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1 Introduction

The formal veri�cation of object-oriented code is still an open problem. The
presence of aliasing (multiple references pointing to the same object) makes
modular veri�cation of code di�cult. If there are multiple clients depending on
the properties of an object, one client may break the property that others depend
on. In order to verify whether clients and implementations are compliant with
speci�cations, knowledge of both aliasing and properties about objects is needed.

Statically verifying the correctness of code is bound to save time in the quality
assurance process. Bugs are going to be discovered before the program even starts
running. Formal veri�cation saves the programmer time by helping him/her
�nd the errors more quickly. By using an o�-the-shelf formal veri�cation tool
instead of generating as many test cases as possible, the quality assurance process
becomes more e�cient.

Creating veri�cation tools for object-oriented programming languages is a
worthy endeavor. According to Oracle [5], the Java platform has attracted more
than 6.5 million software developers to date. The Java programming language
is used in every major industry segment and has a presence in a wide range of
devices, computers, and networks. There are 1.1 billion desktops running Java,
930 million Java Runtime Environment downloads each year, 3 billion mobile
phones running Java, 100% of all Blu-ray players run Java and 1.4 billion Java
Cards are manufactured each year. Java also powers set-top boxes, printers, Web
cams, games, car navigation systems, lottery terminals, medical devices, parking
payment stations, and more.

We acknowledge that the world is transitioning from single-CPU machines
and single-threaded programs to multi-core machines and concurrent programs.
Still, in order to apply a veri�cation procedure in a multi-threaded setting, we
�rst have to know how to apply it for a single thread. Moreover, according
to Amdahl's law [6], the speedup of a program using multiple processors in
parallel computing is limited by the time needed for the sequential fraction of
the program. Special attention needs to be given to the sequential fragment of a
program because that is where the bottleneck will be at execution time. There
is a large number of applications that will not bene�t from parallelism, such as
any algorithm with a large number of serial steps. These algorithms will need
to be implemented sequentially and will need a veri�cation procedure designed
especially for them. This thesis describes how we can use information about



aliasing and properties of objects to implement a robust veri�cation tool for
object-oriented code in a single-threaded setting.

1.1 Current Approaches

The veri�cation of object-oriented code can be achieved using the classical
invariant-based technique [8]. When using this technique, all objects of the same
class have to satisfy the same invariant. The invariant has to hold in all visible
states of an object, i.e. before a method is called on the object and after the
method returns. The invariant can be broken inside the method as long as it is
restored upon exit from the method. This leads to a key limitation: the speci-
�cations that can be written using the proof language and the veri�cation that
can be performed are limited. This limitation shows itself in a number of ways.
One sign is: the methods that can be written for each class are restricted because
now each method of a particular class has to have the invariant of that class as a
post-condition. Another sign is that the invariant of an object cannot depend on
another object's state, unless additional features such as ownership are added.
Leino and Müller [37] have added ownership to organize objects into contexts.
In their approach using object invariants, the invariant of an object is allowed
to depend on the �elds of the object, on the �elds of all objects in transitively-
owned contexts, and on �elds of objects reachable via given sequences of �elds. A
related restriction is that from outside the object, one cannot make an assertion
about that object's state, other than that its invariant holds. Thus the classic
technique for checking object invariants ensures that objects remain well-formed,
but it does not help with reasoning about how they change over time (other than
that they do not break the invariant).

Separation logic approaches [34], [17], [15], etc. bypass the limitations of
invariant-based veri�cation techniques by requiring that each method describe
its footprint and the predicates that should hold for the objects in that footprint.
In this way not all objects of the same class have to satisfy the same predicate.
Separation logic allows us to reason about how objects' state changes over time.
On the downside, now the speci�cation of a method has to reveal the structures
of objects that it uses. This is not a problem if the objects in the footprint are
completely encapsulated. But if they are shared between two structures, that
sharing must be revealed when transitioning between the �inside" and �outside"
of the encapsulating abstraction. This is not desirable from an information hiding
point of view.

