
 1

Predicting Task Execution Time on Handheld Devices
Using the Keystroke-Level Model

Lu Luo
School of Computer Science

Carnegie Mellon University, Pittsburgh, PA 15213
luluo@cs.cmu.edu

ABSTRACT
The Keystroke-Level Model (KLM) has been studied in
many areas of user interaction with computers because of
its validity and predictive value, but it has not been applied
to estimate user performance time in mobile environment
such as handheld platforms. This paper investigates and
verifies the applicability of KLM on handheld tasks. The
KLMs and prediction time are created using a suite of
cognitive tools called CogTool. A user study on 10
participants has shown that KLM can accurately predict
task execution time on handheld devices with less than 8%
prediction error.

KEYWORDS
Keystroke-Level Model, cognitive model, user performance
time, handheld devices, mobile environment.

INTRODUCTION
The growing popularity and unique attributes of handheld
devices, such as the PalmTM organizer and personal digital
assistant (PDA), have brought new challenges to user
interface design. To achieve higher portability, handheld
devices are often equipped with a small touch screen
display in combination with a stylus pen and several
hardware buttons as the fundamental input/output devices .
These devices have different attributes compared to the
traditional monitor, mouse, and keyboard in the desktop
settings. While a large body of research on desktop user
interfaces exists , there is the need for exploring the
efficiency of these non-traditional interface modalities on
handheld devices.

The Keystroke-Level Model (KLM), proposed by Card,
Moran, and Newell in 1980[2], has been used and studied
as a means to produce a priori quantitative predictions of
human performance at an early stage in the development
process. In particular, KLM predicts error-free task

execution time for expert users on a given interface design.
The basic idea of KLM is to list the sequence of keystroke-
level actions, or operators , that the user must perform to
accomplish a task, and then add up the time required by
each action. KLM asserts that the execution part of a task
can be described in terms of four different physical-motor
operators: K (key-stroking), P (pointing), H (homing), and
D (drawing), and one mental operator, M, by the user, plus
a response operator, R(t), by the system [2]. In KLM, most
operators are assumed to take a constant time for each
occurrence except for R. KLM does not embody a theory
of system response time. The response times must be input
to the model by giving specific values for the parameter t.
The R times are only counted when they require the user to
wait for the system as well as when there is no M operation
following them. KLM provides a set of heuristic rules for
placing M’s in the method encodings.

Though KLM has been applied to many areas such as text
editing, spreadsheets, learning, telephone operator call
handling, and highly interactive tasks [2, 3, 6, 7, 8] since its
introduction, little has been done on handheld tasks. This
paper investigates the applicability of KLM to tasks on
handheld devices. The following sections first describe the
cognitive tools used to construct the models . Then a set of
tasks on the PalmVx handheld organizer is chosen and
keystroke-level models are built for those tasks. In order to
verify the KLM predicted performance time, actual data of
task time is collected from 10 expert PDA users . The
experiments show that KLM can be successfully used on
handheld tasks with less than 8% of prediction error.

CREATING KLM USING COGTOOL
Building predictive human performance models has been
made easy by the recent work in [4]. In view of the high
cost it requires to learn and construct correct cognitive
models such as KLM, especially for those modelers who
are not cognitive scientists , John and colleagues have built a
suite of tools called CogTool to facilitate quickly producing
accurate KLMs. CogTool allows the modeler to mock up
an interface as an HTML storyboard and demonstrate a task
on the storyboard, and automatically produces a consistent,
correct KLM of that task that runs in the ACT-R cognitive
architecture [1] to produce predictions of skilled
performance time. This section will briefly discuss the

 2

composition and usage of this tool suite, more details can
be found in [4].

CogTool is a collection of several tools that act in concert
to quickly produce accurate KLMs. The essential
components of CogTool and their corresponding roles are:

Macromedia Dreamweaver is used to create HTML
mock-ups in a WYSIWYG manner. In CogTool, several
extensions are added to Dreamweaver so that it can be
customized to serve the need of modeling.

