
Statistical Probabilistic Model Checking

with a Focus on Time-Bounded Properties 1

H̊akan L. S. Younes ∗, Reid G. Simmons

School of Computer Science, Carnegie Mellon University,

Pittsburgh, PA, 15213, USA

Abstract

Probabilistic verification of continuous-time stochastic processes has received in-
creasing attention in the model-checking community in the past five years, with
a clear focus on developing numerical solution methods for model checking of
continuous-time Markov chains. Numerical techniques tend to scale poorly with
an increase in the size of the model (the “state space explosion problem”), however,
and are feasible only for restricted classes of stochastic discrete-event systems. We
present a statistical approach to probabilistic model checking, employing hypothesis
testing and discrete-event simulation. Since we rely on statistical hypothesis test-
ing, we cannot guarantee that the verification result is correct, but we can at least
bound the probability of generating an incorrect answer to a verification problem.

Key words: Probabilistic verification, Stochastic processes, Temporal logic,
Hypothesis testing, Acceptance sampling, Transient analysis

1 Introduction

Stochastic processes are used to model phenomena in nature that involve an
element of chance, such as radioactive decay, or are too complex to fully cap-
ture in a deterministic fashion, such as the duration of a call in a telephone
system. Given a stochastic process, it is often of interest to know if certain

∗ Corresponding author.
Email addresses: lorens@cs.cmu.edu (H̊akan L. S. Younes),

reids@cs.cmu.edu (Reid G. Simmons).
1 Supported in part by the US Army Research Office (ARO) under contract no.
DAAD190110485 and the Royal Swedish Academy of Engineering Sciences (IVA)
with grants from the Hans Werthén Fund.

Preprint submitted to Elsevier Science 26 May 2006



properties hold. For instance, we may ask whether the probability of exhaust-
ing bandwidth over a communication link is below 0.01. We can also introduce
deadlines, for example that a message arrives at its destination within 15 sec-
onds with probability at least 0.8. Numerous temporal logics (e.g. TCTL [1],
PCTL [28], and CSL [6,9]) exist for expressing such properties.

Model checking, pioneered by Clarke and Emerson [15], is a technique for
automated verification of hardware and software systems. Practical model-
checking algorithms have been developed for verifying probabilistic properties
of stochastic systems (e.g. discrete-time Markov chains [28], continuous-time
Markov chains [9], and semi-Markov processes [40]). These approaches employ
numerical solution techniques to compute probability estimates. The numeri-
cal estimates are then compared to the probability thresholds of the properties
that are being verified to determine whether the properties hold.

This paper presents a statistical approach to model checking based on hypoth-
esis testing and simulation. A key observation is that it is not necessary to ob-
tain an accurate estimate of a probability in order to verify probabilistic prop-
erties. For example, to verify whether the probability of exhausting bandwidth
is below 0.01, we do not need to know the exact probability that bandwidth
will be exhausted. It would be a waste of effort to obtain an accurate estimate
of this probability only to realize that it is far from the specified threshold of
0.01. Instead, we can think of a model-checking problem in terms of hypothesis
testing. Let p be the actual probability that bandwidth is exhausted. To verify
the given property, we need to test the hypothesis H : p < 0.01 against the
alternative hypothesis K : p ≥ 0.01. Such hypothesis-testing problems can be
solved efficiently using an established statistical technique called acceptance
sampling, described in further detail in Section 2.

Because we rely on statistical sampling techniques, our solution method is not
tied to a specific class of stochastic processes. We can, in principle, handle any
system for which we can generate sample execution trajectories. In fact, we
could even use trajectories generated from the execution of an actual system
rather than through simulation of a model. We focus on the general class of
stochastic discrete-event systems, described in Section 3, which includes any
stochastic process with piecewise constant trajectories and without nonde-
terminism. Our solution method is limited to non-explosive (time-divergent)
processes for which only a finite number of events can occur in a finite amount
of time. Most finite-state models satisfy this requirement by default.

Existing logics for expressing probabilistic real-time properties of stochastic
systems without nondeterminism have semantics that are tied to restricted
classes of systems, for instance discrete-time Markov chains in the case of
PCTL. To enable a uniform treatment for model checking of all stochas-
tic discrete-event systems, we present the Unified Temporal Stochastic Logic

2



(UTSL) in Section 4. UTSL coincides with PCTL for discrete-time Markov
chains and Baier et al.’s [9] CSL (without the steady-state operator) for
continuous-time Markov chains. We introduce a version of UTSL, called UTSLδ,
with a relaxed semantics. It is for this version that we develop a model-checking
algorithm. The relaxation introduces indifference regions around probability
thresholds. The rationale behind this relaxation is that when we ask if a prob-
ability is above some threshold θ, then we are indifferent with respect to the
correctness of the answer if the probability is sufficiently close to θ (less than
a δ distance away from θ). We make δ a parameter of our model-checking al-
gorithm. As discussed in Section 8, numerical approaches should also be seen
as model-checking algorithms for UTSLδ rather than UTSL due to roundoff
and truncation errors.

Section 5 introduces a model-checking algorithm for UTSLδ, based on statisti-
cal hypothesis testing. This work originated in an effort to verify plans for com-
plex stochastic temporal domains, with a focus on probabilistic time-bounded
reachability properties [70]. Time-bounded CSL properties were later consid-
ered [71], although with an unsatisfactory solution for nested probabilistic
operators. Younes [66] improved the solution method for nested probabilistic
operators, but introduced an error in the analysis of conjunctions, which also
has consequences for the verification of path formulae with probabilistic opera-
tors. These shortcomings have now been addressed, and a sound and practical
solution to the verification of properties with nested probabilistic operators
is presented for the first time in this paper. The main theoretical results are
Theorems 9 and 12, showing how to bound the probability of error for con-
junctive and nested probabilistic statements, respectively. With nesting, our
solution method is restricted to Markov chains.

Section 6 presents four case studies that are used in Section 7 to evaluate
our statistical model-checking algorithm. We show how the performance of
the algorithm depends, in practice, on user-supplied parameters and model
characteristics. This supplements the theoretical complexity analysis of the
algorithm provided in Section 5. We use two different acceptance sampling
tests in the evaluation: a test based on fixed-size samples and Wald’s [62]
sequential probability ratio test. While the relative merits of these tests are
well understood in the statistics community, recent papers on probabilistic
model checking by Sen et al. [60,61] demonstrate a lack of understanding of
these methods in the verification community. We find it warranted to include
results for two acceptance sampling tests to show that (i) our solution method
is not tied to a specific test, as is falsely claimed by Sen et al., and (ii) the
sequential probability ratio test almost always is orders of magnitude faster.

We include a brief discussion on simulation effort in Section 7, but we stress
that this is not a paper about simulation techniques. Efficient simulation is an
orthogonal topic and statistical model checking can immediately benefit from

3



efforts on faster simulation of Markov chains (e.g., by Hordijk et al. [36]) and
discrete-event systems (e.g., by McCormack and Sargent [52]).

Section 8 provides a brief overview of related work on probabilistic model
checking, including both statistical and numerical solution techniques. In the
common case that we want to verify a property in a single initial state or for a
probability distribution over initial states, statistical methods generally scale
much better than numerical methods as the state space of the model increases.
Other benefits of the statistical approach are that (i) it is easy to implement,
(ii) it is model independent, (iii) the error analysis is straightforward, and
(iv) it is highly amenable to parallelization (this is true even if sequential hy-
pothesis testing is used, as discussed by Younes [66,67]). Numerical methods,
on the other hand, are better suited when a small indifference region is re-
quired, probabilistic correctness guarantees are unacceptable, or one wants to
know the actual probability of satisfaction with high accuracy. Furthermore,
numerical methods have the same asymptotic complexity for verifying a prop-
erty in a single state as in all state simultaneously. This is not the case for
the statistical approach, although it will still have much more modest memory
requirements.

2 Acceptance Sampling with Bernoulli Trials

A probabilistic model-checking problem can be phrased as a hypothesis-testing
problem. We will take advantage of this in Section 5 when presenting a statis-
tical approach to probabilistic model checking. As an example of a hypothesis-
testing problem, consider the problem of quality control for a manufacturing
process. Each manufactured unit is either functional or defective, and there is
some probability p, unknown to us, of the process producing a functional unit.
Naturally, we want p to be high. Let θ be the lowest acceptable value of p.
By inspecting a limited number of manufactured units, we want to determine
if the manufacturing process is acceptable (i.e. p ≥ θ). This section discusses
how to solve such problems statistically using acceptance sampling.

Let Xi be a random variable with a Bernoulli distribution (Pr[Xi = 1] = p
and Pr[Xi = 0] = 1− p). Xi is called a Bernoulli trial. For the manufacturing
process mentioned above, Xi represents the inspection of a manufactured unit,
and an observation of Xi, denoted xi, represents the outcome of the inspection
(xi is 1 if the ith observed unit is functional and 0 if it is defective). To
determine if the manufacturing process is acceptable, we need to test the
hypothesis H : p ≥ θ against the alternative hypothesis K : p < θ.

Statistical solution techniques generally cannot guarantee a correct result, but
this may be acceptable so long as we can bound the probability of error. The

4



p0 θ 1

L p

0
β

1 − α

1

Fig. 1. Probability, Lp, of accepting the
hypothesis H : p ≥ θ as a function of p

for a hypothetical statistical test.

p0 p1 p0 1

L p

0
β

1 − α

1

Fig. 2. Probability, Lp, of accepting the
hypothesis H0 : p ≥ p0 as a function of p

for a test with indifference region.

strength of an acceptance sampling test is determined by two parameters, α
and β, where α is a bound on the probability of accepting K when H holds
(known as a type I error, or false negative) and β is a bound on the probability
of accepting H when K holds (a type II error, or false positive). Fig. 1 plots the
probability of accepting H , as a function of p, for a hypothetical acceptance
sampling test with ideal performance in the sense that the probability of a
type I error is exactly α and the probability of a type II error is exactly β.

The above formulation is problematic and must be relaxed to yield a practical
test. For p = θ, the probability of accepting H must be at least 1−α, but for
p only infinitesimally smaller than θ, the probability of accepting H must not
be greater than β. This necessitates exhaustive sampling or using β = 1 − α.
The former is impractical for large sample populations and the latter makes it
impossible to ensure a low probability for both types of errors simultaneously.
The hypothesis-testing problem is relaxed by introducing two thresholds p0

and p1, with p0 > p1. Instead of testing H : p ≥ θ against K : p < θ, we test
H0 : p ≥ p0 against H1 : p ≤ p1. We require that the probability of accepting
H1 when H0 holds is at most α, and the probability of accepting H0 when
H1 holds is at most β. Fig. 2 shows the typical performance characteristic for
a realistic acceptance sampling test. If the value of p is between p0 and p1,
we say that we are indifferent with respect to which hypothesis is accepted,
and both hypotheses are in fact false in this case. The region (p1, p0) is called
the indifference region and it is shown as a gray area in Fig. 2. By narrowing
the indifference region, we can get arbitrarily close to the ideal performance
shown in Fig. 1, but this comes at a price since more observations are required
to achieve a narrower indifference region.

For probabilistic model checking, we will find it convenient to define the two
thresholds, p0 and p1, in terms of a single threshold, θ, and the half-width, δ,
of the indifference region, i.e. p0 = θ + δ and p1 = θ − δ.

5



2.1 Acceptance Sampling with Fixed-Size Samples

A sample of size n consists of n observations, x1, . . . , xn, of the Bernoulli
variates, X1, . . . , Xn, that represent our experiment. To test H0 : p ≥ p0

against H1 : p ≤ p1, using a single sample of size n, we specify a constant
c. If

∑n
i=1 xi is greater than c, then H0 is accepted, otherwise H1 is accepted.

The problem is now to find n and c such that the resulting test has strength
〈α, β〉. The pair 〈n, c〉, referred to as a single sampling plan [25,19], represents
an acceptance sampling test that uses a single fixed-size sample.

The sum Y =
∑n

i=1 Xi of n Bernoulli variates is a random variable with a
binomial distribution having cumulative distribution function

Pr[Y ≤ c] = F (c; n, p) =
c
∑

i=0

(

n

i

)

pi(1 − p)n−i . (1)

Thus, using a single sampling plan 〈n, c〉, H1 is accepted with probability
F (c; n, p) and H0 is accepted with probability 1 − F (c; n, p). The sampling
plan 〈n, c〉 has strength 〈α, β〉 if the following conditions are satisfied:

F (c; n, p0) ≤ α (2a)

1 − F (c; n, p1) ≤ β (2b)

The hypothesis-testing effort is directly proportional to the sample size. For
a fixed strength, we should minimize n subject to (2a) and (2b) as this will
minimize the effort. The stated optimization problem does not have a closed-
form solution except in a few special cases discussed below. In Section 7, we
employ the algorithm provided by Younes [66, p. 21], based on binary search,
to find an optimal single sampling plan for any choice of p0, p1, α, and β.

Example 1 For probability thresholds p0 = 0.5 and p1 = 0.3, and error
bounds α = 0.2 and β = 0.1, the optimal single sampling plan is 〈30, 12〉.
This means that we need a sample of size 30, and we accept the hypothesis
p ≥ 0.5 if and only if the sum of the 30 observations exceeds 12. Fig. 2 (p. 5)
plots the probability Lp = 1 − F (12; 30, p) of accepting H0 : p ≥ 0.5.

For a few special cases, shown in Table 1, the optimal sample size for a single
sampling plan can be expressed precisely as a formula of the test parameters.
For the remaining cases, Younes [66, p. 23] derives the following approximation
formula for n based on the normal approximation for binomial distributions:

ñ =

(

Φ−1(α)
√

p0(1 − p0) + Φ−1(β)
√

p1(1 − p1)
)2

(p0 − p1)2
(3)

Φ−1 is the inverse cumulative distribution function for the standard normal

6



Table 1
Optimal single sampling plans for different choices of p1 and p0.

thresholds optimal single sampling plan

p1 = 0 p0 = 1 n = 1 c = 0

p1 = 0 p0 < 1 n =

⌈

log α

log(1 − p0)

⌉

c = 0

p1 > 0 p0 = 1 n =

⌈

log β

log p1

⌉

c = n − 1

distribution. According to (3), the sample size for a single sampling plan is
approximately inversely proportional to the squared width of the indifference
region. The presence of p0 and p1 in the numerator indicates that the sample
size also depends on the placement of the indifference region. For a fixed width,
the sample size is largest if the indifference region is centered around p = 1/2,
and it decreases if the indifference region is shifted toward p = 0 or p = 1.
From Hasting’s [30, p. 191] approximation formula for Φ−1, it follows that n
is roughly proportional to the logarithm of α and β. Consequently, decreasing
α or β tends to be less costly than narrowing the indifference region.

2.2 Sequential Acceptance Sampling

The sample size for a single sampling plan is fixed and therefore independent of
the actual observations made. It is often possible to reduce the expected sample
size required to achieve a desired test strength by taking the observations into
account as they are made. For example, if we use a single sampling plan 〈n, c〉
and the sum of the first m observations is already greater than c, then we can
accept H0 without making further observations. Conversely, if it is already
clear after the first m observations that the sum of all n observations cannot
exceed c, then we can safely accept H1 after making only m observations. The
modified test procedure is a simple example of a sequential sampling plan:
after each observation, we decide whether sufficient information is available to
accept either of the two hypotheses or additional observations are required.

