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ABSTRACT

Due to the inconsistency between the maximum likelihood (ML) 
based training and the synthesis application in HMM-based speech 
synthesis, a minimum generation error (MGE) criterion had been 
proposed for HMM training. This paper continues to apply the 
MGE criterion to model adaptation for HMM-based speech 
synthesis. We propose a MGE linear regression (MGELR) based 
model adaptation algorithm, where the regression matrices used to 
transform source models to target models are optimized to 
minimize the generation errors for the input speech data uttered by 
the target speaker. The proposed MGELR approach was compared 
with the maximum likelihood linear regression (MLLR) based 
model adaptation. Experimental results indicate that the generation 
errors were reduced after the MGELR-based model adaptation. 
And from the subjective listening test, the discrimination and the 
quality of the synthesized speech using MGELR were better than 
the results using MLLR. 

Index Terms — Speech synthesis, minimum generation error, 
linear regression, model adaptation

1. INTRODUCTION 

Over the past few years, the HMM-based speech synthesis has 
been developed [1]. In this method, spectrum, pitch and duration 
are modeled simultaneously in a unified framework of HMMs [2], 
and the parameters are generated from HMMs by using the 
dynamic features [3]. Meanwhile voice characteristics of the 
synthesized speech can be converted from one speaker to another 
by applying a model adaptation algorithm, such as maximum 
likelihood linear regression (MLLR), with a small amount of 
speech data uttered by the target speaker [4], [5]. Recently, several 
techniques had been introduced to improve the model adaptation 
performance, i.e. a context decision tree tying method had been 
utilized to group source HMMs into classes [6][7] and many other 
speaker adaptation algorithms, including SMAP, CMLLR, 
SMAPLR, and CSMAPLR, had been studied [8]. 

The minimum generation error (MGE) criterion [9] had been 
proposed to solve the two issues related to the maximum 
likelihood (ML) based HMM training: the inconsistency between 
training and synthesis, and the lack of mutual constraints between 
the statistic and the dynamic features.  In this training method,  the 

* The work of this paper was done in the iFLYTEK Speech Laboratory in 
the University of Science and Technology of China. 

parameter generation was incorporated into HMM training 
procedure, and the probabilistic descent (PD) algorithm [10] was 
applied for parameter updating with the aim to minimize the 
generation errors for all training data. Furthermore, the MGE 
criterion had also been applied to the tree-based clustering for 
context dependent HMMs [11] and the whole HMM training 
procedure [12]. 

As the ML criterion was also used for model adaptation in 
HMM-based speech synthesis, this paper followed up the previous 
work and applied the MGE criterion for model adaptation. In order 
to effectively adapt the source models when only a small amount 
of training data is available, all the source models are firstly 
grouped into several classes, where the models within one class 
share the same regression matrix, which is initially estimated under 
the ML criterion. And then the parameters of the regression matrix 
are updated using the MGE criterion, i.e. the parameters are 
optimized to minimize the generation errors for the input speech 
data uttered by the target speaker. 

In the following part of this paper, an overview of MGE 
criterion is presented in section 2. Section 3 describes the details of 
the MGELR-based model adaptation method. Section 4 presents 
the results of experiments including subjective and objective 
evaluations while section 5 is some discussions on the experiments. 
At last a final conclusion is provided in section 6. 

2. MINIMUM GENERATION ERROR CRITERION 

2.1. Parameter generation algorithm

For a given HMM and the state sequenceQ , the parameter 
generation procedure is to determine the speech parameter vector 
sequence 1 2[ , ,..., ]T=O o o o to maximize ( | , )P O Q . In order 
to generate smooth parameter sequence, the dynamic features 
including delta and delta-delta coefficients are introduced, i.e. 

2[ , , ]t t t t=o c c c ,             (1) 

where tc , tc  and 2
tc  are the static, delta and delta-delta part 

of speech parameter vector, respectively. As the dynamic features 
can be calculated from the static features, then the speech 
parameter vector sequenceO can be rewritten as 

=O WC ,            (2) 
where 1 2[ , ,..., ]T=C c c c . Due to the limited space, the details 
ofW is not given, which can be found in [3]. 
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Under the condition (2), determining O to
maximize ( | , )P O Q is equivalent to determiningC to maximize 

( | , )P O Q . So by setting log ( | , ) 0P =O Q
C

, we obtain 

( )-1-1 T -1 -1= =C W U W W U R r ,         (3) 

where
1=R W U W , 1=r W U ,          (4) 

and

1 2
[ , ,..., ]

Tq q q= ,    (5) 

1 2
-1 1 1 1[ , ,..., ]

Tq q qdiag=U U U U ,    (6) 

are the mean vector and covariance matrix, respectively. 