ACT-R is a computational cognitive architecture for
simulating human behavior and performance [1]. The
current publicly available version, ACT-R 5.0, can be found
at http://act-r.psy.cmu.edu). ACT-R allows cognitive
models to interact with external simulation environment.
The ACT-Simple compiler [9], in combination with ACT -
R, provides a framework of straightforward commands that
compile into ACT -R production rules.

Netscape web browser is used to demonstrate the HTML
mock-ups. The web pages use HTML event handlers to
send messages to the Behavior Recorder via the
LiveConnect feature of Netscape.

Behavior Recorder is a software application developed by
the authors of [5]. The Behavior Recorder can observe the
demonstration of the mock-up in Netscape, generate the
corresponding ACT-Simple commands, and automatically
produce the resulting ACT-R code. The KLMs are created
when demonstrating the mock-up, and the corresponding p
erformance time is predicted in the ACT-R environment
when running the models.

In this paper, all the KLMs and execution time prediction of
tasks are constructed using CogTool.

TASKS ON HANDHELD DEVICES
To achieve the goal of investigating the applicability and
prediction ability of KLM on tasks on handheld devices , the
handheld platform should be popular enough to be
representative. According to the consumer reports from
Palm Computing, roughly 85 percent of handheld PDAs
sold in 2001 use the Palm operating system (Palm OS).
Therefore a Palm Vx PDA (Palm OS 3.3, 8MB RAM) is
chosen as the handheld platform understudy. In addition,
tasks should be carefully chosen so that the major user
interaction modalities on Palm are included. To input data
to a Palm platform, t wo methods are often used: tapping on
an on-screen keyboard (referred as a “virtual” or “soft”
keyboard), and writing in shorthand, known as Graffiti. To
give operations, methods like tapping on icons, menus, lists
and so forth on the touch screen and hardware buttons are
often used. The tasks chosen should not only include most
of the modalities, but also support multiple methods to
achieve the same goal for comparison.

Based on the principles, an off-the-shelf software
application named ChoiceWay Guides (CWG) for New
York City is chosen. More information about CWG

software can be found at http://www.choiceway.com/ . This
commercially available software provides complete guides
of several large cities for both Palm OS and Windows CE.
Basically, CWG is loaded with information about planning,
city & country facts, and detailed information of hundreds
of locations in the particular city. Figure 1 (a) shows the
main interface of CWG New York City (CWG-NYC). The
user can tap on different icons to perform corresponding
query operation.

 (a) (b) (c)

(d) (e)

Figure 1. Snapshots of the CWG New York City application.
(a) start page (b) region map (c) street map (d) museum list (e)

query result

The goal of all tasks in this study is “to find the information
of Metropolitan Museum of Art (MET)”. There are four
different methods to achieve this goal:

M1: Map Navigation. From the start page of CWG-NYC
in Figure 1(a), tapping on the “map” icon at the top of the
screen will lead to Figure 1(b), the interactive region map.
Tapping on the corresponding area of MET in the region
map, the street map in Figure 1(c) will be displayed.
Further taps lead to zoomed-in street maps. Tapping on the
hot spot of MET in the street map displays the query result
– the text information of MET in Figure 1 (e).

M2: Soft Keyboard. From the same start page, tapping on
the “museum” icon on the right side of the screen leads to
Figure 1(d), a list of all museum names in alphabetic order.
The item of MET is not shown when the list is open. In
order to show the item of MET, M2 is to input text by
tapping on the soft keyboard, displayed at the bottom of the
screen in Figure 1(d), and enter the letters “M” followed by
“E” to list all the museums starting with “ME”. Now that
the item of MET is shown, the corresponding text
information in Figure 1(e) can be retrieved by tapping on

 3

the item. M3 and M4 will also operate on the museum list,
with different operations respectively.

M3: Graffiti. The only difference between M3 and M2 is
that M3 uses Graffiti shorthand to input text. Again, when
the item of MET is shown in the list, the corresponding text
information of Figure 1(e) can be retrieved.

M4: Scroll Bar. Unlike M2 and M3, M4 does not need to
input any text to update the list. Instead, M4 is to simply
tap on the scroll bar to the right of the list so that the list
scrolls down one page per tapping. When the item of MET
is shown it can be selected for text information.