Wald’s [62] sequential probability ratio test is a particularly efficient sequential
sampling plan. The reduction in expected sample size, compared to a (sequen-
tial) single sampling plan, is often substantial, although there is no fixed upper
bound on the sample size so the variance is generally higher.

The sequential probability ratio test is carried out as follows. At the mth

7



stage, i.e. after making m observations x1, . . . , xm, we calculate the quantity

fm =
m
∏

i=1

Pr[Xi = xi | p = p1]

Pr[Xi = xi | p = p0]
=

pdm

1 (1 − p1)
m−dm

pdm

0 (1 − p0)m−dm

, (4)

where dm =
∑m

i=1 xi. Hypothesis H0 is accepted if

fm ≤ B , (5)

and hypothesis H1 is accepted if

fm ≥ A . (6)

Otherwise, additional observations are made until either (5) or (6) is satisfied.
A and B, with A > B, are chosen so that the probability is at most α of
accepting H1 when H0 holds, and at most β of accepting H0 when H1 holds.

Finding A and B that gives strength 〈α, β〉 is non-trivial. In practice we choose
A = (1 − β)/α and B = β/(1 − α), which results in a test that very closely
matches the prescribed strength. Let the actual strength of this test be 〈α′, β ′〉.
Wald [62, p. 131] shows that α′ ≤ α/(1 − β) and β ′ ≤ β/(1 − α). This means
that if α and β are small, which typically is the case in practical applications,
then α′ and β ′ can only narrowly exceed the target values. Wald [62, p. 132]
also shows that α′ + β ′ ≤ α + β, so at least one of the inequalities α′ ≤ α and
β ′ ≤ β must hold, and in practice we often find that both inequalities hold.

Example 2 Let p0 = 0.5, p1 = 0.3, α = 0.2 and β = 0.1 as in Example 1.
If we use A = (1 − β)/α and B = β/(1 − α), then we are guaranteed that
α′ ≤ 0.2/0.9 ≈ 0.222 and β ′ ≤ 0.1/0.8 = 0.125. Through computer simulation
we obtain the estimates α′ ≈ 0.175 < α and β ′ ≈ 0.082 < β, so the strength
of the test is in reality better than 〈α, β〉.

If p0 = 1 or p1 = 0, then the sequential probability ratio test is equivalent
to a sequential single sampling plan, provided that we choose A = α−1 and
B = β. Anderson and Friedman [4] call sampling plans of this kind curtailed
single sampling plans and they prove that such plans are strongly optimal.
This means that any other sampling plan with at least the same strength
always requires at least as many observations for all values of p.

The sample size for a sequential acceptance sampling test is a random variable
and the expected sample size depends on the unknown parameter p. Let Np

denote the expected sample size as a function of p. An exact formula for Np

does not exist for the sequential probability ratio test, but Table 2 provides
approximation formulae for a few cases of special interest, with

ps = log
1 − p0

1 − p1

/

log
p1(1 − p0)

p0(1 − p1)
.

8



Table 2
Approximate expected sample size for the sequential probability ratio test.

p Ñp

0 log
1 − β

α

/

log
1 − p1

1 − p0

p1

(

β log
β

1 − α
+ (1 − β) log

1 − β

α

)/(

p1 log
p1

p0
+ (1 − p1) log

1 − p1

1 − p0

)

ps

(

− log
β

1 − α
log

1 − β

α

)/(

log
p1

p0
log

1 − p0

1 − p1

)

p0

(

(1 − α) log
β

1 − α
+ α log

1 − β

α

)/(

p0 log
p1

p0
+ (1 − p0) log

1 − p1

1 − p0

)

1 log
β

1 − α

/

log
p1

p0

In general, Np increases from 0 to p1 and decreases from p0 to 1. In the
indifference region (p1, p0), Np increases from p1 to some point p′ (generally
equal to or very near ps [63, p. 101]) and decreases from p′ to p0.

A remarkable property of the sequential probability ratio test is that it min-
imizes the expected sample size at both p0 and p1 [64]. It is well known,
however, that there exist tests that achieve a lower expected sample size for
other values of p, in particular if p is in the indifference region (an example
of this is given in Section 7). Alternative approaches have therefore been sug-
gested, most notably so called Bayesian approaches where the objective is to
minimize the expected cost subject to a cost c per observation and a unit cost
for accepting a false hypothesis [58,47]. While such alternative formulations of
the hypothesis-testing problem are certainly interesting, we will not explore
them further in this paper because they represent a departure from the model
where the user specifies the desired strength of the test. We refer the reader
to Lai [48] for a more detailed account of the developments in the field of
sequential hypothesis testing since the ground-breaking work of Wald.

3 Stochastic Discrete-Event Systems

This section formally defines the class of systems for which we develop a model-
checking algorithm in Section 5. We rely heavily on the notion of a stochastic
process, which is any process that evolves over time and whose evolution we
can follow and predict in terms of probability [18]. At any point in time, a
stochastic process occupies some state. The outcome of observing the state of
a stochastic process at a specific time is governed by some probability law.

9



Definition 3 (Stochastic Process) Let S and T be two sets. A stochastic
process is a family of random variables X = {Xt | t ∈ T}, with each random
variable Xt having range S.

The index set T in Definition 3 represents time and is typically the set of
non-negative integers, Z

∗, for discrete-time stochastic processes and the set of
non-negative real numbers, [0,∞), for continuous-time stochastic processes.
The set S represents the states that the stochastic process can occupy.

The definition of a stochastic process as a family of random variables is quite
general and includes systems with both continuous and discrete dynamics.
We will focus our attention on a limited, but important, class of stochastic
processes: stochastic discrete-event systems. This class includes any stochastic
process that can be thought of as occupying a single state for a duration
of time before an event causes an instantaneous state transition to occur.
The canonical example of such a process is a queuing system, with the state
being the number of items currently in the queue. The state changes at the
occurrence of an event representing the arrival or departure of an item.

3.1 Trajectories

A random variable Xt ∈ X represents the chance experiment of observing
the stochastic process X at time t. By recording observations at consecutive
time points for all t ∈ T , we obtain a trajectory, or sample path, for X . The
work presented in this paper is centered around the verification of tempo-
ral logic formulae over trajectories for stochastic discrete-event systems. The
terminology and notation introduced here is used extensively in later sections.

Definition 4 (Trajectory) A trajectory for a stochastic process X is any
sequence of observations {xt ∈ S | t ∈ T} of the random variables Xt ∈ X .

The trajectory of a stochastic discrete-event system is piecewise constant and
can be represented as a sequence σ = {〈s0, t0〉, 〈s1, t1〉, . . .}, with si ∈ S and
ti ∈ T \ {0}. Zero is excluded so that only a single state can be occupied at
any time. Fig. 3 plots part of a trajectory for a simple queuing system. Let

Ti =











0 if i = 0
∑i−1

j=0 tj if i > 0
, (7)

i.e. Ti is the time at which state si is entered and ti is the duration of time
for which the process remains in si before an event triggers a transition to
state si+1. A trajectory σ is then a sequence of observations of X with xt = si

for Ti ≤ t < Ti + ti. According to this definition, trajectories of stochastic

10



T0 T1 T2 T3 T4

S

0

1

2

3

Fig. 3. A trajectory for a simple queuing system with arrival events occurring at
T1, T2, and T3, and a departure event occurring at T4.

discrete-event systems are right continuous. A finite trajectory is a sequence
σ = {〈s0, t0〉, . . . , 〈sn,∞〉} where sn is an absorbing state, meaning that no
events can occur in sn and that xt = sn for all t ≥ Tn.

An infinite trajectory is convergent if limi→∞ Ti < ∞. For a trajectory to
be convergent, however, an infinite sequence of events must occur in a finite
amount of time, which is unrealistic for any physical system. Hoel et al. [34]
use the term explosive to describe processes for which such sequences can
occur with non-zero probability. It is common to assume time divergence (also
called non-Zeno behavior) for infinite trajectories of real-time systems (cf. [3]),
i.e. that the systems are non-explosive, and most finite-state systems satisfy
this property by default.

3.2 Measurable Stochastic Discrete-Event Systems

Of utmost importance to probabilistic model checking is the definition of a
probability measure over sets of trajectories for a system. Formally, a measur-
able space is a set Ω with a σ-algebra FΩ of subsets of Ω [26]. A probability
space is a measurable space 〈Ω,FΩ〉 and a probability measure µ.

For stochastic discrete-event systems, the elements of the σ-algebra are sets
of trajectories with common prefix. A prefix of σ = {〈s0, t0〉, 〈s1, t1〉, . . .} is a
sequence σ≤τ = {〈s′0, t′0〉, . . . , 〈s′k, t′k〉}, with s′i = si for all i ≤ k,

∑k
i=0 t′i = τ ,

t′i = ti for all i < k, and t′k < tk. Let Path(σ≤τ ) denote the set of trajecto-
ries with prefix σ≤τ . This set must be measurable so that we can talk about
the probability of a system exhibiting certain behavior. This requirement is
not a problem in practice—the set of trajectories of a stochastic discrete-
event system is measurable if the sets S and T are measurable. Let FS

be a σ-algebra over S and FT a σ-algebra over T . Then the cylinder set
C(σ≤τ , Ik, Sk+1, . . . , In−1, Sn), with Si ∈ FS and Ii ∈ FT , denotes the set of
trajectories σ = {〈s′0, t′0〉, 〈s′1, t′1〉, . . . } such that s′i = si for i ≤ k, s′i ∈ Si

for k < i ≤ n, t′i = ti for i < k, t′k > tk, and t′i ∈ Ii for k ≤ i < n. The
σ-algebra over the set Path(σ≤τ ) can be defined using element-wise set oper-
ations on cylinder sets. This is analogous to Baier et al.’s [9] definition of a
σ-algebra on the set of trajectories for a continuous-time Markov chain (see

11



also, Segala’s [59] definition of trace distributions).

3.3 Structured Stochastic Discrete-Event Systems

So far, we have defined stochastic discrete-event systems in rather general
terms as any stochastic process with piecewise constant trajectories. Most
stochastic discrete-event system of interest have more structure than so.

The probability measure on sets of trajectories for a stochastic discrete-event
system can be expressed using a holding time distribution with density func-
tion h(·; σ≤τ ) and a next-state distribution p(·; σ≤τ , t). The probability measure
for C(σ≤τ , Ik, Sk+1, . . . , In−1, Sn) can then be defined recursively as

µ(C(σ≤τ , Ik, Sk+1, . . . , In−1, Sn)) =
∫

Ik

h(tk + t; σ≤τ )
∫

Sk+1

p(s; σ≤τ , t) · µ(C(σ≤τ ⊕ 〈t, s〉, Ik+1, Sk+2, . . . , In−1, Sn)) ,

where {〈s0, t0〉, . . . , 〈sk, tk〉}⊕〈t, s〉 = {〈s0, t0〉, . . . , 〈sk, tk+t〉, 〈s, 0〉}. The base
case for the recursive definition is µ(C(σ≤τ )) = 1.

By making limiting assumptions regarding the shape of the distributions
h(·; σ≤τ ) and p(·; σ≤τ , t), we enable a succinct representation of µ. This is im-
portant for efficient generation of sample trajectories for stochastic discrete-
event systems, which is a large component of our statistical model-checking
algorithm. A common assumption is that h(·; σ≤τ ) and p(·; σ≤τ , t) are indepen-
dent of history, which gives us Markov chains. Discrete-time Markov chains
have geometric holding time distributions for each state. For continuous-
time Markov chains, the holding time in state s is exponentially distributed:
h(t; s) = λs e−λst. The parameter λs is the exit rate for state s. With gen-
eral positive holding time distributions, we have semi-Markov processes. More
detailed accounts on Markov chains and semi-Markov processes are provided
by, for example, Kolmogoroff [44], Doob [18], Bartlett [11], Howard [37,38],
and Çinlar [14]. The generalized semi-Markov process, first introduced by
Matthes [51], permits even further history dependence. It is an established
formalism in queuing theory for modeling stochastic discrete-event systems
with focus on the event structure of a system [23].

In addition to using a structured representation of the probability measure
on sets of trajectories, it is often natural to describe the state of a system by
using multiple state variables. A state variable could represent, for example,
the number of elements in a queue or the status of a machine component.

Definition 5 (Factored State Representation) A factored representation
of a state space S consists of a set of state variables SV and a value assignment

12



function V (s, x) providing the value of x ∈ SV in state s ∈ S. The domain of
x is the set Dx =

⋃

s∈S V (s, x) of possible values that x can take on. A tuple
〈S, T, µ, SV , V 〉 represents a factored stochastic discrete-event system.

4 Specifying Properties of Stochastic Discrete-Event Systems

To enable automatic verification of stochastic discrete-event systems, a for-
malism is needed for expressing interesting properties of such systems. This
section introduces the Unified Temporal Stochastic Logic (UTSL), which can
be used to express properties such as “the probability is at most 0.01 that a
call is dropped within a 60-minute period.” UTSL has essentially the same
syntax as the existing logics PCTL and CSL, but it has a unified semantics
for both discrete-time and continuous-time systems, as well as systems with
discrete, continuous, and general state spaces. This will allow us, for the most
part, to treat all stochastic discrete-event systems uniformly when presenting
a statistical approach to probabilistic model checking in Section 5.

4.1 Temporal and Probabilistic Logic

The use of temporal logic [57] for specifying properties of deterministic and
nondeterministic systems with program verification in mind was pioneered by
Pnueli [55] and is now a wide-spread practice in the model-checking commu-
nity. The propositional branching-time logic CTL [16], a particularly popular
formalism, can be used to express properties such as “for all trajectories, Ψ
eventually becomes true with Φ holding continuously until then” and “there
exists a trajectory such that Φ holds after the next state transition.”

For many real-time systems, it is important to ensure that deadlines are
met. Extensions of CTL with time as a discrete (RTCTL [20]) or continu-
ous (TCTL [2]) quantity have therefore been proposed. With RTCTL and
TCTL, it is possible to express timed properties such as “for all trajectories,
Φ becomes true within t time units.” The logic TCTL has also been proposed
as a formalism for expressing properties of continuous-time stochastic systems,
but with “for all trajectories” (∀) and “there exists a trajectory” (∃) reinter-
preted as “with probability one” and “with positive probability,” respectively
[1]. The same interpretation is used in earlier work by Hart and Sharir [29] on
the branching-time logic PTL for discrete-time stochastic processes.

It is often not economically or physically feasible to ensure that certain behav-
iors occur with probability one, but simply guaranteeing that a behavior can
be exhibited by the system with positive probability may be too weak. For

13



example, designing a telephone system where no call is ever dropped would
be excessively costly, but it is not enough to know that a call can possibly
go through. For the telephone system, we would like to ensure that calls go
through with high probability, for example 0.9999. Neither TCTL nor PTL
permit us to express such a property, but the probabilistic logic PCTL [27,28]
does. PCTL has quantitative time bounds just as RTCTL, on which PCTL is
based, but the path quantifiers ∀ and ∃ are replaced by a single probabilistic
path quantifier. This lets us express quantitative bounds on the probability
of a set of trajectories. For example, PCTL can express the property “with
probability at least θ, Φ will be satisfied within t time units.”