On the other hand, permission-based work [10], [16], [13] gives another partial
solution for the veri�cation of object-oriented code in the presence of aliasing.
By using share and/or fractional permissions referring to the multiple aliases of
an object, it is possible for objects of the same class to have di�erent invariants.
This is di�erent from the traditional thinking that an object invariant is always
the same for all objects. What share and/or fractions do is allow us to make
di�erent assertions about di�erent objects; we are not limited to a single object
invariant. This relaxes the classical invariant-based veri�cation technique and it
makes it much more �exible.



Moreover, developers can use access permissions [10] to express the design
intent of their protocols in annotations on methods and classes. This thesis uses
fractional permissions [13] (which are similar to access permissions in some re-
spects) in the creation of the novel concept of object propositions. The main
di�erence between the way I use permissions and existing work about permis-
sions is that I do not require the state referred to by a fraction less than 1 to
be immutable. Instead, that state has to satisfy an invariant that can be relied
on by other objects. My goal is to modularly check that implementations follow
their design intent. The typestate [16] formulation has certain limits of expres-
siveness: it is only suited to �nite state abstractions. This makes it unsuitable
for describing �elds that contain integers (which can take an in�nite number of
values) and can satisfy various arithmetical properties. My object propositions
have the advantage that they can express predicates over an in�nite domain,
such as the integers.

My fractional permissions system allows veri�cation using a mixture of linear
and nonlinear reasoning, combining ideas from previous systems. The existing
work on separation logic is an example of linear reasoning, while the work on
fractional permissions is an example of nonlinear reasoning. In a linear system
there can be only one assertion about each piece of state (such as each �eld of
an object), while in a nonlinear system there can be multiple mentions about
the same piece of state inside a formula. The combination of ideas from these
two distinct areas allows our system to provide more modularity than each in-
dividual approach. For example, in some cases our work can be more modular
than separation logic approaches because it can more e�ectively hide the exact
aliasing relationships.

The seminal work of Parnas [35] describes the importance of modular pro-
gramming, where the information hiding criteria is used to divide the system into
modules. In a world where software systems have to be continually changed in
order to satisfy new (client) requirements, the software engineering principle of
modular programming becomes crucial: it brings �exibility by allowing changes
to one module without modifying the others. The examples in sections 4.1 and
1.3 represent instances where object propositions are better at hiding shared
data and enforcing modularity than separation logic.

1.2 Example: Cells in a spreadsheet

I consider the example of a spreadsheet, as described in [27]. In my spreadsheet
each cell contains an add formula that adds two integer inputs. Each cell may
refer to other two cells. The general case would be for each cell to have a depen-
dency list of cells, but since my grammar does not support arrays yet, I am not
considering that case. Whenever the user changes a cell, each of the two cells
which transitively depend upon it must be updated.

A visual representation of this example is presented in Figure 1. In separation
logic, the speci�cation of any method has to describe the entire footprint of the
method, i.e., all heap locations that are being touched through reading or writing



Fig. 1. Add cells in spreadsheet



in the body of the method. That is, the shared cells a3 and a6 have to be speci�ed
in the speci�cation of all methods that modify the cells a1 and a2.

In Figure 8, I present the code implementing a cell in a spreadsheet.

class Dependency {

Cell ce;

int input;

}

class Cell {

int in1, in2, out;

Dependency dep1, dep2;

void setInputDep(int newInput) {

if (dep1!=null) {

if (dep1.input == 1) dep1.ce.setInput1(newInput);

else dep1.ce.setInput2(newInput);

}

if (dep2!=null) {

if (dep2.input == 1) dep2.ce.setInput1(newInput);

else dep2.ce.setInput2(newInput);

}

}

void setInput1(int x) {

this.in1 = x;

this.out = this.in1 + this.in2;

this.setInputDep(out);

}

void setInput2(int x) {

this.in2 = x;

this.out = this.in1 + this.in2;

this.setInputDep(out);

}

}

Fig. 2. Cell class

The speci�cation in separation logic is unable to hide shared data. To ex-
press the fact that all cells are in a consistent state where the dependencies are
respected and the sum of the inputs is equal to the output for each cell, I de�ne
the following predicate :

SepOK(cell) ≡ (cell.in1→ x1)?(cell.in2→ x2)?(cell.out→ o)?(cell.dep→
d) ? (x1 + x2 = o) ? ∀(c, inp) ∈ d : (SepOK(c) ∧ c.“in+ inp”→ o).