In this study, the four different methods, M1 through M4,
are used interchangeably with the term “task” referred in
Card, Moran, and Newell’s original KLM paper. In the
next sections, “task” and “method” will be used without
distinction. As is stated in the CogTool section, KLMs are
constructed for each task using CogTool, and the
corresponding performance time prediction is obtained by
running the model in ACT-R environment.

EXPERIMENTAL RESULTS
To determine how well KLM actually predicts performance
time for handheld tasks, an experiment is run on 10 actual
expert PDA users. All the participants are recruited by
posting advertisement on campus electronic bulletin boards,
and they all own one of the several kinds of PDAs listed in
Table 1. It is intentionally chosen that the participating
users own different PDAs including the Palm series, pocket
PC, and smart cell phones for the sake of comparison and
analysis among user data. Table 1 shows the detailed
information of the participants including their gender, the
model of, and for how long they haven owned their PDAs.
The user numbers are assigned by the order each user
participate in the study.

Event Logger
The actual user task execution time is measured using
EventLogger, a Palm OS system extension which records

system events to a log file. The log files are Palm database
(PDB) files that are formatted as text files for extracting and
analyzing user behaviors. After the top part of palm data
base header, each line of a log file is a tab-delimited listing
of one system event, in the form “TickCount sysEventName
OptionalInfo”, where the TickCount is the timestamp of the
event, the sysEventName is the name of the event, and the
OptionalInfo includes information such as the character
entered in a keystroke event, the name of the form in a form
open event, etc. From the log files, user execution time for
each task can be obtained by subtracting the ending event
timestamp from the starting event timestamp and dividing
the result by the number of system ticks per second defined
in the PDB header.

Each participant is asked to perform all the tasks for two
rounds. In the first round, each participant is given a
detailed instruction on how to operate the EventLogger, and
a step-by-step guidance on how to perform the four tasks.
The participant is asked to precisely follow each step in the
written instruction, and to repeat each task for 10 times. In
this session, the participants are told to focus on getting
familiar with the tasks. The event log files collected in this
session are saved as training data. In the second round, the
participants are asked to run each task for 10 times again.
But this time, the users are asked to not refer to the
instruction, because they are supposed to become familiar
with the given tasks during the training session. The event
log files collected from this session are used for verifying
the model data. Among the total 4x10x10=400 task
executions by the users , 20 are erroneous and those data is
thrown away. Table 2 lists the result of the user study: the
average, maximum, and minimum user time in seconds to
perform each task, as well as the difference between the
fastest and the slowest users.

The predicted time automatically generated from the KLMs
for each task are M1=9.213 sec, M2=8.054 sec, M3=7.935
sec, and M4=8.347 sec. Large variation of prediction error
is found when comparing the model time with the user
time. The smallest prediction error, 2.25%, comes from
M1, while the biggest prediction error is 71.43% for M3.
Even the prediction error for M2 (59.38%) and M4
(23.37%) is much higher than average 21% prediction error
stated in [2]. Since this result is far beyond what is
expected, checking the correctness of the automatically
generated KLMs is necessary.

User time (sec)
Task

Average Max Min
Variation

M1 9.00 11.92 7.31 38.7%

M2 12.84 15.65 10.14 35.2%

M3 13.60 16.24 11.06 31.9%

M4 10.30 12.26 8.90 27.4%

Table 2. Task execution time from user test.

User
(gender)

Device owned How long

1 (M) Palm Vx 5+ years

2 (M) Compaq iPAQ 3 years

3 (M) Palm IIIe 4 years

4 (M) Handspring Visor 3 years

5 (F) Handspring visor Pro 2 years

6 (F) Dell PDA 1 year

7 (M) iPAQ 3630 4 years

8 (M) Kyocera 7135 4+ years

9 (M) Handspring Visor Prism 3 years

10 (F) Palm VA 3 years

Table 1. Information of participants.