PCTL formulae are interpreted over discrete-time Markov chains. A similar
logic, CSL, with formulae interpreted over continuous-time Markov chains,
has been proposed by Aziz et al. [5,6]. Baier et al. [10,9] introduce a varia-
tion of CSL, which includes a facility for expressing bounds on steady-state
probabilities. This version of CSL has also been used for expressing properties
of semi-Markov processes [40]. Yet another logic, with essentially the same
syntax as PCTL, has been proposed for expressing properties of probabilistic
timed automata [46]. While the difference in syntax is minimal between all
mentioned logics for expressing probabilistic real-time properties, the seman-
tics of the various logics are tied to specific classes of stochastic processes.

4.2 UTSL: The Unified Temporal Stochastic Logic

To enable the use of a single logic for different classes of systems, we introduce
the logic UTSL, with a unified semantics for all measurable stochastic discrete-
event systems. The syntactic structure of UTSL is the same as that of both
CSL (without the steady-state operator) and PCTL.

Definition 6 (UTSL Syntax) For a factored stochastic discrete-event sys-
tem, M = 〈S, T, µ, SV , V 〉 (Definition 5), the syntax for UTSL is defined as
follows:

(1) x ∼ v is a UTSL formula for x ∈ SV , v ∈ Dx, and ∼ ∈ {≤, =,≥}.
(2) ¬Φ is a UTSL formula if Φ is a UTSL formula.
(3) Φ ∧ Ψ is a UTSL formula if both Φ and Ψ are UTSL formulae.
(4) P./ θ[X

I Φ], for ./ ∈ {≤,≥}, θ ∈ [0, 1], and I ⊂ T , is a UTSL formula if
Φ is a UTSL formula.

(5) P./ θ[Φ U I Ψ], for ./ ∈ {≤,≥}, θ ∈ [0, 1], and I ⊂ T , is a UTSL formula
if both Φ and Ψ are UTSL formulae.

The standard logic operators have their usual meaning. P./ θ[ϕ] asserts that the
probability measure over the set of trajectories satisfying the path formula ϕ is
related to θ according to ./. Path formulae are constructed using the temporal

14



path operators XI (“next”) and U I (“until”). The path formula XI Φ asserts
that the next state transition occurs t ∈ I time units into the future and that
Φ holds in the next state, while Φ U I Ψ asserts that Ψ becomes true t ∈ I
time units into the future while Φ holds continuously prior to t.

Definition 6 provides a bare-bones version of UTSL. Additional formulae are
derived in the usual way. For example, ⊥ ≡ (x = v) ∧ ¬(x = v) for some
x ∈ SV and v ∈ Dx, > ≡ ¬⊥, x < v ≡ ¬(x ≥ v), Φ ∨ Ψ ≡ ¬(¬Φ ∧ ¬Ψ),
Φ → Ψ ≡ ¬Φ ∨ Ψ, and P< θ[ϕ] ≡ ¬P≥ θ[ϕ]. The path operators W (“weak
until”), 3 (“eventually”), and � (“continuously”) are derived as follows [28]:

P≥ θ[Φ WI Ψ] ≡ P≤ 1−θ[¬Ψ U I ¬(Φ ∨ Ψ)]

P≤ θ[Φ WI Ψ] ≡ P≥ 1−θ[¬Ψ U I ¬(Φ ∨ Ψ)]

P./ θ[3
I Φ] ≡ P./ θ[> U I Φ]

P./ θ[�
I Φ] ≡ P./ θ[Φ WI ⊥]

Unbounded versions of all path operators are obtained by letting I equal the
time domain T . For example, P./ θ[Φ U Ψ] ≡ P./ θ[Φ UT Ψ].

4.3 UTSL Semantics and Model-Checking Problems

The validity of a UTSL formula is determined relative to a trajectory prefix.
For simple UTSL formulae of the form x ∼ v, the validity depends only on
the last state of the trajectory prefix, but this is not necessarily the case for
UTSL formulae containing one or more probabilistic operators. The formal
semantics of UTSL is given by the following inductive definition.

Definition 7 (UTSL Semantics) Let M = 〈S, T, µ, SV , V 〉 be a factored
stochastic discrete-event system (Definition 5). With Path(σ≤τ ) being the set
of trajectories with prefix σ≤τ and the definition of Ti given by (7), satisfaction
relations for UTSL formulae are defined by the following rules:

M, {〈s0, t0〉, . . . , 〈sk, tk〉} |= x ∼ v if V (sk, x) ∼ v

M, σ≤τ |= ¬Φ if M, σ≤τ |6= Φ

M, σ≤τ |= Φ ∧ Ψ if (M, σ≤τ |= Φ) ∧ (M, σ≤τ |= Ψ)

M, σ≤τ |= P./ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |= ϕ}) ./ θ

M, σ, τ |= XI Φ if ∃k ∈ Z
+.
(

(Tk−1 ≤ τ) ∧ (τ < Tk) ∧ (Tk − τ ∈ I)

∧ (M, σ≤Tk
|= Φ)

)

M, σ, τ |= Φ U I Ψ if ∃t ∈ I.
(

(M, σ≤τ+t |= Ψ)

∧ ∀t′ ∈ T.
(

(t′ < t) → (M, σ≤τ+t′ |= Φ)
))

15



Definition 7 specifies the validity of a UTSL formula at any time during exe-
cution of a stochastic discrete-event system. Note that the validity of a path
formula is determined relative to an entire trajectory σ and a time point τ
along the trajectory, rather than a trajectory prefix σ≤τ .

The semantics of Φ U I Ψ requires that Φ holds continuously, i.e. at every
point in time, along a trajectory until Ψ is satisfied. This is consistent with
the semantics of time-bounded until for TCTL [1], but not with Infante López
et al.’s [40] semantics of CSL for semi-Markov processes, which requires Φ to
hold only at the time of state transitions. As shown in Appendix A, Φ may hold
immediately at the entry of a state s and also immediately after a transition
from s to s′, but still not hold continuously in s; or Ψ may hold at some
point in time while the system remains in s, and not hold immediately upon
entry to s nor immediately after a transition from s to s′. It is therefore not
sufficient, in general, to verify Φ and Ψ at discrete points along a trajectory.
It is sufficient to do so, however, if the Markov property holds:

µ(Path({〈s0, t0〉, . . . , 〈sk, tk〉})) = µ(Path({〈sk, 0〉})) (8)

It follows from (8) that our semantics for UTSL coincides with the seman-
tics for PCTL interpreted over discrete-time Markov chains [28] and CSL
interpreted over continuous-time Markov chains [9]. Our solution method is
restricted to Markov chains for nested probabilistic statements.

While the semantics of Infante López et al. makes it easier to verify properties
with nested probabilistic operators, it is not consistent with the common defi-
nition of a trajectory for a continuous-time discrete-event system as a piecewise
linear function of time. Furthermore, one could imagine using phase-type dis-
tributions to approximate non-memoryless distributions and verify properties
for the resulting Markov chain. The introduction of phase transitions would
result in nested formulae possibly being verified at different times in the same
state, which is incompatible with the semantics of Infante López et al.

We typically want to know whether a property Φ holds for a model M if
execution starts in a specific state s. More generally, we can define the validity
of a UTSL formula relative to a probability measure µ0, where µ0(S

′) is the
probability that execution starts in a state s ∈ S ′:

M, µ0 |= x ∼ v if ∀s ∈ supp µ0.
(

M, {〈s, 0〉} |= x ∼ v
)

M, µ0 |= ¬Φ if M, µ0 |6= Φ

M, µ0 |= Φ ∧ Ψ if (M, µ0 |= Φ) ∧ (M, µ0 |= Ψ)

M, µ0 |= P./ θ[ϕ] if
∫

µ({σ ∈ Path({〈s, 0〉}) | M, σ, 0 |= ϕ}) dµ0(S) ./ θ

A UTSL model-checking problem can now be specified as a triple 〈M, µ0, Φ〉.

16



4.4 UTSLδ: UTSL with Indifference Regions

Consider the model-checking problem 〈M, s,P./ θ[ϕ]〉 and let p be the prob-
ability measure for the set of trajectories that start in s and satisfy ϕ. If p
is “sufficiently close” to θ, then it is likely to make little difference to a user
whether or not P./ θ[ϕ] is reported to hold by a model-checking algorithm.

To formalize this idea, we introduce UTSLδ as a relaxation of UTSL. With
each formula of the form P./ θ[ϕ], we associate an indifference region centered
around θ with half-width δ(θ). If |p−θ| < δ(θ), then the truth value of P./ θ[ϕ]
is undetermined for UTSLδ; otherwise, it is the same as for UTSL.

Definition 8 (UTSLδ Semantics) Let δ(θ) be the half-width of an indiffer-
ence region centered around θ, and let M = 〈S, T, µ, SV , V 〉 be a factored
stochastic discrete-event system. Satisfaction relations |≈δ

>
and unsatisfaction

relations |≈δ
⊥

for UTSLδ are simultaneously defined by induction as follows:

M, {〈s0, t0〉, . . . , 〈sk, tk〉} |≈δ
> x ∼ v if V (sk, x) ∼ v

M, {〈s0, t0〉, . . . , 〈sk, tk〉} |≈δ
⊥

x ∼ v if V (sk, x) � v

M, σ≤τ |≈δ
> ¬Φ if M, σ≤τ |≈δ

⊥ Φ

M, σ≤τ |≈δ
⊥
¬Φ if M, σ≤τ |≈δ

>
Φ

M, σ≤τ |≈δ
> Φ ∧ Ψ if (M, σ≤τ |≈δ

> Φ) ∧ (M, σ≤τ |≈δ
> Ψ)

M, σ≤τ |≈δ
⊥ Φ ∧ Ψ if (M, σ≤τ |≈δ

⊥ Φ) ∨ (M, σ≤τ |≈δ
⊥ Ψ)

M, σ≤τ |≈δ
>
P≥ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈δ

>
ϕ})

≥ θ + δ(θ)

M, σ≤τ |≈δ
⊥
P≥ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈δ

⊥
ϕ})

≥ 1 − (θ − δ(θ))

M, σ≤τ |≈δ
>
P≤ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈δ

>
ϕ})

≤ θ − δ(θ)

M, σ≤τ |≈δ
⊥
P≤ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈δ

⊥
ϕ})

≤ 1 − (θ + δ(θ))

M, σ, τ |≈δ
> XI Φ if ∃k ∈ Z

+.
(

(Tk−1 ≤ τ) ∧ (τ < Tk) ∧ (Tk − τ ∈ I)

∧ (M, σ≤Tk
|≈δ

>
Φ)
)

M, σ, τ |≈δ
⊥ XI Φ if ∀k ∈ Z

+.
((

(Tk−1 ≤ τ) ∧ (τ < Tk) ∧ (Tk − τ ∈ I)
)

→ (M, σ≤Tk
|≈δ

⊥
Φ)
)

M, σ, τ |≈δ
> Φ UI Ψ if ∃t ∈ I.

(

(M, σ≤τ+t |≈δ
> Ψ)

∧ ∀t′ ∈ T.
(

(t′ < t) → (M, σ≤τ+t′ |≈δ
>

Φ)
))

M, σ, τ |≈δ
⊥ Φ UI Ψ if ∀t ∈ I.

(

(M, σ≤τ+t |≈δ
⊥ Ψ)

∨ ∃t′ ∈ T.
(

(t′ < t) ∧ (M, σ≤τ+t′ |≈δ
⊥ Φ)

))

17



A model-checking problem 〈M, s, Φ〉 may very well belong to neither of the
two relations |≈δ

>
and |≈δ

⊥
. It is then assumed that the user is indifferent with

respect to whether Φ truly holds or not.

5 Probabilistic Model Checking using Acceptance Sampling

This section presents a statistical approach to probabilistic model checking,
employing hypothesis testing (as described in Section 2) and discrete-event
simulation. The proposed solution method works for any discrete-event sys-
tem that can be simulated, although the method for verifying properties with
nested probabilistic statements is limited to discrete-time systems or systems
satisfying the Markov property. We prove two fundamental theorems that es-
tablish efficient verification procedures for conjunctive and nested probabilistic
statements and we provide complexity results for the solution method.

The algorithm that we present is for UTSLδ model checking. Let M, σ≤τ ` Φ
represent the fact that Φ is accepted as true and M, σ≤τ 0 Φ that Φ is rejected
as false by our statistical model-checking algorithm. For the remainder of this
section, we will often leave out M from relations for the sake of brevity. We
require that our model-checking algorithm satisfies the following conditions:

Pr[σ≤τ 0 Φ | σ≤τ |≈δ
>

Φ] ≤ α (9)

Pr[σ≤τ ` Φ | σ≤τ |≈δ
⊥

Φ] ≤ β (10)

The model-checking algorithm is required either to accept a formula as true
or reject it as false. It follows, for instance, that Pr[σ≤τ ` Φ | σ≤τ |≈δ

>
Φ] must

be at least 1−α, so there should be a high probability of accepting Φ as true
when it holds according to the semantics of UTSLδ.

The parameter α bounds the probability of a type I error (false negative) and
β bounds the probability of a type II error (false positive) for UTSLδ model
checking. By decreasing δ, we can get arbitrarily close to a statistical algorithm
for UTSL model checking, although this will most certainly come at a cost.

5.1 Model Checking without Nested Probabilistic Operators

Let us now consider the problem of verifying a formula Φ relative to a trajec-
tory prefix so that conditions (9) and (10) are satisfied. Here, we assume that
Φ has no nested probabilistic operators (nesting is considered in Section 5.2).
If Φ is of the form x ∼ v, then it is trivial to satisfy the two conditions for
any α and β. Given a trajectory prefix {〈s0, t0〉, . . . , 〈sk, tk〉}, we can simply
observe the value of x in state sk and compare it to v without error.

18



5.1.1 Probabilistic Operator

To verify the formula P./ θ[ϕ], we introduce Bernoulli variates Xi with param-
eter p, where p is the probability measure of the set of trajectories that satisfy
ϕ. An observation of Xi can be obtained by first generating a trajectory for
M using discrete-event simulation and then verifying ϕ over the sampled tra-
jectory. If ϕ does not contain any probabilistic operators, as is assumed for
now, then we can verify ϕ without error. If ϕ is determined to hold over the
sampled trajectory, then the observation is 1, otherwise it is 0.

We can now set up a hypothesis-testing problem for verifying P≥ θ[ϕ]. We
should test the hypothesis H0 : p ≥ θ+δ(θ) against the alternative hypothesis
H1 : p ≤ θ− δ(θ) (for P≤ θ[ϕ], we simply reverse the roles of the two hypothe-
ses). H0 holds if and only if σ≤τ |≈δ

>
P≥ θ[ϕ] holds, and H1 is similarly related

to σ≤τ |≈δ
⊥
P≥ θ[ϕ]. Thus, by using an acceptance sampling test with strength

〈α, β〉 to decide σ≤τ ` P≥ θ[ϕ], we can satisfy conditions (9) and (10).

