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ABSTRACT 
The Keystroke-Level Model (KLM) has been studied in 
many areas of user interaction with computers because of 
its validity and predictive value, but it has not been applied 
to estimate user performance time in mobile environment 
such as handheld platforms.  This paper investigates and 
verifies the applicability of KLM on handheld tasks.  The 
KLMs and prediction time are created using a suite of 
cognitive tools called CogTool.  A  user study on 10 
participants has shown that KLM can accurately predict 
task execution time on handheld devices with less than 8% 
prediction error.   
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INTRODUCTION 
The growing popularity and unique attributes of handheld 
devices, such as the PalmTM organizer and personal digital 
assistant (PDA), have brought new challenges to user 
interface design.  To achieve higher portability, handheld 
devices are often equipped with a small touch screen 
display in combination with a stylus pen and several 
hardware buttons as the fundamental input/output devices .  
These devices have different attributes compared to the 
traditional monitor, mouse, and keyboard in the desktop 
settings.  While a large body of research on desktop user 
interfaces exists , there is the need for exploring the 
efficiency of these non-traditional interface modalities on 
handheld devices.   

The Keystroke-Level Model (KLM), proposed by Card, 
Moran, and Newell in 1980[2], has been used and studied 
as a means to produce a priori quantitative predictions of 
human performance at an early stage in the development 
process.  In particular, KLM predicts error-free task 

execution time for expert users on a given interface design.  
The basic idea of KLM is to list the sequence of keystroke-
level actions, or operators , that the user must perform to 
accomplish a task, and then add up the time required by 
each action.  KLM asserts that the execution part of a task 
can be described in terms of four different physical-motor 
operators: K (key-stroking), P (pointing), H (homing), and 
D (drawing), and one mental operator, M, by the user, plus 
a response operator, R(t), by the system [2].  In KLM, most 
operators are assumed to take a constant time for each 
occurrence except for R.  KLM does not embody a theory 
of system response time.  The response times must be input 
to the model by giving specific values for the parameter t.  
The R times are only counted when they require the user to 
wait for the system as well as when there is no M operation 
following them.  KLM provides a set of heuristic rules for 
placing M’s in the method encodings.   

Though KLM has been applied to many areas such as text 
editing, spreadsheets, learning, telephone operator call 
handling, and highly interactive tasks [2, 3, 6, 7, 8] since its 
introduction, little has been done on handheld tasks.  This 
paper investigates the applicability of KLM to tasks on 
handheld devices.  The following sections first describe the 
cognitive tools used to construct the models .  Then a set of 
tasks on the PalmVx handheld organizer is chosen and 
keystroke-level models are built for those tasks.  In order to 
verify the KLM predicted performance time, actual data of 
task time is collected from 10 expert PDA users .  The 
experiments show that KLM can be successfully used on 
handheld tasks with less than 8% of prediction error.  

CREATING KLM USING COGTOOL 
Building predictive human performance models has been 
made easy by the recent work in [4].  In view of the high 
cost it requires to learn and construct correct cognitive 
models  such as KLM, especially for those modelers who 
are not cognitive scientists , John and colleagues have built a  
suite of tools called CogTool to facilitate quickly producing 
accurate KLMs.  CogTool allows the modeler to mock up 
an interface as an HTML storyboard and demonstrate a task 
on the storyboard, and automatically produces a consistent, 
correct KLM of that task that runs in the ACT-R cognitive 
architecture [1] to produce predictions of skilled 
performance time.  This section will briefly discuss the 

 



 2 

composition and usage of this tool suite, more details can 
be found in [4].  

CogTool is a collection of several tools that act in concert 
to quickly produce accurate KLMs.  The essential 
components of CogTool and their corresponding roles are:  

Macromedia Dreamweaver is used to create HTML 
mock-ups in a WYSIWYG manner.   In CogTool, several 
extensions are added to Dreamweaver so that it can be 
customized to serve the need of modeling.   

ACT-R is a computational cognitive architecture for 
simulating human behavior and performance [1].  The 
current publicly available version, ACT-R 5.0, can be found 
at http://act-r.psy.cmu.edu).  ACT-R allows cognitive 
models to interact with external simulation environment.  
The ACT-Simple compiler [9], in combination with ACT -
R, provides a framework of straightforward commands that 
compile into ACT -R production rules.   

Netscape web browser is used to demonstrate the HTML 
mock-ups.  The web pages use HTML event handlers to 
send messages to the Behavior Recorder via the 
LiveConnect feature of Netscape.    

Behavior Recorder is a software application developed by 
the authors of [5].  The Behavior Recorder can observe the 
demonstration of the mock-up in Netscape, generate the 
corresponding ACT-Simple commands, and automatically 
produce the resulting ACT-R code.  The KLMs are created 
when demonstrating the mock-up, and the corresponding p  
erformance time is predicted in the ACT-R environment 
when running the models.  

In this paper, all the KLMs and execution time prediction of 
tasks are constructed using CogTool.   

