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Abstract 

Collaborative filtering is a very useful general 
technique for exploiting the preference patterns 
of a group of users to predict the utility of items 
to a particular user. Previous research has studied 
several probabilistic graphic models for 
collaborative filtering with promising results. 
However, while these models have succeeded in 
capturing the similarity among users and items, 
none of them has considered the fact that users 
with similar interests on items can have very 
different rating patterns; some users tend to 
assign a higher rating to all items than other 
users.  In this paper, we propose and study two 
new graphic models that address the distinction 
between user preferences and ratings. In one 
model, called the decoupled model, we introduce 
two different variables to decouple a user’s 
preferences from his/her ratings. In the other, 
called the preference model, we model the 
orderings of items preferred by a user, rather 
than the user’s numerical ratings of items. 
Empirical study over two datasets of movie 
ratings shows that, due to its appropriate 
modeling of the distinction between user 
preferences and ratings, the proposed decoupled 
model significantly outperforms all the five 
existing approaches that we compared with. The 
preference model, however, performs much 
worse than the decoupled model, suggesting that 
while explicit modeling of the underlying user 
preferences is very important for collaborative 
filtering, we can not afford ignoring the rating 
information completely.  

1.  Introduction 

The rapid growth of the information on the Internet 
demands intelligent information agent that can sift 
through all the available information and find out the 
most valuable to us. These intelligent systems can be 

categorized into two classes: Collaborative Filtering (CF) 
and Content-based recommending. The difference 
between them is that collaborative filtering only utilizes 
the ratings of training users in order to predict ratings for 
test users while content-based recommendation systems 
rely on the contents of items for predictions. Therefore, 
collaborative filtering systems have advantages in an 
environment where the contents of items are not available 
due to either a privacy issue or the fact that contents are 
difficult for a computer to analyze.  In this paper, we will 
only focus on the collaborative filtering problems.   

Most collaborative filtering methods fall into two 
categories: Memory-based algorithms and Model-based 
algorithms [Breese et al. 1998]. Memory-based 
algorithms store rating examples of users in a training 
database, and in the predicting phase, they would predict 
a test user’s ratings based on the corresponding ratings of 
the users in the training database that are similar to the 
test user. In contrast, model-based algorithms build 
models that can explain the training examples well and 
predict the ratings of test users using the estimated 
models.  Both types of approaches have been shown to be 
effective for collaborative filtering.  

In general, all collaborative filtering approaches assume 
that users with similar “ tastes”  would rate items similarly, 
and the idea of clustering is exploited in all approaches 
either explicitly or implicitly. Compared with memory-
based approaches, model-based approaches provide a 
more principled way of performing clustering, and is also 
often much more efficient in terms of the computation 
cost at the prediction time.  The basic idea of   a model-
based approach is to cluster items and/or training users 
into classes explicitly and predict ratings of a test user by 
using the ratings of classes that fit the best with the test 
user and/or items to be rated. Several different 
probabilistic models have been proposed and studied in 
the previous work (e.g., [Breese et al. 1998; Hofmann & 
Puzicha 1998; Pennock et al. 2000; Popescul et al. 2001]). 
These models have succeeded in capturing user/item 
similarities through probabilistic clustering in one way or 
the other, and have all been shown to be quite promising. 



 

 

However, one common deficiency in all these previous 
models is that they are all based on the assumption that 
users with similar interests would rate items similarly, 
which is not true in reality. Indeed, the rating pattern of a 
user is determined not only by his/her interests but also by 
the rating strategy/habit. For example, some users are 
more “ tolerate”  than others, and therefore their ratings of 
items tend to be higher than others even though they share 
very similar tastes of items. This problem has already 
been discussed in an early study of collaborative filtering 
by Resnick and others, and is often addressed through 
heuristic normalization in a memory-based approach 
[Resnick et al., 1994; Breese et al. 1998], but it has not 
been addressed in a model-based approach. 

