understood. It is
announced in the book of Woodcock and Davies [3] that one of the advantages of Z specification
is that they use natural language to relate the mathematics to objects tin the real world, and a
well-written specification should be perfectly obvious to the reader. In my opinion a good
specification should by itself contains enough information at the same time being abstract.

None of them specify non-functional system aspects

There are other aspects of a system that worth paying attention to when designing, the usability,
performance, size and reliability of the system. Is the system efficient? Is it easy to use? How
much computing resources does the system use? Will there be endless loop? Neither Z nor CSP
answers this kind of questions. Both of them provide good modeling methods for the functional
areas of the system, but we cannot draw a conclusion from the specification. Further analysis
should be performed on the missing aspects of them.

Little s upport for transit to implementation

We have to admit that the aim of software development is to create an executable and useful
software system. A good system specification presents an appropriate level of abstraction and can
be used to support the design process, and as a guide to subsequent development, testing, and
maintenance. Specification for a large, complicated system costs considerable effort of system
designers, the result of a specification should not be only a documentation for future reference,
but be the assistance and origin of subsequent development stages as well. Based on my
experience on Z and CSP, I don’t see enough support in both for a smooth transition without too
much human effort from the specification document to a prototype of the system. In a word,
neither language makes good use of the abstraction result it has gained for the next development
step, we have to transit our mind to other detailed design languages such as UML for a deeper
look at the system.

Experience based excellence

I noticed during my working on specifying the calendar scheduler system that the more time I
spent on studying the modeling language, the more free I felt specifying the system. There are
still much more aspects to be paid attention to, and might have been specified in other better
ways, and revealing more out of the system, provided I had years of experience working on these
languages.

3. Comments on modeling languages thus far

Throughout the course I have learned quite a few notations that can be used as modeling language
for my system. Each of them, when used to model a system at the abstraction level, can represent
some aspects of the system while meager in other aspects. Z manipulates the state changes in the
system but is weak in describing processes; CSP models mostly on processes while pays no

Specifications of a Calendar Scheduler System Lu Luo

 29 of 30

attention to state status; Petri Nets gives intuitive graphical way of modeling concurrency and
system execution but it is sort of painful to draw intricate graphs for a large system; Larch and
Algebraic Specifications give a taste closer to implementation but leave less space for abstraction
and proof. My concern is how to utilize these specification languages more than they are
currently being used into the design of real systems. A combination of several languages used for
a comprehensive description of different aspects of a system, like the using of different kinds of
diagrams in UML, seems to be a good idea for me.

4. Reference
[1] Mary Shaw, David Garlan, etc. Candidate Model Problems in Software Architecture, January
1995
[2] Jim Woodcock and Jim Davies, Using Z Specification, refinement, and proof.
[3] Steve Schneider, Concurrent and Real-time Systems, The CSP approach.