TASKS ON HANDHELD DEVICES 
To achieve the goal of investigating the applicability and 
prediction ability of KLM on tasks on handheld devices , the 
handheld platform should be popular enough to be 
representative.  According to the consumer reports from 
Palm Computing, roughly 85 percent of handheld PDAs 
sold in 2001 use the Palm operating system (Palm OS).  
Therefore a Palm Vx PDA (Palm OS 3.3, 8MB RAM) is 
chosen as the handheld platform understudy.  In addition, 
tasks should be carefully chosen so that the major user 
interaction modalities on Palm are included.  To input data 
to a Palm platform, t wo methods are often used: tapping on 
an on-screen keyboard (referred as a “virtual” or “soft” 
keyboard), and writing in shorthand, known as Graffiti.  To 
give operations, methods like tapping on icons, menus, lists 
and so forth on the touch screen and hardware buttons are 
often used.  The tasks chosen should not only include most 
of the modalities, but also support multiple methods to 
achieve the same goal for comparison.   

Based on the principles, an off-the-shelf software 
application named ChoiceWay Guides (CWG) for New 
York City is chosen.  More information about CWG 

software can be found at http://www.choiceway.com/ .  This 
commercially available software provides complete guides 
of several large cities for both Palm OS and Windows CE.  
Basically, CWG is loaded with information about planning, 
city & country facts, and detailed information of hundreds 
of locations in the particular city.  Figure 1 (a) shows the 
main interface of CWG New York City (CWG-NYC).  The 
user can tap on different icons to perform corresponding 
query operation.  

   
             (a)                             (b)                            (c) 

   
(d)                             (e) 

Figure 1.  Snapshots of the CWG New York City application. 
(a) start page (b) region map (c) street map (d) museum list (e ) 

query result 

The goal of all tasks in this study is  “to find the information 
of Metropolitan Museum of Art  (MET)”.  There are four 
different methods to achieve this goal:    

M1: Map Navigation.  From the start page of CWG-NYC  
in Figure 1(a), tapping on the “map” icon at the top of the 
screen will lead to Figure 1(b), the interactive region map.  
Tapping on the corresponding area of MET in the region 
map, the street map in Figure 1(c) will be displayed.  
Further taps lead to zoomed-in street maps.  Tapping on the 
hot spot of MET in the street map displays the query result 
– the text information of MET in Figure 1 (e).   

M2: Soft Keyboard.  From the same start page, tapping on 
the “museum” icon on the right side of the screen leads to 
Figure 1(d), a list of all museum names in alphabetic order.  
The item of MET is not shown when the list is open.  In 
order to show the item of MET, M2 is to input text by 
tapping on the soft keyboard, displayed at the bottom of the 
screen in Figure 1(d), and enter the letters “M” followed by 
“E”  to list all the museums starting with “ME”.  Now that 
the item of MET is shown, the corresponding text 
information in Figure 1(e) can be retrieved by tapping on 
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the item.  M3 and M4 will also operate on the museum list, 
with different operations respectively. 

M3: Graffiti.  The only difference between M3 and M2 is 
that M3 uses Graffiti shorthand to input text.  Again, when 
the item of MET is shown in the list, the corresponding text 
information of Figure 1(e) can be retrieved.  

M4: Scroll Bar.  Unlike M2 and M3, M4 does not need to 
input any text to update the list.  Instead, M4 is to simply 
tap on the scroll bar to the right of the list so that the list 
scrolls down one page per tapping.  When the item of MET 
is shown it can be selected for text information.    

In this study, the four different methods, M1 through M4, 
are used interchangeably with the term “task” referred in 
Card, Moran, and Newell’s original KLM paper.  In the 
next sections, “task” and “method” will be used without 
distinction.  As is  stated in the CogTool section, KLMs are  
constructed for each task using CogTool, and the 
corresponding performance time prediction is obtained by 
running the model in ACT-R environment.   

EXPERIMENTAL RESULTS 
To determine how well KLM actually predicts performance 
time for handheld tasks, an experiment is run on 10 actual 
expert PDA users.  All the participants are recruited by 
posting advertisement on campus electronic bulletin boards, 
and they all own one of the several kinds of PDAs listed in 
Table 1.  It is intentionally chosen that the participating 
users own different PDAs including the Palm series, pocket 
PC, and smart cell phones for the sake of comparison and 
analysis  among user data.  Table 1 shows the detailed 
information of the participants including their gender, the 
model of, and for how long they haven owned their PDAs. 
The user numbers are assigned by the order each user 
participate in the study.  

 

Event Logger 
The actual user task execution time is measured using 
EventLogger, a Palm OS system extension which records 

system events to a log file.  The log files are Palm database 
(PDB) files that are formatted as text files for extracting and 
analyzing user behaviors.  After the top part of palm data 
base header, each line of a log file is a tab-delimited listing 
of one system event, in the form “TickCount sysEventName 
OptionalInfo”, where the TickCount is the timestamp of the 
event, the sysEventName is the name of the event, and the 
OptionalInfo includes information such as the character 
entered in a keystroke event, the name of the form in a form 
open event, etc.  From the log files, user execution time for 
each task can be obtained by subtracting the ending event 
timestamp from the starting event timestamp and dividing 
the result by the number of system ticks per second defined 
in the PDB header.   