In this paper, we propose and study two new graphic 
models that address the distinction between user 
preferences and ratings. In one model, called the 
decoupled model, we introduce two different variables to 
decouple a user’s preferences and ratings. Specifically, 
we use two hidden variables to account for the 
preferences (i.e., interests) and the rating patterns of a 
user, respectively. In the other model, called the 
preference model, we model the orderings of items 
preferred by a user, rather than the user’s numerical 
ratings of items. The idea is to focus on the “essential”  
information conveyed by ratings, which is the implied 
relative preference orderings among items, so that the 
algorithm would not need to model the absolute rating 
values, which may be affected by a user’s rating habit.  
For example, if a user gives items ‘a’ , ‘b’  and ‘c’  a rating 
of 2, 3, 4 respectively, our preference model would only 
take it as meaning item ‘c’  is preferred to item ‘b’ , which 
is preferred to item ‘a’ . This means that a rating of 3, 4, 5 
for ‘a’ , ‘b’ , and ‘c’  would have precisely the same effect.  

We evaluated these two models over two datasets of 
movie ratings. The results show that the decoupled model 
is quite successful in capturing the distinction between 
user preferences and ratings, and outperforms five 
existing approaches substantially and consistently. 
However, the preference model is not very successful. 
These results suggest that explicit modeling of the 
underlying user preferences is very important for 
collaborative filtering, but we can not afford ignoring the 
rating information completely.  

The rest of paper is arranged as follows: Section 2 
discusses previous work on model-based collaborative 
filtering. We present the two proposed graphic models in 
Section 3, and discuss the experiment results in Section 4. 
Conclusions and future work are discussed in Section 5. 

2.  Model-based Collaborative Filter ing 

In this section, we briefly review existing probabilistic 
models for collaborative filtering and set up some 
technical background for our own models. First, let us 
introduce the annotations to be used in the rest of this 

paper. We let },......,,{ 21 MxxxX =  be a set of items, 
},......,,{ 21 NyyyY =  be a set of users, and },...,1{ R  be a 

range of ratings. Let )},,(),.....,,,{ ( )()()()1()1()1( LLL ryxryx  be 
all the ratings in the training database and each tuple 

),,( )()()( iii ryx  means that user )(ix  gives item )(iy  a 
rating of )(ir . For each user y, let )(yX be the set of rated 
items, )(xRy  be the rating of item x, and yR

_
be the 

average rating. We now discuss the three major 
probabilistic models for collaborative filtering: the 
Bayesian Clustering algorithm (BC) [Breese et al. 1998], 
the aspect model (AM) [Hofmann & Puzicha, 1999], and 
the Personality Diagnosis model (PD) [Pennock et al., 
2000]. 

2.1  Bayesian Cluster ing (BC) 

The basic idea of BC is to assume that the same type of 
users would rate items similarly, and thus users can be 
grouped together into a set of user classes according to 
their ratings of items. Formally, given a user class ‘C’ , the 
preferences as ratings of different items are independent, 
and the joint probability of user class ‘C’  and ratings of 
items can be written as the standard naive Bayes 
formulation: 

∏
=

=
M

i
iM CrPCPrrrCP

1
21 )|()(),...,,,(  (1) 

Then, the joint probability for the rating patterns of user y, 
i.e. )}(),...,(),({ 21 Myyy xRxRxR , can be expanded as: 
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The Expectation-Maximization (EM) algorithm can be 
used to cluster users. More details can be found in [Breese 
et al. 1998]. 

Aspect Model (AM) 

The aspect model is a probabilistic latent space model, 
which models individual preferences as a convex 
combination of preference factors [Hofmann & Puzicha 
1999]. The latent class variable },.....,,{ 21 KzzzZz =∈  is 
associated with each observation pair of a user and an 
item. The aspect model assumes that users and items are 
independent from each other given the latent class 
variable.  Thus, the probability for each observation pair 
(x,y) is calculated as follows: 

�
∈

=
Zz

zyPzxPzPyxP )|()|()(),(  (3) 

where P(z) is the class prior probability, P(x|z) and P(y|z) 
are class-dependent distributions for items and users, 
respectively.  Intuitively, this model means that the 
preference pattern of a user is modeled by a combination 
of typical preference patterns, which are represented in 
the distributions of P(z), P(x|z) and P(y|z).   