Trajectories for a stochastic discrete-event system may be infinite. For the
proposed algorithm to terminate (with probability one), it must suffice to
examine a finite prefix of any trajectory σ to determine the truth value of ϕ
over σ. This surely is the case if ϕ is XI Φ because we only need to look ahead
one state. If ϕ is Φ U I Ψ, then a sufficient condition for termination is that
sup I is finite and the model is non-explosive. In some cases, termination may
be guaranteed even for unbounded until formulae, but this requires a model
such that an absorbing state or a state satisfying ¬Φ ∨ Ψ is reachable from
the initial state with probability one.

5.1.2 Composite State Formulae

To complete the model-checking algorithm, we need to specify how to verify
negated and conjunctive formulae. We take a compositional approach to veri-
fication of such formulae. To verify ¬Φ, we verify Φ and reverse the result. To
verify a conjunction, we verify each conjunct separately. The following rules
formally define the behavior of the model-checking algorithm:

M, σ≤τ ` ¬Φ if M, σ≤τ 0 Φ

M, σ≤τ ` Φ ∧ Ψ if (M, σ≤τ ` Φ) ∧ (M, σ≤τ ` Ψ)

Next, we show how to bound the probability of error for a composite formula,
assuming that we have bounds for the probability of error for subformulae.

First, consider the verification of ¬Φ, assuming we have already verified Φ
so that conditions (9) and (10) are satisfied. Since we negate the verification
result for Φ, a type I error for Φ becomes a type II error for ¬Φ, and a type II
error for Φ becomes a type I error for ¬Φ. To verify ¬Φ with error bounds α

19



and β, we therefore have to verify Φ with error bounds β and α.

Next, consider the verification of Φ ∧ Ψ. A type I error occurs if we believe
that at least one of Φ and Ψ does not hold, when in reality both are true.
A type II error occurs if we believe that both Φ and Ψ hold, when at least
one of the conjuncts actually is false. We will show that in order to verify a
conjunction with error bounds α and β, we can use the same type II error
bound for each conjunct, but we must use a tighter type I error bound. To
prove this, we first derive general bounds on the error probabilities associated
with the verification of a conjunction of size n:

Theorem 9 (Conjunction) Let Φ =
∧n

i=1 Φi. If Φi is verified with type I
error bound αi and type II error bound βi for all 1 ≤ i ≤ n, then Φ can be
verified with type I error bound

∑n
i=1 αi and type II error bound max1≤i≤n βi.

PROOF. From elementary probability theory we have that Pr[A ∧ B] ≤
Pr[A] + Pr[B] and, by induction, Pr[

∧n
i=1 Ai] ≤ ∑n

i=1 Pr[Ai]. It follows im-
mediately that

∑n
i=1 αi is a bound on the probability of a type I error for a

conjunction
∧n

i=1 Φi if the type I error bound is αi for each conjunct Φi.

Assume that Φ =
∧n

i=1 Φi, for some n ≥ 1, can be verified with type II error
probability β = max1≤i≤n βi. Furthermore, assume that Pr[σ≤τ ` Φn+1 | σ≤τ |≈δ

⊥

Φn+1] ≤ βn+1. A type II error for the verification of Φ∧Φn+1 occurs if both Φ
and Φn+1 are verified as true when either σ≤τ |≈δ

⊥
Φ or σ≤τ |≈δ

⊥
Φn+1 holds:

Pr[(σ≤τ ` Φ) ∧ (σ≤τ ` Φn+1) | σ≤τ |≈δ
⊥

Φ]

≤ min(Pr[σ≤τ ` Φ | σ≤τ |≈δ
⊥

Φ], Pr[σ≤τ ` Φn+1]) ≤ min(β, 1) = β

Pr[(σ≤τ ` Φ) ∧ (σ≤τ ` Φn+1) | σ≤τ |≈δ
⊥

Φn+1]

≤ min(Pr[σ≤τ ` Φ], Pr[σ≤τ ` Φn+1 | σ≤τ |≈δ
⊥

Φn+1]) ≤ min(1, βn+1) = βn+1

We take the maximum over these cases to obtain the bound max1≤i≤n+1 βi. 2

A verification procedure for conjunction follows immediately from Theorem 9.

Corollary 10 To verify
∧n

i=1 Φi with type I error probability α and type II
error probability β, it is sufficient to verify each conjunct Φi with type I error
probability α/n and type II error probability β.

Intuitively, we need to verify each conjunct with a tighter type I error bound
than the type I error bound we desire for the whole conjunction because rejec-
tion of any one conjunct as false leads to rejection of the whole conjunction. Of
course, it is not necessary to distribute the type I error bound uniformly over

20



the conjuncts, so long as α =
∑n

i=1 αi. The result of Younes [66], that αi = α
suffices, is incorrect. What is actually shown by Younes is that the probability
is bounded by α for each independent way of rejecting a conjunction as false
when it is true, provided an α bound on the type I error probability for each
conjunct. This is not the same as showing that the probability of rejecting a
conjunction in any way is bounded by α.

We have now shown how to verify any formula without nested probabilistic
operators so that conditions (9) and (10) are satisfied. To verify a negation,
we verify the negated formula while reversing the role of the error bounds.
A conjunction is verified by verifying each conjunct using the type II error
bound intended for the conjunction, but a tighter type I error bound. For
probabilistic operators, we can use one of the acceptance sampling tests de-
scribed in Section 2. Section 7 presents empirical results for our algorithm
using two different tests: the sequential version of a single sampling plan and
Wald’s sequential probability ratio test.

5.2 Model Checking with Nested Probabilistic Operators

This section considers formulae with nested probabilistic operators. If a path
formula contains probabilistic operators, we can no longer assume that it can
be verified without error. To deal with such verification errors, we need to
modify the verification procedure for probabilistic statements. This part of
the algorithm applies only to Markov chains.

5.2.1 Probabilistic Operator

We want to use acceptance sampling, as before, to verify a probabilistic state-
ment P./ θ[ϕ] according to the semantics for UTSLδ. With nested probabilistic
operators, there is some probability that the verification result for ϕ is incor-
rect. We assume the following bounds on the probability of error:

Pr[σ, τ 0 ϕ | σ, τ |≈δ
>

ϕ] ≤ α′ (11)

Pr[σ, τ ` ϕ | σ, τ |≈δ
⊥

ϕ] ≤ β ′ (12)

We will show, next, that we can verify P./ θ[ϕ] with error bounds α and β
by using an acceptance sampling test with strength 〈α, β〉 and probability
thresholds (θ + δ(θ))(1 − α′) and 1 − (1 − (θ − δ(θ)))(1 − β ′).

Let X and Y be two random variables such that, for any sample trajectory σ,

Y = 1 ⇐⇒ M, σ, τ ` ϕ X = 1 ⇐⇒ M, σ, τ |≈δ
>

ϕ

Y = 0 ⇐⇒ M, σ, τ 0 ϕ X = 0 ⇐⇒ M, σ, τ |≈δ
⊥

ϕ

21



Note that Y has exactly two outcomes and is thus a Bernoulli variate, but X
can have more than two outcomes. Let Pr[X = 1] = p, Pr[X = 0] = q, p0 =
θ+δ(θ) and p1 = θ−δ(θ). It follows from Definition 8 that M, σ≤τ |≈δ

>
P≥ θ[ϕ]

if and only if p ≥ p0 and M, σ≤τ |≈δ
⊥
P≥ θ[ϕ] if and only if q ≥ 1−p1. Hence, to

verify P≥ θ[ϕ], we should test H0 : p ≥ p0 against H1 : q ≥ 1 − p1 (for P≤ θ[ϕ],
the roles of the hypotheses are simply reversed).

Lemma 11 Let X and Y be two random variables such that Pr[Y = 0 | X =
1] ≤ α′ and Pr[Y = 1 | X = 0] ≤ β ′. If Pr[X = 1] = p and Pr[X = 0] = q,
then p(1 − α′) ≤ Pr[Y = 1] ≤ 1 − q(1 − β ′).

Theorem 12 (Acceptance Sampling with Observation Errors) Let Y
be a Bernoulli variate whose observations are related to the observations of a
random variable X as follows: Pr[Y = 0 | X = 1] ≤ α′ and Pr[Y = 1 | X =
0] ≤ β ′. Furthermore, let Pr[X = 1] = p, Pr[X = 0] = q, and Pr[Y = 1] = p′.
An acceptance sampling test with strength 〈α, β〉 for testing H ′

0 : p′ ≥ p0(1−α′)
against H ′

1 : p′ ≤ 1− (1− p1)(1− β ′) has strength at least 〈α, β〉 when used as
a test of H0 : p ≥ p0 against H1 : q ≥ 1 − p1, assuming that H0 is accepted if
and only if the test dictates acceptance of H ′

0.

PROOF. From (1), assuming a single sampling plan 〈n, c〉 is used, we get
F (c; n, p′) as the probability of accepting H ′

1. We know from Lemma 11 that
p′ ≥ p(1−α′). Since F (c; n, p) is a non-increasing function of p in the interval
[0, 1], we have F (c; n, p′) ≤ F (c; n, p(1 − α′)), which if H0 : p ≥ p0 holds is at
most F (c; n, p0(1 − α′)). By choosing n and c so that F (c; n, p0(1 − α′)) ≤ α,
we ensure that the probability of accepting H ′

1, and therefore also H1, is at
most α when H0 holds.

The probability of accepting H ′
0 is 1−F (c; n, p′) when using the single sampling

plan 〈n, c〉. It follows from Lemma 11 that p′ ≤ 1 − q(1 − β ′). Thus, 1 −
F (c; n, p′) ≤ 1−F (c; n, 1− q(1− β ′)), which in turn is at most 1−F (c; n, 1−
(1−p1)(1−β ′)) if H1 : q ≥ 1−p1 holds. Consequently, if we choose n and c so
that 1−F (c; n, 1−(1−p1)(1−β ′)) ≤ β, we are guaranteed that the probability
of accepting H ′

0, and therefore also H0, is at most β when H1 holds. 2

The above proof establishes Theorem 12 specifically for single sampling plans.
The result is more general, however, because we only need to modify the
probability thresholds in order to cope with observation error while leaving the
rest of the test intact. We can use the same modification for other acceptance
sampling tests, for example Wald’s sequential probability ratio test. Note that
the probability thresholds equal p0 and p1 if the observation error is zero,
as should be expected. A procedure for verifying P≥ θ[ϕ] with probabilistic
operators in ϕ follows immediately from Theorem 12.

22



µ(P) = 1 − µ(Q) < θ µ(P) ≥ θ

1 − µ(Q) ≤ θ − δ (θ ) µ(P) ≥ θ + δ (θ )

1 − µ(Q̃) ≤ θ − δ (θ ) µ(P̃) ≥ θ + δ (θ )

Pr[accept "µ(P) < θ "] ≥ 1 − β Pr[accept "µ(P) ≥ θ "] ≥ 1 − α

Fig. 4. Probabilistic guarantees for model-checking problems with formulae of the
form P≥ θ[ϕ] and probabilistic operators in ϕ. The thick box represents all such
model-checking problems. In the right half are problems with an affirmative answer.
A subset of these problems have an affirmative answer even with an indifference
region at the top level of half-width δ(θ). For some of the latter set of problems,
the formula holds with indifference regions at all levels. It is for this last set of
problems that we can guarantee an affirmative answer with probability at least
1 − α. There is a similar hierarchy for the problems with a negative answer, in the
left half of the thick box. The gray area represents the set of problems for which
we give no correctness guarantees. The white boxes correspond to satisfaction and
unsatisfaction according to the semantics of UTSLδ.

Corollary 13 An acceptance sampling test with strength 〈α, β〉 and probabil-
ity thresholds (θ + δ(θ))(1 − α′) and 1 − (1 − (θ − δ(θ)))(1 − β ′) can be used
to verify P≥ θ[ϕ] with type I error probability α and type II error probability β,
provided that ϕ can be verified over trajectories with type I error probability α′

and type II error probability β ′.

To better understand the verification procedure for P≥ θ[ϕ] with nested prob-
abilistic operators, consider the following sets of trajectories:

P = {σ ∈ Path(σ≤τ ) | M, σ, τ |= ϕ} Q = {σ ∈ Path(σ≤τ ) | M, σ, τ |6= ϕ}
P̃ = {σ ∈ Path(σ≤τ ) | M, σ, τ |≈δ

>
ϕ} Q̃ = {σ ∈ Path(σ≤τ ) | M, σ, τ |≈δ

⊥
ϕ}

We cannot determine membership in P or Q for a sampled trajectory σ ∈
Path(σ≤τ ) if ϕ contains probabilistic operators. We assume, however, that we
have a probabilistic procedure for determining membership in P̃ or Q̃. We
require a probability of at most α′ that σ is determined to be in Q̃ if it is in
P̃ , and a probability of at most β ′ that σ is determined to be in P̃ when it
is in Q̃. Given such a procedure, Theorem 12 provides us with a way to test
H0 : µ(P̃ ) ≥ θ + δ(θ) against H1 : µ(Q̃) ≥ 1 − (θ − δ(θ)). Acceptance of H0

leads to acceptance of P≥ θ[ϕ] as true, and acceptance of H1 leads to rejection
of P≥ θ[ϕ] as false. We are guaranteed that H0 is accepted with probability
at least 1 − α if H0 holds. Since P̃ ⊂ P , we know that µ(P ) ≥ θ when H0

holds, so there is a high probability of accepting P≥ θ[ϕ] when it holds with
some margin. We also know that H1 is accepted with probability at least
1 − β if H1 holds, and µ(P ) < θ in that case, so there is a high probability
of rejecting P≥ θ[ϕ] when it is false with some margin. Fig. 4 gives a graphical
representation of the correctness guarantees provided by our algorithm.

23



5.2.2 Path Formulae with Probabilistic Operators

We have established a procedure for verifying probabilistic statements when
path formulae are verified with some probability of error. It remains for us to
show how to verify path formulae so that conditions (11) and (12) are satisfied.
This is straightforward for XI Φ. We simulate a single state transition and
verify Φ in the resulting state with error bounds α′ and β ′.

Path formulae of the form Φ U I Ψ require more thought. We need to find a
t ∈ I such that Ψ is satisfied at time t and Φ is satisfied at all time points
t′ prior to t. We assume that the model is a Markov chain so that it suffices
to consider the time points at which state transitions occur (cf. Section 4.3).
This is guaranteed to be a finite number of time points if sup I is finite and
the model is non-explosive. We can then treat the verification of Φ U I Ψ as a
large disjunction of conjunctions. Let t0 = 0 and let {t1, . . . , tn} be the set of
time points at which state transitions occur, with ti ≤ sup I. Furthermore, let
tn+1 be some time point later than sup I. We can verify Φ U I Ψ as follows:

σ, τ ` Φ U I Ψ if
n
∨

i=0

(

(ti ≥ τ) ∧
(

[ti, ti+1) ∩ I 6= ∅
)

∧ (si ` Ψ) (13)

∧
(

(ti ∈ I) ∨ (si ` Φ)
)

∧
i−1
∧

j=0

(sj ` Φ)
)

(14)

Since disjunction can be expressed using conjunction and negation, and we
know how to verify negations and conjunctions using statistical techniques,
this gives us a way to verify Φ U I Ψ so that (11) and (12) are satisfied.
In general, (13) has n + 1 disjuncts, the ith disjunct being a conjunction
consisting of i + 1 conjuncts. Hence, if Φ and Ψ for disjunct i (corresponding
to a trajectory prefix up to time ti) are verified with type I error probability
α′/(i + 1) and type II error probability β ′/(n + 1), then (11) and (12) are
satisfied. If states are repeated along a sample trajectory, then (13) can be
made smaller by eliminating the verification of Φ or Ψ in repeated states.