Each participant is asked to perform all the tasks for two 
rounds.  In the first round, each participant is given a 
detailed instruction on how to operate the EventLogger, and 
a step-by-step guidance on how to perform the four tasks.  
The participant is asked to precisely follow each step in the 
written instruction, and to repeat each task for 10 times.  In 
this session, the participants are told to focus on getting 
familiar with the tasks.  The event log files collected in this 
session are saved as training data.   In the second round, the 
participants are asked to run each task for 10 times again.  
But this time, the users are asked to not refer to the 
instruction, because they are supposed to become familiar 
with the given tasks during the training session.  The event 
log files collected from this session are used for verifying 
the model data.  Among the total 4x10x10=400 task 
executions by the users , 20 are erroneous and those data is 
thrown away.  Table 2 lists the result of the user study: the 
average, maximum, and minimum user time in seconds to 
perform each task, as well as the difference between the 
fastest and the slowest users.   

 

The predicted time automatically generated from the KLMs 
for each task are M1=9.213 sec, M2=8.054 sec, M3=7.935 
sec, and M4=8.347 sec.  Large variation of prediction error 
is found when comparing the model time with the user 
time.  The smallest prediction error, 2.25%, comes from 
M1, while the biggest prediction error is  71.43% for M3.  
Even the prediction error for M2 (59.38%) and M4 
(23.37%) is much higher than average 21% prediction error 
stated in [2].  Since this result is far beyond what is 
expected, checking the correctness of the automatically 
generated KLMs is necessary.   

User time  (sec) 
Task 

Average Max Min 
Variation 

M1 9.00 11.92 7.31 38.7% 

M2 12.84 15.65 10.14 35.2% 

M3 13.60 16.24 11.06 31.9% 

M4 10.30 12.26 8.90 27.4% 

Table 2. Task execution time  from user test. 

User  
(gender) 

Device owned How long 

1 (M) Palm Vx 5+ years 

2 (M) Compaq iPAQ 3 years 

3 (M) Palm IIIe 4 years 

4 (M) Handspring Visor 3 years 

5 (F) Handspring visor Pro 2 years 

6 (F) Dell PDA 1 year 

7 (M) iPAQ 3630 4 years 

8 (M) Kyocera 7135 4+ years 

9 (M) Handspring Visor Prism 3 years 

10 (F) Palm VA 3 years 

Table 1. Information of participants. 
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In order to figure out the reason for the high prediction 
error, the keystroke level operators in the generated KLMs 
are checked carefully and compared with the user 
operations extracted from the system events in the log files.  
While there is barely any difference between the model and 
user operations for task M1, which is reflected in its low 
prediction error, some operators are found missing in M2, 
M3 and M4.  This observation makes good sense because 
all three tasks involve opening the list of museums for 
further query or selection.  It takes the palm system a 
certain amount of time to respond when the CWG 
application wants to display or update the list.  Therefore an  
R(t) operator should be placed in the models where the lis t 
is open or updated (the parameter t for opening the list is 
slightly longer than it for updating the list).  Another 
observation is that there should also be system response 
time for Graffiti input recognition in task M3.  This leads to 
the addition of an R(t) after each Graffiti stroke, the t here 
is set to be 500ms, based on previous studies on Graffiti 
text input. 

The analysis above leads to small modification of the 
CogTool: two instrumented widgets (system response time 
and graffiti recognition) are added to the DreamWeaver 
extension.  The HTML mock-ups for M2 through M4 are 
therefore to be created again, adding the corresponding 
widgets where needed.  The models are then reconstructed 
and the calibrated model time in comparison with the 
average user time is shown in Figure 2.         

Model Time vs. User Time 
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Figure 2.  Model predicted time and actual user time.  

Result Analysis 
The result shows that the calibrated model successfully 
predicts the exe cution time for all four tasks with prediction 
error of 2.25%, 1.38%, 7.43%, and 3.88% for M1 through 
M4, correspondingly.  This result complies with the 
declaration in [4] that CogTool generates more accurate 
results than previously published models.  More 
importantly, the result verifies the assumption that KLM 
can be successfully used to model user behaviors and 

predicts task execution time in the environment of handheld 
devices.  

It is worth mentioning that the slightly higher prediction 
error for M3 may be attributed to user difference.  The 
longest execution time for M3 actually comes from users 2 
and 7, and both of them are pocket PC (iPAQ) users.  Since 
there is no Graffiti method in pocket PCs, it should take 
longer thinking time for those users to input the required 
Graffiti strokes.  By removing their data from the average 
user time, we get a better prediction error of 3.8% for M3. 

CONCLUSION AND FUTURE WORK 
It is shown in this paper that KLM is effective for 
predicting task execution time on handheld devices.  Aided 
by CogTool, it turns out to be straightforward to construct 
cognitive models even for models with little or no 
background in cognitive science.  Future work will study a 
larger scope of tasks and users in various mobile platforms.  
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