Fig. 3. Cells in a cycle

This predicate states that the sum of the two inputs of cell is equal to the
output, and that the predicate SepOK is veri�ed by all the cells that directly
depend on the output of the current cell. Additionally, the predicate SepOK
also checks that the corresponding input for each of the two dependency cells
is equal to the output of the current cell. This predicate only works in the case
when the cells form a directed acyclic graph (DAG). The predicate SepOK
causes problems when there is a diamond structure (not shown in Figure 1) or
if one wants to assert the predicate about two separate nodes whose subtrees
overlap due to a DAG structure (e.g. a1 and a2 in Figure 1). For example, if
the dependencies between the cells form a cycle, as in Figure 3, the predicate
SepOK cannot possibly hold.

Additionally we need another predicate to express simple properties about
the cells:

Basic(cell) ≡ ∃x1, x2, o, d.(cell.in1 → x1) ? (cell.in2 → x2) ? (cell.out →
o) ? (cell.dep→ d).

Below I show a fragment of client code and its veri�cation using separation
logic.

{Basic(a2) ? Basic(a5) ? SepOK(a1)}
a1.setInput1(10);

{Basic(a2) ? Basic(a5) ? SepOK(a1)}
{∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗missing step ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗}
{Basic(a4) ? Basic(a1) ? SepOK(a2)}

a2.setInput1(20);



In the speci�cation above,
SepOK(a1) ≡ a1.in1→ x1 ? a1.in2→ x2 ? a1.out→ o ? x1 + x2 = o ?

(SepOK(a4) ∧ a4.in1 = o) ? (SepOK(a3) ∧ a3.in1 = o)
and

SepOK(a2) ≡ a2.in1→ z1 ? a2.in2→ z2 ? a2.out→ p ? z1 + z2 = p ?
(SepOK(a3) ∧ a3.in2 = p) ? (SepOK(a5) ∧ a5.in1 = p)

In separation logic, the natural pre- and post-conditions of the method set-
Input1 are SepOK(this), i.e., the method takes in a cell that is in a consistent
state in the spreadsheet and returns a cell with the input changed, but that is still
in a consistent state in the spreadsheet. The natural speci�cation of setInput1
would be SepOK(this)⇒ SepOK(this).

Thus, before calling setInput1 on a2, we have to combine SepOK(a3) ?
SepOK(a5) into SepOK(a2). We observe the following problem: in order to
call setInput1 on a2, we have to take out SepOK(a3) and combine it with
SepOK(a5), to obtain SepOK(a2). But the speci�cation of the method does
not allow it, hence the missing step in the veri�cation above. The speci�cation
of setInput1 has to be modi�ed instead, by mentioning that there exists some
cell a3 that satis�es SepOK(a3) that we pass in and which gets passed back out
again. The speci�cation of setInput1 would become
∀α, β, x . (SepOK(this) ∧ such that SepOK(this) ≡ α ? SepOK(x) ? β)
⇒ (SepOK(this) ∧ such that SepOK(this) ≡ α ? SepOK(x) ? β).
The modi�cation is unnatural: the speci�cation of setInput1 should not

care about which are the dependencies of the current cell, it should only care
that it modi�ed the current cell.

This situation is very problematic because the speci�cation of setInput1

involving shared cells becomes awkward. One can imagine an even more com-
plicated example, where there are multiple shared cells that need to be passed
in and out of di�erent calls to setInput1. It is impossible to know, at the time
when we write the speci�cation of a method, on what kind of shared data that
method will be used. Separation logic approaches will thus have a di�cult time
trying to verify this kind of code. This is because in OO design, the natural
abstraction is that each cell updates its dependents, while they are hidden from
the outside. The cells in the spreadsheet example is an instance of the subject-
observer pattern, as described in [25], which implements this abstraction.

1.3 Modularity Example: Simulator for Queues of Jobs

The formal veri�cation of modules should ideally follow the following principle:
the speci�cation and veri�cation of one method should not depend on details that
are private to the implementation of another method. An important instance of
this principle comes in the presence of aliasing: if two methods share an object,
yet their speci�cation is not a�ected by this sharing, then the speci�cation should
not reveal the presence of the sharing.