2.2. Minimum generation error criterion

For a given speech parameter vector sequence =O WC , the 
optimal state sequence optQ  obtained by the Viterbi algorithm 
was used for parameter generation, and then the generation 
error ( , )eC is defined as the distortion between the original and 
generated feature vector, i.e. feature distortion. Here the Euclidean 
distance was adopted to calculate the distortion 

2
( , ) ( , )

optQe D= = -C C C C C .              (7) 

With the measure of generation error, the parameter 
generation process is incorporated into HMM training for 
calculating the total generation errors for all training data, which is 

1
( ) ( , )e

N

n
n

E C ,    (8) 

whereN is the total number of training utterances. 
Finally, we defined the object of MGE criterion, which is to 

optimize the parameters of HMMs so as to minimize the total 
generation errors 

ˆ arg min ( )E .       (9) 
As direct solution for Eq.(9) is mathematically intractable, 

probabilistic descent (PD) [10] method is adopted for parameter 
optimization. 

3. MGELR-BASED MODEL ADAPTATION 

In the MGELR-based model adaptation, the parameter generation 
is incorporated into the model adaptation procedure to calculate 
the generation errors and the parameters of the regression matrix 
are optimized to minimize the generation errors. 

3.1. Linear regression based model adaptation

Usually there has no sufficient training data from target speaker to 
calculate the regression matrix for each HMM, and thus the linear 
regression (LR) based model adaptation method is employed. In 
LR-based model adaptation, a context decision tree is used to 
group all HMMs into several classes [7], in which all the models 
share the same regression matrix. In order to guarantee that the 
data associated with each regression class is sufficient to estimate 
the regression matrix, an empirically derived minimum occupation 
count is applied. The parameters of the regression matrices are 
initialized using MLLR and then updated under the MGE criterion. 

In this paper, only the regression matrix for the mean vector of 
Gaussian distribution is re-estimated. 

For a mean vector of a Gaussian distribution, we define the 

extended mean vector  as 1[ , , , ]TD , where is the offset 

term for the regression. Under the LR-based model adaptation, the 
estimate of the adapted mean vector ˆ  can be given by 

ˆ =M ,                                                      (10) 
whereM is the ( 1)D D× + regression matrix [4], and D is the 
dimension of speech parameter vector. 

From Eq.(3), for the state sequence Q of an adaptation 
utterance, the generated parameter vector from the adapted HMMs 
is 

( )
( )

1T -1 T -1

1T -1 T -1

1

ˆQ Q

Q Q

Q

=

=

=

C W U W W U

W U W W U M

R r

,     (11) 

where
T -1

Q Q Q=r W U M ,   (12) 
with 

1 2
[ , , , ]

TQ q q qdiag=M M M M ,          (13) 

1 2
T T T T, , ,[ ]

TqQ q q= ,     (14) 

are the regression matrix and extended mean vector for the whole 
state sequenceQ .

3.2. Parameter updating under MGE criterion

The MGELR-based model adaptation is to minimize the total 
generation errors for all speech data uttered by the target speaker 

1

ˆ arg min ( ) arg min ( , )e
N

n
n

E C .    (15) 

whereN is the total number of the training utterances. 
For a sample nC  in the adaptation training set, the updating 

rule of the regression matrix parameters is 

( )
( ; )( 1) ( ) n

n n
en n =+ = C ,                      (16) 

with respect to the regression matrix QM , where n  is the step 
size for parameter updating.  

From Eq.(7) and Eq.(11), the updating of the regression 
matrix parameters can be formulated as 

( )
, , , ,

( , )
2 Q

Q
t i j t i j

e
m m

=
CC C C ,                            (17) 

where

1 T 1

, ,

Q
Q

t i jm
=

C
R W U Z .                                   (18) 

Finally,  
T 1 T 1

, , , ,( 1) ( ) 2 ( )t i j t i j n Q Qm n m n+ = C C R W U Z ,(19)
where , ,t i jm  is the element of the i th row and the j th column in 
the regression matrix related to the t-th frame, and 

T T T T
*( 1) *( 1) *( 1)
1
[0 , , , ,0 ]D D D D D D
st t th T th

K+ + +=Z ,         (20) 
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with each element in tK is , ,
1 ,

0t x y
x i y j

k
else

= =
= .               (21) 

4. EXPERIMENTS 

4.1. Experimental conditions 

We collected 1000 phonetically balanced sentences of a female 
speaker and 200 sentences of a male speaker from a Chinese 
speech database. The speech data of the female speaker was used 
to train the source HMMs, while the speech data of the male 
speaker was kept for model adaptation and evaluation. All speech 
data was sampled at a rate of 16KHz. Spectrum and pitch were 
obtained by the STRAIGHT analysis [13], and were converted to 
the line spectral pair (LSP) coefficients and the logarithm F0 
respectively. Finally, the feature vector of spectrum and pitch is 
composed of the 41-order LSP coefficients including the gain 
coefficient, the logarithm F0, as well as their delta and delta-delta 
coefficients. We use the 5-state left-to-right no-skip HMMs, in 
which the spectral part was modeled by single Gaussian 
distribution and F0 part was modeled by multi-space distribution 
(MSD) [2]. The duration feature vector is a 5-dimensional vector, 
corresponding to the 5-state HMMs, and it was modeled by single 
Gaussian distribution. 