The dependence of the nested error bounds on path length may seem pro-
hibitive, but the sample size of acceptance sampling tests is typically loga-
rithmic in the error bounds. Hence, the sample size for nested probabilistic
operators will be logarithmic in the path length. Note that if Φ is probabilis-
tic, but not Ψ, and the time bound is exceeded before Ψ is satisfied, then
we do not need to verify Φ in any state along σ. We already know that the
path formula does not hold in that case. This can reduce verification effort
substantially in practice, as demonstrated in Section 7.

24



α ′10−10 10−8 10−6 10−4 10−2

n

0

5000

10000

15 0 0 0

20000

25 0 0 0 inner operator
outer operator

Fig. 5. Verification effort, as a func-
tion of the symmetric observation er-
ror α′, for the probabilistic operators of
P≥ 0.9

[

X P≥ 0.85[X x=1]
]

.

α ′10−10 10−8 10−6 10−4 10−2

n

107

108

109

Fig. 6. Total verification effort, as a func-
tion of the symmetric observation error
α′, for P≥ 0.9

[

X P≥ 0.85[X x=1]
]

.

5.2.3 Efficiency Considerations

A noteworthy consequence of Theorem 12 is that the bounds on the obser-
vation error, α′ and β ′, can be chosen independently of the bounds on the
probability of a verification error occurring, α and β. We can decrease α′ and
β ′ to increase the indifference region of the outer probabilistic statement and
therefore lower the sample size required to verify this part of the formula. This
will increase the effort required per observation, however, since we have to ver-
ify the nested probabilistic statements with higher accuracy. If we increase α′

and β ′ to lower the effort per observation, then we need to make more obser-
vations. Clearly, there is a tradeoff here, and the choice for the bounds on the
observation error can have a great impact on performance.

Example 14 Consider the formula Φ = P≥ 0.9

[

X P≥ 0.85[X x=1]
]

, with δ(θ)

such that p0 = 0.91 and p1 = 0.89 for the outer probabilistic operator, and p′0 =
0.865 and p′1 = 0.835 for the inner operator. Furthermore, assume that we want
to verify Φ with error bounds α = β = 0.01. Assuming symmetric observation
error (α′ = β ′) and using single sampling plans, the verification effort for
Φ is the product of the samples sizes needed to verify the outer and inner
probabilistic operators. Fig. 5 plots the two factors of the total effort separately.
The dotted line indicates an upper bound on the symmetric observation error
corresponding to a choice of α′ that makes the width of the inner indifference
region zero. The total effort is plotted in Fig. 6. The effort is minimal at
α′ = β ′ ≈ 0.00153 in this case.

Ideally, we should use an observation error that minimizes the expected veri-
fication effort, but this quantity is non-trivial to compute in general. To find
a reasonable observation error, we can use a heuristic estimate of the verifica-
tion effort and numerical function minimization to find an observation error
with low estimated effort. Such a heuristic is defined by Younes [66].

25



In addition to choosing a good value for the observation error, we can use
memoization [53] to further improve the performance of the statistical model-
checking algorithm. This means that when we verify a path formula Φ U I Ψ,
with Φ or Ψ being probabilistic statements, then we record the tightest error
bounds that have been achieved for Φ and Ψ in each visited state. If the
same state occurs multiple times along a sample trajectory, the memoized
verification result is used. If tighter error bounds are required for subsequent
verification results, then the verification effort is limited to reducing the error
bounds. Memoization does not affect the validity of the verification result,
because it is based on the logical equivalence Φ ∧ Φ ≡ Φ. It is also safe to
reuse memoized results across observations. If we ensure that each trajectory
is generated independently, each observation will be independent as well.

5.3 Complexity of Statistical Probabilistic Model Checking

The time complexity of statistical probabilistic model checking depends on
the number of observations (sample size) required to reach a decision, as well
as the time required to generate each observation. An observation involves the
verification of a path formula over a sample trajectory. Both the sample size
and the time per observation are generally random variables, so we talk about
the expected complexity of statistical probabilistic model checking.

First, consider the time complexity for verifying P./ θ[ϕ] without nested prob-
abilistic operators. The first component of the complexity is the time per
observation. A sample trajectory σi may be infinite, but to verify the path
formula XI Φ, we only need to consider a finite prefix of σi. The same is true
for path formulae of the form Φ U I Ψ under circumstances discussed above.
Without nested probabilistic operators, nested formulae will be classical logic
expressions, which we assume can be verified in constant time. Let m be the
expected effort to simulate a state transition. The time per observation is pro-
portional to m for XI Φ and proportional to m times the number of state
transitions that occur in a time interval of length sup I for Φ U I Ψ. Let q
denote the expected number of state transitions that occur in a unit-length
interval of time. For continuous-time Markov chains, an upper bound for q
is the maximum exit rate of any state. The expected time per observation is
then O(m ·q ·sup I) for Φ U I Ψ. This is an estimate for the worst-case scenario
that ¬Φ ∨ Ψ is not satisfied prior to time sup I. If we reach a state satisfying
¬Φ ∨ Ψ long before sup I time units, then we can determine the truth value
of Φ U I Ψ without considering further states.

The second component of the time complexity for verifying P./ θ[ϕ] is the
expected sample size, which is a function of α, β, θ, and δ. If we use a sequential
test, then the expected sample size also depends on the unknown probability

26



measure p of the set of trajectories that satisfy ϕ. The expected sample size
for various acceptance sampling tests was discussed in Section 2. For example,
the sample size for a single sampling plan is approximately proportional to
the logarithm of α and β, and inversely proportional to δ2.

Let Np denote the expected sample size of the test used to verify probabilistic
statements. The verification time for P./ θ[X

I Φ] is then O(Np · m) and for
P./ θ[Φ U I Ψ] it is O(Np · m · q · sup I). The time complexity of statistical
probabilistic model checking, for a single initial state or an initial-state distri-
bution, is independent of the size of the state space for a model if Np, m, and
q are independent of state-space size. We can make Np completely model inde-
pendent by using a single sampling plan, in which case Np depends only on α,
β, θ, and δ. The factor m is generally both model and implementation depen-
dent and therefore hard to capture. For generalized semi-Markov processes,
for example, m could very well be proportional to the number of events in the
model. It can also be state-space dependent, but models often have structure
that can be exploited by the simulator to limit such dependence. Finally, q
is clearly model dependent, but may be independent of state-space size, as is
the case for the symmetric polling system described in Section 6.2.

With nested probabilistic operators, the verification time per state along a
sample trajectory is no longer constant. The complexity depends on the level
of nesting and the path operators involved. Consider P./ θ

[

P./ θ′ [Φ
′ U I′ Ψ′] U I

Ψ
]

with one level of nesting as an example. On average we need to verify

P./ θ′[Φ
′ U I′ Ψ′] in q · sup I states for each of the Np observations required

to verify the outer probabilistic operator. The time complexity for verifying
P./ θ′[Φ

′ U I′ Ψ′] is O(N ′
p ·m · q · sup I ′), so the total time complexity is O(Np ·

N ′
p · m2 · q2 · sup I · sup I ′). With memoization, however, the expected time

complexity is O(m · q · (Np · sup I + k · N ′
p · sup I ′)), where k is the expected

number of unique states visited within sup I + sup I ′ time units from some
initial state. The value of k is in the worst case |S|, the size of the state space,
but can be significantly smaller depending on the dynamics of the model.

The space complexity of statistical probabilistic model checking is generally
modest. We need to store the current state of a sample trajectory when gener-
ating an observation for the verification of a probabilistic statement, and this
typically requires O(log|S|) space. For systems that do not satisfy the Markov
property, we may also need to store additional information to capture the ex-
ecution history during simulation. In the presence of nesting, we may need to
store up to d states simultaneously at any point in time during verification,
where d is the maximum depth of a nested probabilistic operator. The nesting
depth for Φ is at most |Φ|, so the space requirements are still modest. If we use
memoization to speed up the verification of formulae with nested probabilistic
operators, the space complexity can be as high as O(|Φ| · |S|). Memoization,

27



λ . . . ph = 1
aµ1 ph = 2

µ2 . . . κ

(1 − a)µ1

(a) Tandem queuing network.

R

J

(b) Robot grid world.

Fig. 7. (a) A tandem queuing network with a two-phase Coxian distribution govern-
ing the routing time between the queues; (b) A grid world with a robot (R) moving
along the dashed line and a janitor (J) moving randomly around the grid.

as usual, is a way of trading space efficiency for time efficiency.

6 Case Studies

We present four case studies, taken from the literature on performance evalu-
ation and probabilistic model checking, and selected to stress specific perfor-
mance characteristics of solution methods for probabilistic model checking.

6.1 Tandem Queuing Network

The first case study is based on a model of a tandem queuing network presented
by Hermanns et al. [33]. The network consists of two serially connected queues,
each with capacity n. Messages arrive at the first queue, get routed to the
second queue, and eventually leave the system from the second queue. The
interarrival time for messages at the first queue is exponentially distributed
with rate λ = 4n. The processing time at the second queue is exponentially
distributed with rate κ = 4. Fig. 7(a) shows a schematic view of the model
with a Coxian routing-time distribution (µ1 = µ2 = 2 and a = 0.9). The size
of the state space for this model is O(n2). We will also use a non-Markovian
variation of the model with a lognormal routing-time distribution.

We will verify whether the probability is less than 0.5 that a system start-
ing out with both queues empty becomes full within τ time units. Let si ∈
{0, . . . , n}, for i ∈ {1, 2}, be the number of messages currently in the ith
queue. The UTSL formula P< 0.5[3

[0,τ ] s1=n ∧ s2=n] represents the property
of interest, and we will verify this formula in the state s1 = 0 ∧ s2 = 0.

28



6.2 Symmetric Polling System

The second case study uses the model of an n-station symmetric polling system
described by Ibe and Trivedi [39]. Each station has a single-message buffer
and the stations are attended by a single server in cyclic order. The server
begins by polling station 1. If there is a message in the buffer of station 1,
the server starts serving that station. Once station i has been served, or if
there is no message in the buffer of station i when it is polled, the server
starts polling station i + 1 (or 1 if i = n). The polling and service times are
exponentially distributed with rates γ = 200 and µ = 1, respectively. There is
a separate arrival event for each station and the inter-arrival time per station
is exponentially distributed with rate λ = 1/n. The size of the state space for
a system with n stations is O(n · 2n).

We will verify the property that, if station 1 is full, then it is polled within
τ time units with probability at least 0.5. We do so for different values of n
and τ in the state where station 1 has just been polled and the buffers of
all stations are full. Let s ∈ {1, . . . , n} be the station currently receiving the
server’s attention, let a ∈ {0, 1} represent the activity of the server (0 for
polling and 1 for serving), and let mi ∈ {0, 1} be the number of messages
in the buffer of station i. The property of interest is represented in UTSL as
m1=1 → P≥ 0.5[3

[0,τ ] poll1], where poll1 ≡ s=1 ∧ a=0, and the state in which
we verify the formula is given by s=1 ∧ a=1 ∧ m1=1 ∧ · · · ∧ mn=1.

6.3 Robot Grid World

The third case study involves a robot navigating in a grid world, and was
introduced by Younes et al. [69] to illustrate the verification of formulae with
nested probabilistic operators. A robot is moving in an n× n grid world from
the bottom left corner to the top right corner, while a janitor moves randomly
around the grid. The robot first moves along the bottom edge and then along
the right edge. Fig. 7(b) provides a schematic view of a grid world with n = 5.

The objective is for the robot to reach the top right corner within τ1 time
units with probability at least 0.9, while maintaining at least a 0.5 probability
of periodically communicating with a base station. The robot moves at rate
λR = 1, unless the janitor occupies the destination square, in which case the
robot remains stationary. The janitor moves around randomly in the grid at
rate λJ = 2, selecting the destination from the set of neighboring squares with
equal probability. The robot initiates communication with the base station at
rate µ = 1/10, and the duration of each communication session is exponen-
tially distributed with rate κ = 1/2. Let c be a Boolean state variable that is

29



true when the robot is communicating, and let x and y represent the current lo-
cation of the robot. The UTSL formula P≥ 0.9

[

P≥ 0.5[3
[0,τ2] c] U [0,τ1] x=n∧y=n

]

expresses the desired objective for this case study. The robot moves along a
line only, so the size of the state space for the robot grid world is O(n3).

6.4 Dependable Workstation Cluster

The final case study is a dependable cluster of workstations due to Haverkort
et al. [31]. The system consists of two sub-clusters, each containing n work-
stations. Communication between the two sub-clusters is performed over a
backbone connection. The workstations of each sub-cluster are connected in
a star topology, with a single switch providing connectivity to the backbone.
Each of the components can fail at any time, and the time to failure is expo-
nentially distributed with different rates for different components. There is a
single repair unit that can restore failed units. The repair time is assumed to
be exponentially distributed. The size of the state space is O(n2).

We will also use a Weibull distribution as the failure-time distribution for
workstations to get a non-Markovian model. Note that if the failure time for
a workstation is exponentially distributed with rate λ, then the time to a
single failure in a sub-cluster with k operational workstations is exponentially
distributed with rate k · λ. We can hence represent failure of any workstation
by a single event with a state-dependent rate. If the failure-time distribution
is non-exponential, however, we need a separate event for each workstation.

The minimum quality of service (QoS) for a cluster is defined as having at least
three interconnected operational workstations. Let wl (wr) denote the number
of operational workstations in the left (right) sub-cluster. Furthermore, let b
represent the atomic proposition that the backbone is working, and sl (sr) that
the left (right) switch is up. Minimum QoS can then be defined as minimum ≡
(wl≥3∧sl)∨(wr≥3∧sr)∨(wl+wr≥3∧b∧sl∧sr). The property we will verify is
P< 0.1[3

τ ¬minimum] and we do so in the state where all units are functional.

7 Empirical Evaluation of Probabilistic Model Checking

This section explores empirical performance characteristics of statistical prob-
abilistic model checking using the case studies introduced in Section 6. The
results have been generated on a 3-GHz Pentium 4 PC running Linux.

30



7.1 Sample Size and Trajectory Length

As discussed in Section 5.3, two main factors influencing the verification time
for the statistical approach are sample size and trajectory length.

The sample size depends on the sampling plan that we choose to use, the
error bounds α and β that we want to guarantee, the threshold θ, and the
choice of δ(θ) determining the half-width of an indifference region centered
around θ. We consider two different sampling plans described in Section 2:
the sequential version of a single sampling plan (SSSP) and Wald’s sequential
probability ratio test (SPRT). For these sampling plans, the sample size is a
random variable whose expectation also varies with p, which in our case is the
probability measure of a set of trajectories satisfying a path formula.