Unfortunately, the most modular reasoning techniques available today �
principally those based on separation logic [36] � cannot hide sharing, because



the speci�cation of a method must mention the entire memory footprint that the
method accesses. This gives rise to unmodular, and therefore verbose and fragile,
speci�cations and proofs. There exist versions of higher-order separation logics
that can hide the presence of sharing to some extent [27], but their higher-order
nature makes them considerably more complicated.

To illustrate the modularity issues, I present here a relatively realistic exam-
ple. Figure 4 depicts a simulator for two queues of jobs, containing large jobs
(size>10) and small jobs (size<11). The example is relevant in queueing the-
ory, where an optimal scheduling policy might separate the jobs in two queues,
according to some criteria. The role of the control is to make each producer/-
consumer periodically take a step in the simulation. I have modeled two FIFO
queues, two producers, two consumers and a control object. Each producer needs
a pointer to the end of each queue, for adding a new job, and a pointer to the
start of each queue, for initializing the start of the queue in case it becomes
empty. Each consumer has a pointer to the start of one queue because it con-
sumes the element that was introduced �rst in that queue. The control has a
pointer to each producer and to each consumer. The queues are shared by the
producers and consumers.

Fig. 4.

Now, let's say the system has to be modi�ed, by introducing two queues
for the small jobs and two queues for the large jobs, see right image of Figure
4. Ideally, the speci�cation of the control object should not change, since the
consumers and the producers have the same behavior as before: each producer
produces both large and small jobs and each consumer accesses only one kind



of job. I will show in this thesis that my methodology does not modify the
speci�cation of the control object, thus allowing one to make changes locally
without in�uencing other code, while (�rst-order) separation logic approaches
[18] will modify the speci�cation of the controller.

The code in Figures 5, 6 and 7 represents the example from Figure 4.

Now, let's imagine changing the code to re�ect the modi�cations in the right
image of Figure 4. The current separation logic approaches do not provide enough
modularity. Distefano and Parkinson [18] introduced jStar, an automatic ver-
i�cation tool based on separation logic aiming at programs written in Java.
Although they are able to verify various design patterns and they can de�ne
abstract predicates that hide the name of the �elds, they do not have a way of
hiding the aliasing. In all cases, they reveal which references point to the same
shared data, and this violates the information hiding principle. We present what
are the speci�cations needed to verify the code in Figure 4 using separation logic.

The predicate for the Producer class is Prod(this, ss, es, sl, el), where :

Prod(p, ss, es, sl, el) ≡ p.startSmallJobs→ ss ? p.endSmallJobs→ es ?

p.startLargeJobs→ sl ? p.endLargeJobs→ el.

The precondition for the produce() method is:

Prod(p, ss, es, sl, el) ? Listseg(ss, null, 0, 10) ? Listseg(sl, null, 11, 100).

The predicate for the Consumer class is

Cons(c, s) ≡ c→ s.

The precondition for the consume() method is:

Cons(c, s) ? Listseg(s, null, 0, 10).

The predicate for the Control class is :

Ctrl(ct, p1, p2, c1, c2) ≡ ct.prod1→ p1 ? ct.prod2→ p2 ?

ct.cons1→ c1 ? ct.cons2→ c2.

The precondition for makeActive() is:

Ctrl(this, p1, p2, c1, c2) ? Prod(p1, ss, es, sl, el) ? Prod(p2, ss, es, sl, el) ?

Cons(c1, sl) ? Cons(c2, ss) ? Listseg(ss, null, 0, 10) ? Listseg(sl, null, 11, 100).

The lack of modularity will manifest itself when we add the two queues as in
the right image of Figure 4.

The predicates Prod(p, ss, es, sl, el) and Ctrl(ct, p1, p2, c1, c2) do not change,
while the predicate Cons(c, s1, s2) changes to

Cons(c, s1, s2) ≡ c.startJobs1→ s1 ? c.startJobs2→ s2.

The precondition for the consume() method becomes:

Cons(c, s1, s2) ? Listseg(s1, null, 0, 10) ? Listseg(s2, null, 0, 10).

Although the behavior of the Consumer and Producer classes have not changed,
the precondition for makeActive() in class Control does change:

Ctrl(this, p1, p2, c1, c2) ? Prod(p1, ss1, es1, sl1, el1) ? Prod(p2, ss2, es2, sl2, el2) ?