Figure 1: Model adaptation procedure 

The whole model adaptation procedure, illustrated in Figure 1, 
is performed as follows: 

a. Firstly, the regression matrix for the mean vector of 
Gaussian distribution is initialized by the MLLR 
algorithm. And the optimal state path for all training 
data is obtained by the Viterbi algorithm and fixed in 
the later processes. 

b. For each training data, the generation errors are 
calculated using Eq.(7), where the generated parameter 
sequence is estimated by Eq.(11).

c. The parameters of the related regression matrices are 
updated using Eq.(19).

d. The procedure (b) and (c) are performed by several 
iterations until the generation errors are converged.  

e. Finally, from Eq.(10), by applying the updated 
regression matrices to the source models, we can get the 
adapted HMMs of the target speaker. 

In this paper, both the spectral and F0 regression matrices were 
optimized using MGELR. 

4.2. Experimental results 

A female to male conversion was conducted using both the 
proposed MGELR-based model adaptation and the conventional 
MLLR method. The source model of the female speaker was 

trained using 1000 sentences. And 100 sentences randomly 
selected from the database of the male speaker were used for 
model adaptation training while the rest 100 sentences were kept 
as test set. 

As the covariance matrix used here was diagonal, the 
generation errors were calculated independently for each 
dimension of LSP coefficients. Figure 2(a) shows the convergence 
property of MGELR-based model adaptation training for several 
representative dimensions. From the results of close and open test, 
the spectral MGELR training is converged after about 10 iterations. 
In the open test, the generation errors reduced about 5% for 
different dimensions of LSP coefficients after the MGELR-based 
model adaptation. The convergence property of F0 HMMs 
adaptation is illustrated in Figure 2(b), which presents the similar 
results as the spectrum adaptation. 

(a) Spectrum adaptation 

(b) F0 adaptation 
Figure 2: Convergence of MGELR-based model adaptation 
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To evaluate the effectiveness of the MGELR-based model 
adaptation, formal subjective listening test was conducted. We 
compared both the quality and the discrimination of the 
synthesized speech generated from the adapted HMMs using 
MGELR and the conventional MLLR method. 10 test sentences, 
which were not contained in the adaptation training data, were 
synthesized from the target HMMs estimated by these two 
methods, respectively. Subjects, including 10 persons, were 
presented a pair of synthesized speech from different methods in 
the random order, and then asked which speech sound more natural 
and which speech sound more like the target speaker. The 
preference scores are shown in Figure 3. It can be seen that the 
system performance, especially the quality of the synthetic speech, 
was improved after applying the MGELR-based model adaptation. 

48%

40%

52%

60%

Discrimnation

MOS
MLLR
MGELR

Figure 3: Preference scores 

5. DISCUSSION 

From Figure 2(a), we can find that the generation error for each 
dimension of the LSP coefficient is converged after about 10 
iterations. In fact, the convergence property for different 
dimension of the LSP coefficient is not always the same. But we 
can set different step size for different dimension to make them 
converge at the same time during the iteration calculation. In 
addition, as illustrated in Figure 2, the generation errors of the LSP 
coefficient and F0 converge faster in the open test than those in the 
close test. 

Figure 3 shows that the performance improvement on MOS is 
much more remarkably than that on the discrimination when 
applying the MGELR-based model adaptation. But when less 
adaptation training data, such as 50 sentences, is used, the 
improvements on MOS and on the discrimination are nearly the 
same. The synthetic speech using MGELR wins about 55% of the 
whole test.  When only 5 sentences of the target speaker’s speech 
are available, although the generation errors of LSP coefficients 
and F0 still decline and converge, the informal listening test for the 
synthesized speech using MLLR and MGELR indicates that the 
difference between these two methods can be ignored. 

6. CONCLUSION 

In this paper, we applied the MGE criterion to model adaptation 
for HMM-based speech synthesis. In order to ensure that all 
HMMs can be effectively adapted, the linear regression based 
model adaptation was employed. In the model adaptation training, 
the regression matrix estimated by MLLR was selected as the 
initial transform matrix, and then the parameters of regression 
matrix were re-estimated under the MGE criterion to minimize the 
generation errors using the PD algorithm. The results of the 
subjective and objective tests indicate that the system performance 
including the quality and the discrimination of the synthetic speech 
is improved with the proposed MGELR-based model adaptation. 

Future work is to apply the MGELR-based model 
adaptation not only to the mean vector but also to the 
covariance matrix of Gaussian distribution.
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