 

 

There are two ways to incorporate the rating information 
‘ r’  into the basic aspect model, which are expressed in 
Equation (4) and (5), respectively. 
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�
∈

=
Zz

lllllll xzrPzyPzxPzPryxP ),|()|()|()(),,( )()()()()()()(  (5) 

The corresponding graphical models are shown in Figure 
1. The second model in Equation (5) has to estimate the 
conditional probability ),|( )()( ll xzrP , which has a large 
parameter space and may not be estimated reliably. 
Therefore, in our experiments, we will only compare the 
aspect model in Equation (4). (Equation (4) also actually 
performs better than (5).) 

Unlike the Bayesian Clustering algorithm, where only the 
rating information is modeled, the aspect model is able to 
model the users and the items with conditional probability 
P(y|z) and P(x|z). Our decoupled model extends these 
aspect models by introducing additional hidden variables 
to model the preferences and ratings separately.  

Personality Diagnosis Model (PD) 

In the personality diagnosis model, the observed rating for 
a test user yt on an item x is assumed to be drawn from an 
independent normal distribution with the mean as the true 
rating as )(xRTrue

yt : 

22 2))()((
))(|)((

σxRxRTrue
yy

True
tyty

tt exRxRP
−−

∝  (6) 

where the standard deviation σ is set to constant 1 in our 
experiments. Then, the probability of generating the 
observed rating values of the test user by any user y in the 
training database can be written as: 

∏
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The likelihood for the test user yt to rate an unseen item x 
as category r can be computed as: 

22 2))((
)|())((

σrxR
y

y
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y
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The final predicted rating for item ‘x’  by the test user will 
be the rating category ‘ r’  with the highest likelihood 

))(( rxRP ty
= . Different from previous two approaches 

where users are clustered into user classes, this approach 
treats each user as a different model. Therefore, this 
approach is able to maintain the diversity of model 
ensemble. However, it may suffer significantly from data 
sparseness because most users only rate a small portion of 
items and a model based on a small number of ratings 
may be unreliable. Nevertheless, empirical studies have 
shown that this Personal Diagnosis method is able to 
outperform many other approaches for collaborative 
filtering [Pennock et al., 2000]. 

3.  Preference-based Graphic Models  

In this section, we discuss two new graphic models for 
collaborative filtering, both trying to make a distinction 
between the underlying preferences of a user on items and 
the surface item ratings given by a user.  The first 
approach models preferences and ratings of users 
separately; while the second models the underlying 
relative rating patterns instead of the surface rating 
values. 

 

 

 

 

 

 

  

 

 

 

Figure 1: Graphical models for the two extensions of 
aspect model in order to capture rating values. 
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Figure 2: Graphical model representation for the 
decoupled models of preference and rating patterns 
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3.1  Decoupled Models for  Rating and Preference 
Patterns of Users (DM) 

To account for the fact that users with similar interests 
may have very different rating patterns, we extend the 
aspect models by introducing two hidden variables ZP, ZR, 
with ZP for the preference patterns of users and ZR for the 
rating patterns of users. The whole model is shown in 
Figure 2. ZX is a class of items. Users are clustered from 
two different perspectives, i.e., ZP represents a grouping 
of users based on their preference patterns, whereas ZR 
groups users based on their rating patterns or habits. Zpref 
indicates whether or not the class of items ZX are preferred 
by the class of users ZP who presumably share similar 
preferences of items. The conditional probabilities 

)|( )(iP yzP  and )|( )(iR yzP  are the likelihood for user 
)(iy  to be in the class of certain preference patterns Pz  

and in the class of certain rating patterns Rz , respectively. 
Probabilities )( XzP  and )|( )( Xl zxP  are the priors of 
class of items Xz  and the likelihood of item )(lx  to be 
generated from class Xz , respectively. Finally, 

),|( XPpref zzzP  is the probability for preference class 
Pz  to prefer item class Xz , and ),|( )( prefRl zzrP  is the 

likelihood for rating classes Rz  to rate items as )(lr given 
the preference condition prefz .  

We treat any tuple ),,( )()()( iii ryx  as an observation of 

( )( , )ix r conditioned on ( )iy , and so its probability is 

�
� �

�

�
�

�

�
�

�
�

� ×
=

=
XRP

pref

zzz
z

prefRlXPpref

XlXlRlP

lll

zzrPzzzP

zxPzPyzPyzP

yrxP

,,

1

0
)(

)()()(

)()()(

),|(),|(

)|()()|()|(

)|,(

 (9) 

We will call this model ‘DM ’ . 