Cons(c1, sl1, sl2) ? Cons(c2, ss1, ss2) ? Listseg(ss1, null, 0, 10) ?

Listseg(ss2, null, 0, 10) ? Listseg(sl1, null, 11, 100) ? Listseg(sl2, null, 11, 100)

The changes occur because the pointers to the job queues have been modi�ed
and the separation logic speci�cations have to re�ect the changes. This leads to
a loss of modularity.



public class Producer {

Link startSmallJobs,

startLargeJobs;

Link endSmallJobs,

endLargeJobs;

public Producer

(Link ss, Link sl,

Link es, Link el) {

startSmallJobs = ss;

startLargeJobs = sl;

...}

public void produce()

{ Random generator = new Random();

int r = generator.nextInt(101);

Link l = new Link(r, null);

if (r <= 10)

{ if (startSmallJobs == null)

{ startSmallJobs = l;

endSmallJobs = l;}

else

{endSmallJobs.next = l;

endSmallJobs= l;}

}

else

{ if (startLargeJobs == null)

{ startLargeJobs = l;

endLargeJobs = l;}

else

{endLargeJobs.next = l;

endLargeJobs = l;}

}

}

}

Fig. 5. Producer class

public class Consumer {

Link startJobs;

public Consumer(Link s) {

startJobs = s;

public void consume()

{ if (startJobs != null)

{System.out.println(startJobs.val);

startJobs = startJobs.next;}

}

Fig. 6. Consumer class

public class Control {

Producer prod1, prod2;

Consumer cons1, cons2;

public Control(Producer p1, Producer p2,

Consumer c1, Consumer c2) {

prod1 = p1; prod2 = p2;

cons1 = c1; cons2 = c2; }

public void makeActive( int i)

{ Random generator = new Random();

int r = generator.nextInt(4);

if (r == 0) {prod1.produce();}

else if (r == 1) {prod2.produce();}

else if (r == 2) {cons1.consume();}

else {cons2.consume();}

if (i > 0) { makeActive(i-1);}

}

}

Fig. 7. Control class



1.4 Proposed Approach

This thesis proposes a method for modular veri�cation of object-oriented code
in the presence of aliasing. Through the use of object propositions, I am able to
hide the shared data that two objects have in common. The implementations of
the two objects have a shared fractional permission [13] to access the common
data, but this need not be exposed in their external interface. My solution is
therefore more modular in some cases than the state of the art with respect
to hiding shared data, and furthermore shares strong technical similarities with
systems for which there is good automated tool support [10]. This thesis will
present a full implementation of the object propositions methodology.

2 This Thesis

The aim of this thesis is to enrich the world with a practical veri�cation tool
for object-oriented programs in single-threaded settings. The contributions will
be three-fold: the theory presenting the proof rules and the proof of soundness,
the implementation of the methodology in the form of an Eclipse plugin named
Oprop, and a user study showing the usefulness of the tool.

2.1 Thesis Statement

Object propositions, which statically characterize both the aliasing behavior
of program references in object-oriented programs and the abstract predicates
that hold about the objects, can be successfully used in single-threaded object-
oriented programs to write speci�cations and to prove that those speci�cations
are obeyed by the code.

2.2 Hypotheses

We can break the thesis statement down into more concrete and measurable
hypotheses.

Hypothesis:Formalization We can develop and formalize a system that will
guarantee that a single-threaded program including formal speci�cations obeys
those speci�cations. If the speci�cations are not respected, the proof system can
be used to signal which part of the speci�cations are being broken.

Validation This hypothesis is validated by the development and formaliza-
tion of my type system and dynamic semantics based on object propositions. I
have already proven that the type system is sound with respect to its seman-
tics. The soundness of the proof rules means that given a heap that satis�es the
precondition formula, a program that typechecks and veri�es according to my
proof rules will execute, and if it terminates, will result in a heap that satis�es
the postcondition formula.



Hypothesis:Practicality My veri�cation system can be used to verify scien-
ti�cally signi�cant object oriented programs.