 4

In order to figure out the reason for the high prediction
error, the keystroke level operators in the generated KLMs
are checked carefully and compared with the user
operations extracted from the system events in the log files.
While there is barely any difference between the model and
user operations for task M1, which is reflected in its low
prediction error, some operators are found missing in M2,
M3 and M4. This observation makes good sense because
all three tasks involve opening the list of museums for
further query or selection. It takes the palm system a
certain amount of time to respond when the CWG
application wants to display or update the list. Therefore an
R(t) operator should be placed in the models where the lis t
is open or updated (the parameter t for opening the list is
slightly longer than it for updating the list). Another
observation is that there should also be system response
time for Graffiti input recognition in task M3. This leads to
the addition of an R(t) after each Graffiti stroke, the t here
is set to be 500ms, based on previous studies on Graffiti
text input.

The analysis above leads to small modification of the
CogTool: two instrumented widgets (system response time
and graffiti recognition) are added to the DreamWeaver
extension. The HTML mock-ups for M2 through M4 are
therefore to be created again, adding the corresponding
widgets where needed. The models are then reconstructed
and the calibrated model time in comparison with the
average user time is shown in Figure 2.

Model Time vs. User Time

9.213

12.662 12.662

9.913

9.0055

12.8363
13.60328

10.29767

0

2

4

6

8

10

12

14

16

M1-Map
Navigation

M2-Soft Keyboard M3-Graffiti M4-Scroll Bar

Tasks

T
im

e
(s

ec
)

Model Time
User Time

Figure 2. Model predicted time and actual user time.

Result Analysis
The result shows that the calibrated model successfully
predicts the exe cution time for all four tasks with prediction
error of 2.25%, 1.38%, 7.43%, and 3.88% for M1 through
M4, correspondingly. This result complies with the
declaration in [4] that CogTool generates more accurate
results than previously published models. More
importantly, the result verifies the assumption that KLM
can be successfully used to model user behaviors and

predicts task execution time in the environment of handheld
devices.

It is worth mentioning that the slightly higher prediction
error for M3 may be attributed to user difference. The
longest execution time for M3 actually comes from users 2
and 7, and both of them are pocket PC (iPAQ) users. Since
there is no Graffiti method in pocket PCs, it should take
longer thinking time for those users to input the required
Graffiti strokes. By removing their data from the average
user time, we get a better prediction error of 3.8% for M3.

CONCLUSION AND FUTURE WORK
It is shown in this paper that KLM is effective for
predicting task execution time on handheld devices. Aided
by CogTool, it turns out to be straightforward to construct
cognitive models even for models with little or no
background in cognitive science. Future work will study a
larger scope of tasks and users in various mobile platforms.

REFERENCES
1. Anderson, J.R. and Lebiere, C. The Atomic Component

of Thought. Lawrence Erlbaum Associates , Hillsdale,
NJ, USA, 1998.

2. Card, S.K., Moran, T.P., and Newell, A. The
Keystroke-Level Model for User Performance Time
with Interactive Systems. Communications of the ACM
archive, 23(7), 1980, 396-410.

3. John, B.E. Extensions of GOMS Analysis to Expert
Performance Requiring Perception of Dynamic Visual
and Auditory Information. Proceedings of ACM
CHI’90 Conference on Human Factors in Computing
Systems, 1990, 107-115.

4. John, B.E., Prevas, K., Salvucci, D.D., and Koedinger,
K. Predictive Human Performance Modeling Made
Easy. Proceedings of ACM CHI’04 Conference on
Human Factors in Computing Systems, 2004.

5. Koedinger, K.R., Aleven, V., and Heffernan, N.
Toward a Rapid Development Environment for
Cognitive Tutors. Proceedings of AI-ED 2003, 455-457

6. Olson, J.R. and Nilsen, E. Analysis of the Cognition
Involved in Spreadsheet Software Interaction. Human-
Computer Interaction, 3(4), 1988, 309-350.

7. Olsen, J.R. and Olson, G.M. The Growth of Cognitive
Modeling in Human-Computer Interaction since GOMS.
Human-Computer Interaction, 5(2&3), 1990, 221-265.

8. Singley, M.K. and Anderson, J.R. A Keystroke
Analysis of Learning and Transfer in Text Editing.
Human-Computer Interaction, 3(3), 1988, 223-274.

9. Salvucci, D.D. and Lee, F.J. Simple Cognitive
Modeling in a Complex Cognitive Architecture. CHI
2003, ACM Conference on Human Factors in
Computing Systems, CHI Letters 5(1) 265-272.