Comparing the ‘DM’ model in Figure 2 with the aspect 
model in Figure 1, we see that they differ in two aspects: 

1) In ‘DM’, users and items are modeled separately, 
with hidden variable XZ for the clusters of items and 
hidden variables ZP and ZR for explaining the 
preference patterns and rating patterns of users, 
whereas in Figure 1, there is only one hidden variable 
Z for describing classes of users and items. 

2) The rating value is determined jointly by the hidden 
variables ZR and Zpref. Therefore, even if a user likes a 
certain type of items, the rating value can still be low 
if he has a very ‘ tough’  rating criterion. Thus, with 
the introduction of hidden variable ZR, we are able to 
account for the variance in rating patterns among the 
users with similar interests.  

Furthermore, several design issues need to be discussed: 

1) In ‘DM’, we assume conditional independence 
between hidden variables ZP and ZR given the user y, 
which makes it possible to simplify the conditional 
probability P(zP, zR|y) as a product of P(zP|y) and 

P(zR|y). This helps decrease the number of parameters 
significantly and avoid the problem of sparse data 
because the product space of ZP and ZR can be quite 
large. Furthermore, this choice makes the inference 
process computationally fast. 

2) In Equation (9), we only consider two cases for the 
hidden variable Zpref , namely 1=prefZ  for the user 
to prefer an item and 0=prefZ  for not preferring. In 
general, we can increase the preference levels of 
preferring items as we want. For example, we can 
have three different preference levels, with zero for 
no preference, one for slight preference and two for 
strong preference. In our experiments, we set the 
number of preference levels to the number of 
different rating categories.  

3.1.1  THE TRAINING PROCEDURE 

With hidden variables in the model, the Expectation and 
Maximization (EM) algorithm is a natural choice 
[Dempster & Rubin 1977]. The EM algorithm alternates 
between the expectation steps and maximization steps. In 
the expectation step, the joint posterior probabilities of the 
latent variables { ZP, ZR, XZ , Zpref}  are computed as 
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(10) 

In the maximization step, the model parameters can be 
updated as follows: 
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In order to avoid bad local minimums, we use annealing 
EM [Ueda et al., 1998]. 

 



 

 

3.1.2  THE PREDICTION PROCEDURE 

To predict the ratings of items by a test user ty , we need 
to compute the probability distribution over preference 

classes )|( t
P yZP  and rating classes )|( t

R yZP . Let 

)( tyX  = )},,(),..,,,{ ( )_()_()1()1(
t

GN
tt

GN
ttt ryxryx  be the set of 

items that have been previously rated by ty . Then, the 

optimal distributions )|( t
P yZP  and )|( t

R yZP  can be 

found by maximizing the log-likelihood of the items rated 

by ty , i.e. 
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1
)()( )|,(log)(  (17) 

where, )|,( )()(
tt

i
t
i yxrP  is computed using Equation (9) with 

all other parameters computed from training except for 

)|( t
P yZP  and )|( t

R yZP , which we will estimate. In 

order to make the estimated distributions less skewed, 
Laplacian smoothing is applied within the EM algorithm, 
which is the same as adding Dirichlet priors of uniform 

mean on the distributions )|( t
P yZP  and )|( t

R yZP . 

3.2  Modeling Prefer red Order ings of I tems (MP) 

In this subsection, we present another approach to 
addressing the variances in the rating patterns of the users 
with similar interests, which is to model the relative 
ordering between items instead of the absolute rating 
values. For example, if a user rates item ‘a’  as 2 and item 
‘b’  as 3, we would only take it as meaning that ‘b’  is 
preferred to ‘a’ . That is, we assume that the relative 
orderings between items ‘a’  and ‘b’  are more consistent 
than the absolute values of ratings within the class of 
users with similar interests. Formally, let )',( rrI  be an 
indicator function for ratings r and 'r , defined as follows: 
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Since we are only concerned with the relative orderings 
between items, we will consider the joint probability 

)))'(),((,',,( xRxRIxxyP yy , i.e. the probability 
for user y to rate item x relative item x’  by 

))'(),(( xRxRI yy  (notice that )(xRy  and )'(xRy  are the 
rating values for item x and x’  by user y). We have 
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where, hidden variables ZY, ZX are the class of users and 
items, respectively. The corresponding graphic model is 
illustrated in Figure 3. We call this proposed model ‘MP’ . 