Figs. 8 and 9 present data for the tandem queuing network and symmetric
polling system case studies, respectively. In each case, we show verification
time for the SSSP and the SPRT using four different test strengths (subfigures
(a) and (b)). We also give details of both sample size (subfigures (c) and (d))
and trajectory length (subfigures (e) and (f)). For all data, we plot the results
against model size (subfigures (a), (c), and (e)) and the time bound of the
path formula (subfigures (b), (d), and (f)). Each data point is an average over
20 runs. We used δ(θ) = 5 · 10−3 as the half-width of the indifference region.
Furthermore, we used a symmetric test strength (α = β) across the board.

Our data shows that the SPRT outperforms the SSSP almost exclusively by
a wide margin. A clear exception is seen in Fig. 9(d). The SPRT has a larger
expected sample size than the SSSP for α = β equal to 10−4 and 10−8 close to
where the truth value of the UTSL formula changes (indicated by the dotted
line). Fig. 10 zooms in on the relevant region to show this more clearly. The
gray area indicates the range of τ for which the probability measure, p, of the
set of trajectories satisfying the path formula 3

[0,τ ] poll1 is in the indifference
region (θ − δ, θ + δ). There is a sharp increase in the expected sample size
for the SPRT in and near the indifference region, while the expected sample
size for the SSSP remains largely unchanged. Note, however, that neither test
gives any valuable accuracy guarantees in the indifference region. If we have
reason to believe that p is very close to θ, and we really want to know on which
side p is of the threshold, then we may want to resort to numerical solution
techniques. The alternative is to narrow the indifference region. Fig. 11 shows
how the expected sample size for the two sampling plans depends on the half-
width of the indifference region. The plot is for the symmetric polling system
with θ = 0.5, n = 10, and τ = 10. It is generally more costly to narrow the
indifference region when using the SSSP rather than the SPRT.

The expected length of trajectories varies with the model and the path for-

31



|S|102 104 106 108 1010 1012

t (s)

10−2

10−1

100

101

102

103

104

SSSP
SPRT

(a) Verification time as a function of
state space size.

τ100 101 102 103

t (s)

10−2

10−1

100

101

102

103

104

SSSP
SPRT

(b) Verification time as a function
of time bound.

|S|102 104 106 108 1010 1012

N

102

103

104

105

106 SSSP
SPRT

(c) Sample size as a function of state
space size.

τ100 101 102 103

N

102

103

104

105

106 SSSP
SPRT

(d) Sample size as a function of time
bound.

|S|102 104 106 108 1010 1012

P

101

102

103

104

105

106

(e) Trajectory length as a function of
state space size.

τ100 101 102 103

P

101

102

103

104

105

106

(f) Trajectory length as a function
of time bound.

Fig. 8. Empirical results for the tandem queuing network (θ = 0.5), with τ = 50
(left) and n = 63 (right), using acceptance sampling with 2δ = 10−2 and symmetric
error bounds α = β equal to 10−8 (4), 10−4 (�), 10−2 (5), and 10−1 (◦). The
average trajectory length is the same for all values of α and β. The dotted lines
mark a change in the truth value of the formula being verified.

32



|S|102 104 106 108 1010 1012 1014

t (s)

10−2

10−1

100

101

102

103

104 SSSP
SPRT

(a) Verification time as a function of
state space size.

τ100 101 102 103

t (s)

10−2

10−1

100

101

102

103

104 SSSP
SPRT

(b) Verification time as a function
of time bound.

|S|102 104 106 108 1010 1012 1014

N

102

103

104

105

106 SSSP
SPRT

(c) Sample size as a function of state
space size.

τ100 101 102 103

N

102

103

104

105

106 SSSP
SPRT

(d) Sample size as a function of time
bound.

|S|102 104 106 108 1010 1012 1014

P

101

102

(e) Trajectory length as a function of
state space size.

τ100 101 102 103

P

101

102

(f) Trajectory length as a function
of time bound.

Fig. 9. Empirical results for the symmetric polling system (θ = 0.5), with τ = 20
(left) and n = 10 (right), using acceptance sampling with 2δ = 10−2 and symmetric
error bounds α = β equal to 10−8 (4), 10−4 (�), 10−2 (5), and 10−1 (◦). The
average trajectory length is the same for all values of α and β. The dotted lines
mark a change in the truth value of the formula being verified.

33



τ9. 6 9. 8

N

103

104

105

106
SSSP
SPRT

Fig. 10. Sample size as a function of the
formula time bound for the symmetric
polling system (θ = 0.5, n = 10) near the
indifference region (shaded area), with
2δ = 10−2 and α = β equal to 10−8 (4),
10−4 (�), 10−2 (5), and 10−1 (◦).

δ10−5 10−4 10−3 10−2 10−1

N

101

102

103

104

105

106

SSSP
SPRT

Fig. 11. Sample size as a function of the
half-width of the indifference region for
the symmetric polling system (θ = 0.5,
n = 10, τ = 10), with α = β equal to
10−8 (4), 10−4 (�), 10−2 (5), and 10−1

(◦).

mula. If we are lucky, we can verify a time-bounded path formula over a sample
trajectory by considering only a short prefix that ends long before the time
bound is exceeded. We can see this phenomenon in Fig. 9(f) for the path for-
mula 3

[0,τ ] poll1. As τ increases so does the probability of achieving poll1 in
the interval [0, τ ]. The average trajectory length approaches a constant as τ
increases because the average number of state transitions required to achieve
poll1 is independent of τ . When the truth value of a path formula cannot be
determined before the time bound is reach, then the average trajectory length
grows linearly with τ , as is seen, for example, in Fig. 8(f).

The expected trajectory length over a fixed time interval depends on the distri-
butions that govern the trigger time of events. If the distribution parameters,
in particular the mean, depend on the model size, then so will the expected tra-
jectory length. The average trajectory length for the tandem queuing network
increases linearly with the capacity, n, of the queues because the arrival rate
for messages is 4n. Note, however, that the size of the state space is O(n2) for
the tandem queuing network, so the average trajectory length is proportional
to the square root of |S| (Fig. 8(e)). In contrast, the rates for the symmetric
polling system are independent of the size of the state space. Initially, the
average trajectory length increases with the size of the state space (Fig. 9(e))
because it takes longer time to achieve poll1 with more polling stations. As the
state space increases further, the probability of achieving poll1 in the interval
[0, τ ] goes to zero, and all sample trajectories end with the time bound τ being
exceeded. The expected number of state transitions occurring in the interval
[0, τ ] is the same for all state space sizes, since the exit rates are constant, so
the verification time does not increase for larger state spaces.

34



7.2 “Five Nines”

For safety critical systems, we want to ensure that the probability of failure is
very close to zero. While guaranteeing a zero probability of failure is usually
unrealistic, it is not uncommon to require the failure probability of a safety
critical system to be at most 10−4 or 10−5. A failure probability of at most
10−5 means a success probability of at least 1 − 10−5 = 0.99999, commonly
referred to as “five nines.” For such high accuracy requirements, it is typically
best to use numerical solution techniques, but if the model is non-Markovian
or has a large state space, this may not be an option.

To use statistical hypothesis testing with a probability threshold 1− 10−5, we
need an indifference region with half-width at most 10−5. An indifference re-
gion that narrow requires a large average sample size if the success probability
is close to one, as we would expect it to be for a good system design. A possible
alternative is to set the indifference region to (1− 10−5, 1) and use a curtailed
single sampling plan. The advantage of a curtailed single sampling plan is
that it has a fixed upper bound on the sample size: n = dlog β/ log(1−10−5)e,
where β is the maximum probability that we accept the system as safe if the
success probability is at most 1 − 10−5. We accept the system as safe if all
n observations are positive, but reject the system as unsafe at the first neg-
ative observation. This means that if the success probability for the system
is far below acceptable, we will quickly reject the system, while acceptance
always requires n observations. Note, however, that we have no control over
the probability of rejecting an acceptable system design, except that we will
always accept a system that has success probability one. If we require finer
control over the risk of rejecting a system with success probability greater
than 1 − 10−5, then a curtailed single sampling plan is not a viable option.

Fig. 12 plots the average verification time, as a function of the formula time
bound, for the symmetric polling system (n = 10) with indifference regions
(0.99999, 1) and (0.999985, 0.999995), of which the former leads us to use a
curtailed single sampling plan. In the latter case (solid curves), the SPRT was
used. We can see that for low values of τ (the time bound of the property
being verified), the average verification time is negligible for both choices of
indifference region. As τ increases and the success probability approaches 1−
10−5, the average sample size increases. For the curtailed single sampling plan,
as we pass the point at which the success probability exceeds 1−10−5 (roughly
at τ = 29.57), the sample size settles at around 2 · 106 for β = 10−8. The
verification time at this point is just under 11 minutes on our test machine
(the average trajectory length is just over 23). For the SPRT, we can see clear
peaks in the verification time where the probability is close to 1 − 10−5. The
price for moving the upper bound of the indifference region away from 1 is
that verification can take over an hour on average instead of a few minutes.

35



τ101 102

t (s)

10−2

10−1

100

101

102

103

104

θ = 0. 99999
θ = 0. 999995

Fig. 12. Verification time as a function of the formula time bound for the symmetric
polling system (n = 10), with 2δ = 10−5 and α = β equal to 10−8 (4) and 10−1 (◦).

One of the 20 experiments for α = β = 10−8 required a sample size of over
35 million, which can be compared to a maximum sample size of just over 1.8
million for the curtailed single sampling plan with β = 10−8.

7.3 Nested Probabilistic Operators

We use the robot grid world case study to show results for verification with
nested probabilistic operators. We have proven that a statistical approach is
possible even in the presence of nested probabilistic operators, with Theo-
rem 12 being the key theoretical result. A practical concern, however, is that
such verification could be costly, since each observation for the outer prob-
abilistic operator involves an acceptance sampling test for the inner proba-
bilistic operators. Nevertheless, our empirical results suggest that a statistical
approach is, in fact, tractable, provided that memoization is used.

Fig. 13 shows empirical data for the robot grid world case study for verifying
the UTSL formula P≥ 0.9

[

P≥ 0.5[3
[0,τ2] c] U [0,τ1] x=n ∧ y=n

]

. This formula
asserts that the probability is high that the robot reaches the goal position
while periodically communicating with a base station. The time bounds τ1 and
τ2 were set to 100 and 9, respectively. We used the SPRT, exclusively, and the
heuristic proposed by Younes [66] to select the nested error bounds. With
τ2 = 9, the probability measure of the set of trajectories satisfying 3

[0,τ2] c is
1−e−0.9 ≈ 0.593, independent of the start state. We used an indifference region
with half-width δ independent of θ. For both values of δ that we used, δ = 0.05
and δ = 0.025, 0.593 is more than a δ-distance from the threshold 0.5 for the
inner probabilistic operator, so we will have a low probability of erroneously
verifying the path formula (P≥ 0.5[3

[0,τ2] c] U [0,τ1] x=n ∧ y=n) over sample
trajectories. For the outer probabilistic operator, we used the symmetric error
bounds α = β = 10−2. The heuristic gave us the symmetric nested error
bounds 0.0153 and 0.00762 for δ = 0.05 and δ = 0.025, respectively.

36



|S|102 104 106 108 1010 1012

t (s)

10−2

10−1

100

101

102

103

104 δ = 0. 025
δ = 0. 05

(a) Verification time as a function of
state space size.

|S|102 104 106 108 1010 1012

N

101

102

103
δ = 0. 025

δ = 0. 05

(b) Sample size as a function of
state space size.

|S|102 104 106 108 1010 1012

P

101

102

(c) Trajectory length as a function
of state space size.

|S|102 104 106 108 1010 1012

%

0

10

20

30

40

50 δ = 0. 025
δ = 0. 05

(d) Fraction of visited states with
nested verification.

Fig. 13. Empirical results for the robot grid world (τ1 = 100 and τ2 = 9), using
acceptance sampling with symmetric error bounds α = β = 10−2. The average
trajectory length is the same for all values of δ. The dotted lines mark a change in
the truth value of the formula being verified.

We can see in Fig. 13(b) the familiar peaks in the average sample size where
the value of the UTSL formula goes from true to false. Note, however, that the
peaks are not present in Fig. 13(a), where the verification time is plotted as a
function of the state space size. This is due to memoization. Fig. 13(d) shows
the fraction of states in which the inner probabilistic statement is verified,
among all states visited along sample trajectories for the outer probabilistic
operator. This graph is almost the mirror image of that for the average sample
size. As we generate more sample trajectories, we visit the same states more
often. With memoization, we verify nested probabilistic statements at most
once per unique visited state, so the cost per observation drops over time.
The net effect is that total verification time is notably reduced. The price
we pay for improved speed is increased memory usage, but the number of
unique visited states is only a tiny fraction of the total number of states

37



for the robot grid world. For large state spaces, in this particular case, the
time bound is reached before x=n∧ y=n is satisfied. When this happens, the
inner probabilistic statement does not have to be verified in any state, which
dramatically reduces the verification time.

7.4 Simulation Effort and non-Markovian Models

Simulation effort is a major performance factor that can vary greatly from
one model to another. For our experiments, we have used a general-purpose
discrete-event simulator. This simulator works with an event-based represen-
tation of a discrete-event system based on the PRISM input language [54]
(with extensions for non-exponential distributions described by Younes [66]).
The simulation effort per state transition for this simulator is O(|E|), where
E is the set of events specifying the model dynamics. For the tandem queuing
network and robot grid world models, the number of events is constant for
all model sizes, so simulation effort is a constant factor. For the symmetric
polling system, simulation effort is O(n), where n is the number of polling
stations. Note, however, that the size of the state space is O(n · 2n) in this
case, so simulation effort grows very slowly as a function of state space size.

The results presented so far have been for Markov chains, but the statisti-
cal solution method works equally well for non-Markovian models (with the
exception of nested probabilistic properties). Any difference in performance
between Markov chains and non-Markovian models will mainly be due to sim-
ulation effort. For the simulator we use, non-Markovian models are no harder
to simulate, per se, than Markov chain. The simulation effort depends on E. If
we replace the Coxian routing-time distribution for the tandem queuing net-
work with a lognormal distribution having matching first two moments, for
example, then we reduce the number of events by two. Fig. 14(a) shows that
this leads to reduced simulation effort. In contrast, if we want to have Weibull-
distributed lifetimes for workstations in the workstation cluster model, then
we need to have one failure event per workstation instead of a single failure
event per cluster. The result is a substantial increase in the simulation effort
for the non-Markovian model as a function of cluster size (Fig. 14(b)).

Significant research effort has been devoted to the subject of efficient simula-
tion of Markov chains (e.g., by Hordijk et al. [36]) and discrete-event systems
(e.g., by McCormack and Sargent [52]; see, also, [12]). The results in this
section are specific to the simulator we have used and are only meant to il-
lustrate how the time complexity of statistical probabilistic model checking
depends on simulation effort. The simulation effort could, most certainly, be
reduced for some models by using a more efficient simulator, but finding the
best simulator for a specific model is well beyond the scope of this paper.