),',|))'(),((( YXXyy zzzxRxRIP  can be simplified as: 
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Where, ),( YX zzv  is the likelihood for user class Yz  to 

prefer the item class Xz . The model can be trained by 

maximizing the probability of the relative orderings 
between all pairs of rated items. Similar to the algorithm 
presented in the last section, an EM algorithm can also be 
used to train the ‘MP’ model.  

The prediction phase of this model is a bit difficult due to 
a lack of modeling the absolute rating information 
explicitly. Thus, instead of predicting the ratings directly, 
we first find the most appropriate ranking position for a 
testing item with respect to the items with known ratings 
and then infer the most likely rating from the relative 
ranking and the known rating values. For example, 
suppose the ratings of items ‘a’ , ‘b’  and ‘c’  are given as 2, 
4, and 5, and according to the trained model, we find that 
a testing item ‘d’  is preferred to item ‘a’  and less favored 
than item ‘b’  and ‘c’ . Then, the most appropriate rating 
for the testing item ‘d’  would be 3. By following this idea, 

the most appropriate rating for a testing item tx is found 

by maximizing the likelihood for the rating of tx  to be 
consistent with ratings of given items of a testing user, i.e. 
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Where, )))(,(,,,( xRrIyxxP ty
ttt  can be computed using 

Equation (19). The distribution P(yt|zY) is pre-required for 
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Figure 3: Graphic model representation for 
only modeling the relative orderings 



 

 

the computation of the most likely rating for a testing 
item. Similar to the procedure discussed in the previous 
subsection, we can compute P(yt|zY) by maximizing the 
probability for all the relative orderings of the items rated 
by the testing user yt. One disadvantage of this prediction 
procedure is the existence of ratings with tied probability. 
For example, if two items are rated by the testing user as 
3 and 4, and the testing item is found to be less favored 
than both these items, then, both rate category 1 and 2 
would be consistent with the given ratings, and it would 
be impossible to find out which rating is more likely. In 
the experiment, we break such a tie by choosing the rating 
that is closer to the mean of given ratings.  

Unlike the ‘DM’ model, where the preference information 
of users is explicitly separated from the rating information 
through two sets of hidden variables, the ‘MP’ model 
obtains the preference information of users by considering 
the relative rating between items, which makes this model 
relatively simple in the training phase but considerably 
difficult in the prediction phase. More specifically, due to 
the fact that this approach does not model absolute values 
of rating, the prediction of rating values could be 
inaccurate compared to the previously proposed approach.  

4.  Exper iments 

In this section, we will present experiment results in order 
to address the following three issues:  

1) Which of the two graphic models that we propose is 
better? Model ‘MP’ has the potential problem with 
predicting the rating values because it does not model 
absolute values of rating, whereas model ‘DM’ is 
considerably complicated and may have many local 
minimums over the surface of its log-likelihood 
function. We want to see which one performs better. 

2) Would modeling the distinction between the 
preferences and ratings help improve the 
performance? In order to see the effectiveness of the 
‘DM’ model, we will introduce a baseline model, 
which is almost identical to ‘DM’ except for the 
hidden nodes ZR and Zpref. This baseline model is 
illustrated in Figure 4. It differs from the ‘DM”  
model in that it infers the rating values directly from 
the class of preference Zp while ‘DM’ would infer the 
likelihood of preference Zpref first and then apply its 
rating class ZR to decide the rating value. 

3) How effective are the proposed models compared 
with the previously proposed models? In this 
experiment, we will compare ‘DM’ and ‘MP’ with 
the three major previously studied graphic models 
and two memory-based approaches. In previous 
studies, when compared with the memory-based 
approaches, the model-based approaches tend to have 
mixed results [Breese et al. 1998]. It is thus 
interesting to see if our models, which decouple the 
preference patterns from rating patterns, can 
outperform memory-based approaches.  