38



n100 101 102 103 104 105 106

%

60

65

70

75

80

(a) Tandem queuing network.

n100 101 102

%

1000

2000

3000

4000

5000

(b) Dependable workstation cluster.

Fig. 14. Simulation effort per state transition for non-Markovian model relative to
simulation effort per state transition for Markov chain model.

8 Related Work

This section discusses some previous research on probabilistic model checking
and relates other solution methods to the approach presented in this paper.

8.1 Statistical Solution Methods

The solution method presented in this paper is not the only statistical ap-
proach to probabilistic model checking. Lassaigne and Peyronnet [49] propose
a statistical approach for model checking a fragment of LTL. They do not
formulate it as a hypothesis-testing problem, but instead rely on less efficient
techniques for statistical estimation. Grosu and Smolka [24] present an algo-
rithm for classical (non-probabilistic) LTL model checking based on statistical
hypothesis testing. They draw samples from the space of trajectories that end
in a cycle—called lassos—and need to determine whether the probability mea-
sure of lassos involving accepting states is non-zero. Since the model is not
assumed to be probabilistic, the probability measure over sets of trajectories
can be chosen arbitrarily, and Grosu and Smolka discuss the merits of differ-
ent choices. To test for non-zero probability, a curtailed single sampling plan
is used for optimal performance. This is the same solution method that we
would use to verify P> 0[ϕ], but we would have a different sample space and a
probability measure over sets of trajectories that is fixed by the model.

Younes [68] modifies the statistical solution method we have presented in this
paper so that the probability of false negatives and false positives is bounded
by the parameters α and β even inside of the indifference region. This feat is
accomplished by permitting undecided results. The probability of an undecided
result is bounded by a third parameter, γ, outside of the indifference region,

39



but is unbounded inside of the indifference region.

Sen et al. [60] explore the idea of probabilistic verification for “black-box”
systems. A system is considered to be a black box if we lack a model of the
system dynamics. This precludes generation of sample trajectories through
discrete-event simulation and instead the analysis needs to be based on tra-
jectories observed during actual execution of the system. Sen et al. present an
algorithm for analyzing execution trajectories that amounts to statistical hy-
pothesis testing with fixed-size samples. Their approach does not permit the
user to bound the probability of type I and type II errors. Instead, a measure
of confidence—the p-value [35, pp. 255–256]—is computed for a verification re-
sult. This is reasonable if sample trajectories cannot be generated on demand.
There is a hidden assumption in their own evaluation of their algorithm, how-
ever, that the black box has a “reset button.” This permits the generation
of trajectories at will from an initial state. They guide their choice of sample
size by a desire to achieve a certain p-value, which is a function of a specific
observation rather than a general property of an acceptance sampling test as
is the case with the type I and type II error bounds. All their empirical evalu-
ation really proves is that a smaller sample size results in shorter verification
time—which should surprise no one—but the casual reader may be misled
into believing that Sen et al. have devised a more efficient statistical solution
method than the one originally proposed by Younes and Simmons [71] and
further developed here. The fact is that if the black-box system has a reset
button, then our solution method is still applicable and it has the advantage
of allowing a user to control the probability of an erroneous result. Sen et
al.’s algorithm permits no control over the probability of error and, perhaps
worse, provides no reliable procedure for finding the appropriate sample size
to achieve a certain p-value—the sample sizes reported in the paper were se-
lected manually by the authors (K. Sen, personal communication, May 20,
2004). Younes [65] offers a more thorough analysis of Sen et al.’s algorithm for
black-box verification and provides several important improvements when it is
assumed that a fixed set of execution trajectories are provided and additional
trajectories cannot be generated on demand from an initial state.

The focus of this paper has been on time-bounded properties. We have briefly
noted that our approach could handle unbounded properties, such as P./ θ[Φ U
Ψ]. To be ensured of termination, however, we would need to know that the
system is such that every trajectory eventually reaches an absorbing state or
a state satisfying ¬Φ ∨ Ψ. This knowledge could be hard to obtain without
costly reachability analysis. Sen et al. [61] attempt to devise a purely statis-
tical approach for verifying unbounded properties that does not rely on any
specific knowledge about the system other than the assumption that the state
space, S, is finite. Their idea is to generate trajectories using biased sampling.
They introduce a stopping probability, ps, which is the probability of termi-
nating the generation of a trajectory after each state transition. Let p be the

40



probability measure of the set of trajectories that satisfy Φ U Ψ and let p′

be the corresponding probability measure when there is a ps stopping prob-
ability in each state. The validity of their algorithm relies on the condition
p′ ≥ p(1−ps)

|S|, but this condition holds only for cycle-free models. In general,
there is no lower bound for the fraction p′/p that can be expressed only in
terms of ps and |S|. Even if the required condition could be shown to hold in
general, the accuracy of the verification result would depend on |S|, making
the approach impractical for anything but models with small state spaces.

8.2 Numerical Solution Methods

To verify the formula P./ θ[Φ U [0,τ ] Ψ] for some initial-state distribution µ0 and
model M with state space S, we can compute the probability

p =
∫

µ({σ ∈ Path({〈s, 0〉}) | M, σ, 0 |= Φ U [0,τ ] Ψ}) dµ0(S)

numerically and test if p ./ θ holds. Such numerical computation is primarily
feasible when M is a finite-state Markov chain. First, as initially proposed
by Baier et al. [8], the problem is reduced to the computation of transient
probabilities on a modified Markov chain M′, where all states in M satisfying
¬Φ∨Ψ have been made absorbing. The probability p is equal to the probability
that we are in a state satisfying Ψ at time τ in model M′. This probability can
be computed using a technique called uniformization (also know as random-
ization), originally proposed by Jensen [41]. Let Q be the generator matrix of
M′, q = maxi −qii, and P = I + Q/q. Then p can be expressed as follows:

p = ~µ0 ·
∞
∑

k=0

e−q·τ (q · τ)k

k!
Pk · ~χΨ (15)

Here, ~µ0 = [µ0(s)] and ~χΨ is a 0-1 column vector, with a 1 in each row
corresponding to a state that satisfies Ψ. In practice, the infinite summation is
truncated by using the techniques of Fox and Glynn [21], so that the truncation
error is bounded by an a priori error tolerance ε. The number of iterations

is Rε = q · τ + c
√

2q · τ + 3/2, where c is o
(√

log(1/ε)
)

. This means that the
number of iterations grows very slowly as ε decreases. For large values of q · τ ,
the number of iterations is essentially O(q · τ). The kth term of p is computed
iteratively as pk = ~µk · ~χΨ · e−q·τ(q · τ)k/k!, where ~µk = ~µk−1P for k > 0.

Each iteration involves a matrix-vector multiplication. Let a be the maximum
number of non-zero elements in any row of P and let bk be the number of
non-zero elements of ~µk. Then the kth term requires O(a · bk) operations. In
the worst case, both a and bk are O(|S|), making the total complexity of the
numerical solution method O(q · τ · |S|2). Often, however, P is sparse and a is

41



a constant, making the complexity O(q ·τ · |S|). If bk is constant for all k ≤ Rε,
then the complexity can be as low as O(q ·τ), i.e. independent of the size of the
state space. Typically, though, bk becomes O(|S|) after only a few iterations,
even if b1 = 1. This is, for example, the case for all four models described
in Section 6. Hence, the time complexity of the numerical solution method is
typically O(q ·τ ·M), where M is proportional to |S|, even if we want to verify
a formula in only a single state. This is in comparison to the theoretical time
complexity O(q · τ · m · Np) for our statistical solution method for verifying a
formula in a single state, where m is the simulation effort per state transition
and Np is the expected sample size as a function of p. The product m · Np,
is often significantly smaller than |S|, and is in some cases independent of |S|
even when the numerical solution method has time complexity O(q · τ · |S|).

The number of iterations required by the numerical solution method can, in
some cases, be reduced significantly through the use of steady-state detection
[56,50,69,43]. This can give the numerical solution method a clear edge over
the statistical approach for large values of τ . It should be noted, however,
that true steady-state detection is generally not possible. In practice, this
optimization is based on a comparison of successive iteration vectors, which
could give unreliable results if convergence is slow, although recent work by
Katoen and Zapreev [43] seems to address this problem. Further reduction is
possible with the sequential stopping rule described by Younes et al. [69], but
this does not reduce the asymptotic time complexity of the numerical method.

The presence of a truncation error, ε, means that no definite answer can be
given if p is within an ε distance of θ. Let p̃ be the computed probability.
By accepting a probabilistic formula as true if and only if p̃ + ε/2 ./ θ, the
numerical approach can be interpreted as solving a UTSLδ model-checking
problem with δ(θ) = ε/2 and α = β = 0. Hence, neither the numerical nor the
statistical solution method can solve true UTSL model-checking problems, but
it is costlier for the statistical method to narrow the indifference region. Also,
the statistical method gives only probabilistic correctness guarantees. The
numerical approach is a deterministic algorithm for UTSLδ model checking
and the statistical approach is a randomized algorithm.

A limiting factor for numerical solution methods is memory. The space com-
plexity for verifying P./ θ

[

Φ U [0,τ ] Ψ
]

is O(|S|) in most cases. Various different

data structures can be used for numerical computation. Katoen et al. [42]
suggest the use of MTBDDs [17,7,22] for CSL model checking, while Baier
et al. [8] express a preference for sparse matrices. Parker [54] has developed a
hybrid approach, which uses flat representations of vectors and MTBDDs for
matrices. With steady-state detection enabled, this hybrid approach requires
storage of three double precision floating point vectors of size |S|, which for a
memory limit of 800MB means that systems with at most 35 million states can
be analyzed. The asymptotic space complexity is the same for the different

42



representations, and sparse matrices nearly always provide faster numerical
computation, but symbolic representations of rate and probability matrices
can exploit structure in the model and therefore use less memory in practice
[45]. Another interesting approach is presented by Buchholz et al. [13], who
use Kronecker products to exploit structure.

By removing ~µ0 from (15) and using Pk·~χΨ as the iteration vector, it is possible
to verify a formula in all states simultaneously with the same asymptotic
time complexity as for verifying the formula in a single state [42]. Clearly,
the same cannot be said of the statistical approach. This gives the numerical
solution method a great advantage when dealing with nested probabilistic
operators. Consider the formula P≥ 0.9

[

P≥ 0.5[3
[0,τ2] c] U [0,τ1] x=n ∧ y=n

]

for
the robot grid world. The time complexity for the numerical solution method is
essentially O(q·τ1·M) for τ2 < τ1. The statistical solution method, on the other
hand, suffers more from the presence of nested probabilistic operators. Younes
et al. [69] have suggested a mixed solution method, which uses the numerical
approach for nested probabilistic operators and the statistical approach for
top-most probabilistic operators. This mixed approach shares performance
characteristics of both solution methods, but is limited by memory in the
same way as the pure numerical solution method. A brief comparison of the
three methods is provided by Younes [66,67].

9 Conclusion and Future Work

This paper establishes the foundations of statistical probabilistic model check-
ing. A key observation is that probabilistic model checking can be modeled
as a hypothesis-testing problem. We can therefore use well-established and
efficient statistical hypothesis-testing techniques, in particular sequential ac-
ceptance sampling, for probabilistic model checking. Our model-checking ap-
proach is not tied to any specific statistical test. The only requirement is that
we can bound the probability of an incorrect answer (either a false positive
or a false negative). Given this, we have shown how to derive error bounds
for compound and nested probabilistic statements. The result is a randomized
algorithm for probabilistic model checking with indifference regions.

We have considered only transient properties of stochastic systems. The logic
CSL, as described by Baier et al. [9], can also express steady-state properties.
Statistical techniques for steady-state analysis exist, including batch means
analysis and regenerative simulation [12]. Although these techniques have been
used for statistical estimation, we are confident that they could be adapted
for hypothesis testing, as well. Extending our work on statistical probabilistic
model checking to steady-state properties is therefore a prime candidate for
future work. We are also looking at ways to ensure termination of our algo-

43



rithm for properties that involve unbounded until formulae, primarily by using
efficient techniques for reachability analysis from symbolic model checking.

To more efficiently handle probability thresholds close to zero and one, the use
of importance sampling [32] may also be possible. It would moreover be worth-
while exploring Bayesian techniques for acceptance sampling, in particular the
test developed by Lai [47]. It is well known that the sequential probability ra-
tio test, while generally very efficient, tends to require a large sample size if
the true probability lies in the indifference region of the test. Consequently,
we spend the most effort where we are indifferent of the outcome. This short-
coming is addressed by Bayesian hypothesis testing. The challenge would be
to devise a Bayesian test for conjunctive and nested probabilistic operators.

A final topic for future work, which we have only briefly touched in this paper,
is to improve the efficiency of discrete-event simulation for our representation
of stochastic discrete-event systems (a variation of the PRISM language [54]).
A bottleneck in our current implementation is the determination of enabled
events in a state. Our solution is to scan through the list of all events and
evaluate the enabling condition for each event. This is not efficient for models
with many events. We think that the use of symbolic data structures, such as
MTBDDs, could speed up the generation of sample trajectories.

Acknowledgments

The authors are grateful to the anonymous reviewers, whose detailed com-
ments and insightful remarks helped tremendously in improving this paper.

A Nested Probabilistic Operators and Non-Markovian Models

Our semantics for Φ U I Ψ requires that Φ holds continuously along a trajectory
until Ψ is satisfied. In contrast, Infante López et al.’s [40] semantics of CSL for
semi-Markov processes requires Φ to hold only at the time of state transitions.
We demonstrate with two examples that the two semantics are incompatible.

Example 15 Consider the semi-Markov process with two states depicted in
Fig. A.1. Assume that G is a standard Weibull distribution with shape param-
eter 0.5, denoted W (1, 0.5), and that we want to verify the UTSL formula Φ =
P≥ 0.5[ϕ] in s0, where ϕ is the path formula P≥ 0.5[x=0 U [0,1] x=1] U [0,1] x=1.

Let P denote the set of trajectories that start in s0 at time 0 and satisfy the
path formula ϕ. Members of P are of the form {〈s0, t〉, 〈s1,∞〉} with t ∈ [0, t′]

44



x = 0

G

x = 1

s0 s1

Fig. A.1. A two-state semi-Markov process with holding time distribution G in s0.

for some t′ ≤ 1. The probability measure of P is therefore at most F (1) ≈
0.632, where F (·) is the cumulative distribution function for W (1, 0.5). Of the
trajectories with t ∈ [0, 1], only the ones where Ψ = P≥ 0.5[x=0 U [0,1] x=1]
holds until s1 is reached satisfy the path formula ϕ.

If we require Ψ to hold continuously along a trajectory until s1 is reached, then
we have to rule out trajectories with t ≥ t′ such that Ψ does not hold if verified
relative to the trajectory prefix {〈s0, t

′〉}. The probability of reaching s1 within
1 time unit, given that we have already spent t′ time units in s0, is

q(t′) =
1

1 − F (t′)

∫ t′+1

t′
f(x) dx ,

where f(·) is the probability density function for W (1, 0.5). The value of q
is greater than 0.5 for t′ = 0.1, but less than 0.5 for t′ = 0.2. Since q is
a decreasing function of t′, it means that Ψ does not hold continuously over
trajectories starting in s0 if t ≥ 0.2. It follows that the probability measure of
the set P is less than F (0.2) ≈ 0.361, so Φ does not hold. We would reach the
opposite conclusion if we simply verified the nested formulae at the entry of
each state, since Ψ holds initially in s0.