Two datasets of movie ratings are used in our 
experiments, i.e., ‘MovieRating’ 1 and ‘EachMovie’ 2. For 
‘EachMovie’ , we extracted a subset of 2,000 users with 
more than 40 ratings. The details of these two datasets are 
listed in Table 1. To compare algorithms thoroughly, we 
experimented with several different configurations. For 
MovieRating, we take the first 100 or 200 users for 
training and all others for testing. For EachMovie, the 
first 200 or 400 users were used for training. For each 
testing user, 5, 10 or 20 items were provided as items with 
given ratings on both testbeds. By varying the number of 
users for training, we can test the robustness of the 
learning procedure, and with different number of given 
items; we can test the robustness of the prediction 
procedure. 

The evaluation metric used in our experiments was the 
mean absolute error (MAE), which is the average absolute 
deviation of the predicted ratings to the actual ratings on 
items the test user has actually voted.  
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where TestL is the number of the test ratings. 

Table 1: Characteristics of MovieRating and EachMovie. 
 MovieRating EachMovie 

Number of Users 500 2000 
Number of Items 1000 1682 

Avg. # of rated Items/User 87.7 129.6 
Number of Ratings 5 6 

————— 
1 http://www.cs.usyd.edu.au/~irena/movie_data.zip 

2 http://research.compaq.com/SRC/eachmovie 

Figure 4: Graphical model representation for the 
baseline model for model ‘DM’ 
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Table 2: MAE of ‘DM’ and ‘MP’ on  MovieRating. A smaller 
value means a better performance. 

Training 
Users Size 

Algorithms 
5 Items 
Given 

10 Items 
Given 

20 Items 
Given 

DM 0.814 0.810 0.799 
100 

MP 0.911 0.905 0.880 
DM 0.790 0.777 0.761 

200 
MP 0.877 0.861 0.837 

 

Table 3: MAE of ‘DM’ and ‘MP’  on  EachMovie. A smaller 
value means a better performance. 

Training 
Users Size 

Algorithms 
5 Items 
Given 

10 Items 
Given 

20 Items 
Given  

DM 1.07 1.04 1.03 
200 

MR 1.12 1.09 1.09 
DM 1.05 1.03 1.02 

400 
MP 1.10 1.08 1.07 

4.1  Exper iment 1: Compare ‘DM’  with ‘MP’  

The MAE results for both ‘DM’ and ‘MP’  over the two 
testbeds with six different configurations are presented in 
Table 2 and 3. Clearly, the ‘DM’ model outperforms the 
‘MP’ model in all cases. This is somehow expected given 
that ‘MP’ only models the relative orderings of items and 
therefore can have problems with predicting the absolute 
values of ratings. 

4.2  Exper iment 2: Compare ‘DM’  with Baseline Peer  

Table 4: MAE of ‘DM’ and its baseline peer on MovieRating. A 
smaller value means a better performance. 

Training 
Users Size 

Algorithms 
5 Items 
Given 

10 Items 
Given 

20 Items 
Given  

DM 0.814 0.810 0.799 
100 

Baseline  0.823 0.822 0.817 
DM 0.790 0.777 0.761 

200 
Baseline  0.804 0.801 0.799 

 

Table 5: MAE of ‘DM’ and its baseline peer on EachMovie. A 
smaller value means a better performance. 

Training 
Users Size 

Algorithms 
5 Items 
Given 

10 Items 
Given 

20 Items 
Given  

DM 1.07 1.04 1.03 
200 

Baseline  1.08 1.06 1.05 
DM 1.05 1.03 1.02 

400 
Baseline  1.06 1.05 1.04 

In this experiment, we compare the model ‘DM’ to its 
baseline peer, which is illustrated in Figure 4. These two 
models have exactly the same setup except that the model 
‘DM’ introduces the extra hidden nodes ZR and Zpref in 
order to account for the variance in the rating behavior 
among the users with similar interests. The results are 

shown in Table 4 and 5. Clearly, ‘DM’ outperforms the 
baseline model in all cases. It is interesting to note that 
when the number of rated items given increases, the gap 
between ‘DM’ and the baseline model also increases. This 
may suggest that when there are only a small number of 
items with given ratings, it is rather difficult to determine 
the type of rating patterns for the testing user. For 
example, in the case of five given items, we may have 
some rating categories with no given examples since the 
number of ratings is at least five. Thus, the determination 
of types of rating patterns will be very ambiguous. As the 
number of given items increases, this ambiguity will 
decrease quickly and therefore the advantage of the ‘DM’  
model over the baseline model will be more significant. 

4.3  Exper iment 3: Compare ‘DM’, ‘MP’  with other  
approaches 

In this subsection, we compare both our models to other 
methods for collaborative filtering, including the 
Bayesian Clustering algorithm (BC), the Aspect Model 
(AM), the Personal Diagnosis (PD), the Vector Similarity 
method (VS) and the Pearson Correlation Coefficient 
method (PCC). The results are shown in Table 6 and 7.  

The proposed model ‘DM’ is substantially better than all 
existing methods for collaborative filtering including both 
memory-based approaches and model-based approaches.  
These results are very promising, since they suggest that, 
compared with the memory-based approaches, graphic 
models are not only advantageous in principle, but also 
empirically superior due to their capabilities of capturing 
the distinction between the preference patterns and rating 
patterns in a principled way.  

Table 6: Comparison of ‘DM’, ‘MP’ , and other existing methods 
in terms of MAE on MovieRating. A smaller value means a 
better performance. 
Training 

Users Size 
Algorithms 

5 Items 
Given 

10 Items 
Given 

20 Items 
Given  

PCC 0.881 0.832 0.809 
VS 0.859 0.834 0.823 
PD 0.839 0.826 0.818 
AM 0.882 0.856 0.836 
BC 0.968 0.946 0.941 
DM 0.814 0.810 0.799 

100 

MP 0.911 0.905 0.880 
PCC 0.878 0.828 0.801 
VS 0.862 0.950 0.854 
PD 0.835 0.816 0.806 
AM 0.891 0.850 0.818 
BC 0.949 0.942 0.912 
DM 0.790 0.777 0.761 

200 

MP 0.877 0.861 0.837 
 



 

 

 
 
Table 7: Comparison of ‘DM’, ‘MP’ , and other existing methods 
in terms of MAE on EachMovie. A smaller value means a better 
performance. 

Training 
Users Size 

Algorithms 
5 Items 
Given 

10 Items 
Given 

20 Items 
Given  

PCC 1.22 1.16 1.13 
VS 1.25 1.24 1.26 
PD 1.19 1.16 1.15 
AM 1.27 1.18 1.14 
BC 1.25 1.22 1.17 

DM 1.07 1.04 1.03 

200 

MR 1.12 1.09 1.09 
PCC 1.22 1.16 1.13 
VS 1.32 1.33 1.37 
PD 1.18 1.16 1.15 
AM 1.28 1.19 1.16 
BC 1.17 1.15 1.14 
DM 1.05 1.03 1.02 

400 

MP 1.10 1.08 1.07 
On the other hand, the MP model has mixed results; it is 
better than all existing methods on EachMovie, but 
mostly worse on MovieRating.  This suggests that while it 
is very important to decouple the preference patterns from 
the rating patterns, we can not afford to ignore the rating 
values completely, especially when the desired output is 
an absolute value.  

5.  Conclusion and Future Work 

In this paper, we studied two different graphic models for 
collaborative filtering. Particularly, we focus ourselves on 
the problem that users with similar interests can have very 
different rating patterns, and proposed two different 
graphic models that can address this issue. The proposed 
‘DM’ model avoids the variance in rating patterns by 
decoupling the rating patterns from the preference 
patterns, while the ‘MP’ model tries to achieve a similar 
effect by modeling the relative orderings of items instead 
of the absolute values of ratings.  

Empirical results show that ‘DM’ is consistently better 
than ‘MP’ suggesting that ‘MP’ is weak in predicting the 
absolute values of ratings. Furthermore, the experiment 
confirmed that the decoupling of rating patterns and 
preference patterns is important for collaborative filtering, 
and modeling such a decoupling in a graphic model leads 
to improvement in performance. Comparison with other 
methods for collaborative filtering indicates that the 
proposed method is superior, suggesting advantages of 
graphic models for collaborative filtering.  

The idea of modeling preferences has also been explored 
in some other related work [Freund et al. 1988;Cohen et 
al. 1999]. We plan to further explore this direction by 
considering all these different approaches and using other 
interesting evaluation criterion such as one based on the 

inconsistent orderings. We also believe that the 
decoupling problem that we addressed may represent a 
more general need of modeling “noise”  in similar 
problems such as gene microarray data analysis in 
bininformatics. We plan to explore a more general 
framework for all these similar problems.  
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