Example 16 Consider the same semi-Markov process as in the previous ex-
ample, but this time with G equal to W (1, 1.5). We want to verify Φ = P≥ 0.5[ϕ]
in s0, where ϕ is x=0 U [0,1] P≥ 0.7[x=0 U (0,1] x=1]. Note that the time interval
is open to the left in the formula Ψ = P≥ 0.7[x=0 U (0,1] x=1], so Ψ cannot hold
in s1 because x=0 must hold at the entry of a state for Ψ to hold in that state.
Ψ does not hold immediately in s0 either: the probability of reaching s1 within
1 time unit is F (1) ≈ 0.632 < 0.7 at time 0 in s0. The formula Ψ does become
true, however, along trajectories that remain in s0 for 0.2 time units or more
before a transition to s1 occurs. Since F (1)− F (0.2) ≈ 0.547 ≥ 0.5, it follows
that Φ holds with the semantics given by Definition 7.

References

[1] Alur, R., Courcoubetis, C., and Dill, D. L. (1991), Model-checking for
probabilistic real-time systems, in “Proc. 18th International Colloquium on
Automata, Languages and Programming” (J. L. Albert, B. Monien, and M. R.
Artalejo, Eds.), pp. 115–126, Springer.

45



[2] Alur, R., Courcoubetis, C., and Dill, D. L. (1993), Model-checking in dense
real-time, Inform. and Comput. 104, 2–34.

[3] Alur, R., and Dill, D. L. (1994), A theory of timed automata, Theoret. Comput.

Sci. 126, 183–235.

[4] Anderson, T. W., and Friedman, M. (1960), A limitation of the optimum
property of the sequential probability ratio test, in “Contributions to
Probability and Statistics: Essays in Honor of Harold Hotelling” (I. Olkin,
S. G. Ghurye, W. Hoeffding, W. G. Madow, and H. B. Mann, Eds.), pp. 57–69,
Stanford University Press, Stanford, California.

[5] Aziz, A., Sanwal, K., Singhal, V., and Brayton, R. K. (1996), Verifying
continuous time Markov chains, in “Proc. 8th International Conference on
Computer Aided Verification” (R. Alur and T. A. Henzinger, Eds.), pp. 269–
276, Springer.

[6] Aziz, A., Sanwal, K., Singhal, V., and Brayton, R. K. (2000), Model-checking
continuous-time Markov chains, ACM Trans. Comput. Log. 1, 162–170.

[7] Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E., Pardo, A.,
and Somenzi, F. (1993), Algebraic decision diagrams and their applications, in

“Proc. 1993 IEEE/ACM International Conference on Computer-Aided Design”,
pp. 188–191, IEEE Computer Society Press.

[8] Baier, C., Haverkort, B. R., Hermanns, H., and Katoen, J.-P. (2000), Model
checking continuous-time Markov chains by transient analysis, in “Proc. 12th
International Conference on Computer Aided Verification” (E. A. Emerson and
A. P. Sistla, Eds.), pp. 358–372, Springer.

[9] Baier, C., Haverkort, B. R., Hermanns, H., and Katoen, J.-P. (2003), Model-
checking algorithms for continuous-time Markov chains, IEEE Trans. Softw.

Eng. 29, 524–541.

[10] Baier, C., Katoen, J.-P., and Hermanns, H. (1999), Approximate symbolic
model checking of continuous-time Markov chains, in “Proc. 10th International
Conference on Concurrency Theory” (J. C. M. Baeten and S. Mauw, Eds.), pp.
146–161, Springer.

[11] Bartlett, M. S. (1966), An Introduction to Stochastic Processes with Special

Reference to Methods and Applications, 2nd Edition, Cambridge University
Press, London.

[12] Bratley, P., Fox, B. L., and Schrage, L. E. (1987), A Guide to Simulation, 2nd
Edition, Springer, Berlin.

[13] Buchholz, P., Katoen, J.-P., Kemper, P., and Tepper, C. (2003), Model-checking
large structured Markov chains, J. Log. Algebr. Program. 56, 69–97.

[14] Çinlar, E. (1975), Introduction to Stochastic Processes, Prentice-Hall,
Englewood Cliffs, New Jersey.

46



[15] Clarke, E. M., and Emerson, E. A. (1982), Design and synthesis of
synchronization skeletons using branching time temporal logic, in “Proc. 1981
Workshop on Logics of Programs” (D. Kozen, Ed.), pp. 52–71, Springer, Berlin.

[16] Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986), Automatic verification of
finite-state concurrent systems using temporal logic specifications, ACM Trans.

Program. Lang. Syst. 8, 244–263.

[17] Clarke, E. M., McMillan, K. L., Zhao, X., and Fujita, M. (1993), Spectral
transforms for large Boolean functions with applications to technology mapping,
in “Proc. 30th International Conference on Design Automation”, pp. 54–60,
ACM Press.

[18] Doob, J. L. (1953), Stochastic Processes, John Wiley & Sons, New York.

[19] Duncan, A. J. (1974), Quality Control and Industrial Statistics, 4th Edition,
Richard D. Irwin, Homewood, Illinois.

[20] Emerson, E. A., Mok, A. K., Sistla, A. P., and Srinivasan, J. (1992),
Quantitative temporal reasoning, Real-Time Syst. 4, 331–352.

[21] Fox, B. L., and Glynn, P. W. (1988), Computing Poisson probabilities, Comm.

ACM 31, 440–445.

[22] Fujita, M., McGeer, P. C., and Yang, J. C.-Y. (1997), Multi-terminal binary
decision diagrams: An efficient data structure for matrix representation, Formal

Methods Syst. Des. 10, 149–169.

[23] Glynn, P. W. (1989), A GSMP formalism for discrete event systems, Proc. IEEE

77, 14–23.

[24] Grosu, R., and Smolka, S. A. (2005), Monte Carlo model checking, in “Proc.
11th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems” (N. Halbwachs and L. D. Zuck, Eds.), pp. 271–286,
Springer.

[25] Grubbs, F. E. (1949), On designing single sampling inspection plans, Ann.

Math. Statist. 20, 242–256.

[26] Halmos, P. R. (1950), Measure Theory, Van Nostrand Reinhold Company, New
York.

[27] Hansson, H., and Jonsson, B. (1989), A framework for reasoning about time
and reliability, in “Proc. Real-Time Systems Symposium”, pp. 102–111, IEEE
Computer Society Press.

[28] Hansson, H., and Jonsson, B. (1994), A logic for reasoning about time and
reliability, Formal Aspects Comput. 6, 512–535.

[29] Hart, S., and Sharir, M. (1984), Probabilistic temporal logics for finite
and bounded models, in “Proc. Sixteenth ACM Symposium on Theory of
Computing”, pp. 1–13, ACM SIGACT.

47



[30] Hastings, Jr., C. (1955), Approximations for Digital Computers, Princeton
University Press, Princeton, New Jersey.

[31] Haverkort, B. R., Hermanns, H., and Katoen, J.-P. (2000), On the use of
model checking techniques for dependability evaluation, in “Proc. 19th IEEE
Symposium on Reliable Distributed Systems”, pp. 228–237, IEEE Computer
Society.

[32] Heidelberger, P. (1995), Fast simulation of rare events in queueing and reliability
models, ACM Trans. Model. Comput. Simul. 5, 43–85.

[33] Hermanns, H., Meyer-Kayser, J., and Siegle, M. (1999), Multi terminal binary
decision diagrams to represent and analyse continuous time Markov chains,
in “Proc. 3rd International Workshop on the Numerical Solution of Markov
Chains” (B. Plateau, W. J. Stewart, and M. Silva, Eds.), pp. 188–207, Prensas
Universitarias de Zaragoza.

[34] Hoel, P. G., Port, S. C., and Stone, C. J. (1972), Introduction to Stochastic

Processes, Houghton Mifflin Company, Boston.

[35] Hogg, R. V., and Craig, A. T. (1978), Introduction to Mathematical Statistics,
4th Edition, Macmillan Publishing Co., New York.

[36] Hordijk, A., Iglehart, D. L., and Schassberger, R. (1976), Discrete time methods
for simulating continuous time Markov chains, Adv. in Appl. Probab. 8, 772–788.

[37] Howard, R. A. (1971), Dynamic Probabilistic Systems, Vol. I: Markov Models,
John Wiley & Sons, New York.

[38] Howard, R. A. (1971), Dynamic Probabilistic Systems, Vol. II: Semi-Markov
and Decision Processes, John Wiley & Sons, New York.

[39] Ibe, O. C., and Trivedi, K. S. (1990), Stochastic Petri net models of polling
systems, IEEE J. Sel. Areas Commun. 8, 1649–1657.

[40] Infante López, G. G., Hermanns, H., and Katoen, J.-P. (2001), Beyond
memoryless distributions: Model checking semi-Markov chains, in “Proc. 1st
Joint International PAPM-PROBMIV Workshop” (L. de Alfaro and S. Gilmore,
Eds.), pp. 57–70, Springer.

[41] Jensen, A. (1953), Markoff chains as an aid in the study of Markoff processes,
Scand. Actuar. J. 36, 87–91.

[42] Katoen, J.-P., Kwiatkowska, M., Norman, G., and Parker, D. (2001), Faster
and symbolic CTMC model checking, in “Proc. 1st Joint International PAPM-
PROBMIV Workshop” (L. de Alfaro and S. Gilmore, Eds.), pp. 23–38, Springer.

[43] Katoen, J.-P., and Zapreev, I. S. (2006), Safe on-the-fly steady-state detection
for time-bounded reachability, in “Proc. Third International Conference on the
Quantitative Evaluation of Systems”, IEEE Computer Society, in press.

[44] Kolmogoroff, A.
(1931), Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung,
Math. Ann. 104, 415–458.

48



[45] Kwiatkowska, M., Norman, G., and Parker, D. (2004), Probabilistic symbolic
model checking with PRISM: A hybrid approach, Int. J. Softw. Tools Techn.

Transfer 6, 128–142.

[46] Kwiatkowska, M., Norman, G., Segala, R., and Sproston, J. (2000), Verifying
quantitative properties of continuous probabilistic timed automata, in “Proc.
11th International Conference on Concurrency Theory” (C. Palamidessi, Ed.),
pp. 123–137, Springer.

[47] Lai, T. L. (1988), Nearly optimal squential tests of composite hypotheses, Ann.

Statist. 16, 856–886.

[48] Lai, T. L. (2001), Sequential analysis: Some classical problems and new
challenges, Statist. Sinica 11, 303–408.

[49] Lassaigne, R., and Peyronnet, S. (2002), Approximate verification of
probabilistic systems, in “Proc. 2nd Joint International PAPM-PROBMIV
Workshop” (H. Hermanns and R. Segala, Eds.), pp. 213–214, Springer.

[50] Malhotra, M., Muppala, J. K., and Trivedi, K. S. (1994), Stiffness-tolerant
methods for transient analysis of stiff Markov chains, Microelectron. Reliab.

34, 1825–1841.

[51] Matthes, K. (1962), Zur Theorie der Bedienungsprozesse, in “Trans. Third
Prague Conference on Information Theory, Statistical Decision Functions,
Random Processes” (J. Kožešńık, Ed.), pp. 513–528, Publishing House of the
Czechoslovak Academy of Sciences.

[52] McCormack, W. M., and Sargent, R. G. (1981), Analysis of future event set
algorithms for discrete event simulation, Comm. ACM 24, 801–812.

[53] Michie, D. (1968), “Memo” functions and machine learning, Nature 218, 19–22.

[54] Parker, D. (2002), Implementation of symbolic model checking for probabilistic
systems, Ph.D. thesis, School of Computer Science, University of Birmingham,
Birmingham, United Kingdom.

[55] Pnueli, A. (1977), The temporal logic of programs, in “Proc. 18th Annual
Sumposium on Foundations of Computer Science”, pp. 46–57, IEEE Computer
Society.

[56] Reibman, A., and Trivedi, K. S. (1988), Numerical transient analysis of Markov
models, Comput. Oper. Res. 15, 19–36.

[57] Rescher, N., and Urquhart, A. (1971), Temporal Logic, Springer, New York.

[58] Schwarz, G. (1962), Asymptotic shapes of Bayes sequential testing regions, Ann.

Math. Statist. 33, 224–236.

[59] Segala, R. (1995), Modeling and verification of randomized distributed real-time
systems, Ph.D. thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, Massachusetts,
MIT-LCS-TR-676.

49



[60] Sen, K., Viswanathan, M., and Agha, G. (2004), Statistical model checking
of black-box probabilistic systems, in “Proc. 16th International Conference on
Computer Aided Verification” (R. Alur and D. A. Peled, Eds.), pp. 202–215,
Springer.

[61] Sen, K., Viswanathan, M., and Agha, G. (2005), On statistical model checking of
stochastic systems, in “Proc. 17th International Conference on Computer Aided
Verification” (K. Etessami and S. K. Rajamani, Eds.), pp. 266–280, Springer.

[62] Wald, A. (1945), Sequential tests of statistical hypotheses, Ann. Math. Statist.

16, 117–186.

[63] Wald, A. (1947), Sequential Analysis, John Wiley & Sons, New York.

[64] Wald, A., and Wolfowitz, J. (1948), Optimum character of the sequential
probability ratio test, Ann. Math. Statist. 19, 326–339.

[65] Younes, H. L. S. (2005), Probabilistic verification for “black-box” systems,
in “Proc. 17th International Conference on Computer Aided Verification”
(K. Etessami and S. K. Rajamani, Eds.), pp. 253–265, Springer.

[66] Younes, H. L. S. (2005), Verification and planning for stochastic processes with
asynchronous events, Ph.D. thesis, Computer Science Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania, CMU-CS-05-105.

[67] Younes, H. L. S. (2005), Ymer: A statistical model checker, in “Proc. 17th
International Conference on Computer Aided Verification” (K. Etessami and
S. K. Rajamani, Eds.), pp. 429–433, Springer.

[68] Younes, H. L. S. (2006), Error control for probabilistic model checking, in

“Proc. 7th International Conference on Verification, Model Checking, and
Abstract Interpretation” (E. A. Emerson and K. S. Namjoshi, Eds.), pp. 142–
156, Springer.

[69] Younes, H. L. S., Kwiatkowska, M., Norman, G., and Parker, D. (2006),
Numerical vs. statistical probabilistic model checking, Int. J. Softw. Tools

Techn. Transfer, in press.

[70] Younes, H. L. S., and Musliner, D. J. (2002), Probabilistic plan verification
through acceptance sampling, in “Proc. AIPS-02 Workshop on Planning via
Model Checking” (F. Kabanza and S. Thiébaux, Eds.), pp. 81–88.

[71] Younes, H. L. S., and Simmons, R. G. (2002), Probabilistic verification of
discrete event systems using acceptance sampling, in “Proc. 14th International
Conference on Computer Aided Verification” (E. Brinksma and K. G. Larsen,
Eds.), pp. 223–235, Springer.

50