Validation In order to validate this hypothesis, I will use the Eclipse plugin
that I will implement to verify 10 small and 2-4 more complex Java programs. I
will choose programs that include updates to shared data structures that have
multi-object invariants. The complex Java programs will represent more com-
plicated implementations, such as the composite pattern that has already been
veri�ed by hand with the help of my veri�cation system.

All programs have to be written such that their syntax matches the syntax
of programs that can be veri�ed using Oprop. I am going to incorporate as many
Java features as possible in the syntax of the object proposition methodology,
but I am not going to be able to incorporate all Java features.

The small programs that I am going to verify have to be scienti�cally sig-
ni�cant. This can be achieved in the following way: by �nding errors that are
common in practice and by writing programs that illustrate those errors. This
kind of common errors can be found by surveying Java forums on the Internet
and seeing what are the most common problems that developers post. My wish is
for Oprop to discover the errors that I am going to inject in the small programs.
We could go even further and look for more rare errors that developers post on
Internet forums. When these errors are reproduced in programs, my desire is for
Oprop to discover them.

An alternative route that is equally interesting is to take sample pieces of
code from well-known open source projects and verify them using Oprop. This
exercise would show how Oprop deals with real code and it would be an exciting
experiment.

Hypothesis:Usability My tool is usable by programmers and the speci�cations
lead to a better understanding of the aliasing patterns in the analyzed programs,
with the cost of small additional overhead represented by the burden of formal
speci�cations.

Validation I will evaluate this hypothesis through a user study. I will show
that developers successfully use my Eclipse plugin to �nd bugs in their programs.
Additionally, I will show that the speci�cations written using object propositions
facilitate the understanding of programs and of the aliasing patterns in those
programs. This will be especially important for developers who are not familiar
with the code beforehand.

3 Theoretical contributions of the thesis

The main theoretical contributions of my thesis are the following:

� A veri�cation methodology that uni�es substructural logic-based reason-
ing with invariant-based reasoning. Linear permissions (object propositions
where the fraction is equal to 1) permit reasoning similar to separation logic,
while fractional permissions (object propositions where the fraction is less



than 1) introduce non-linear invariant-based reasoning. Unlike prior work
[13], fractions do not restrict mutation of the shared data; instead, they
require that the speci�ed invariant be preserved.

� A proof of soundness in support of the system.
� Validation of the approach by specifying and proving partial correctness of
the composite pattern, demonstrating bene�ts in modularity and abstraction
compared to other solutions with the same code structure.

A big contribution of my work is related to modularity. My work is modular
to a class and it allows multiple objects that are part of the same data structure
to be modi�ed simultaneously.

Below I highlight the main di�erences in modularity compared to existing
approaches:

� like separation logic and permissions, but unlike conventional object invari-
ant and ownership-based work (including [31] and [32]), my system allows
�ownership transfer" by passing unique permissions around (permissions with
a fraction of 1).

� unlike separation logic and permission systems, but like object invariant
work and its extensions, I can modify objects without owning them. More
broadly, unlike either ownership or separation logic systems, in my system
object A can depend on a property of object B even when B is not owned
by A, and when A is not �visible" from B. This has information-hiding and
system-structuring bene�ts.

� unlike concurrency approaches, in our system shared data need not be guarded
by a lock

4 Description of proposed approach

My methodology uses abstract predicates [34] to characterise the state of an
object, embeds those predicates in a logical framework, and speci�es sharing
using fractional permissions [13].

My main technical contribution is the novel abstraction called object propo-
sition that combines predicates with aliasing information about objects. Object
propositions combine predicates on objects with aliasing information about the
objects (represented by fractional permissions). They are associated with ob-
ject references and declared by programmers as part of method pre- and post-
conditions. Through the use of object propositions, we are able to hide the shared
data that two objects have in common. The implementations of the two objects
use fractions to describe how to access the common data, but this common data
need not be exposed in their external interface. Our solution is therefore more
modular than the state of the art with respect to hiding shared data, and further-
more generalizes systems [10] for which there is good automated tool support.

My checking approach is modular and veri�es that implementations follow
their design intent. In my approach, method pre- and post-conditions are ex-
pressed using object propositions over the receiver and arguments of the method.



To verify the method, the abstract predicate in the object proposition for the
receiver object is interpreted as a concrete formula over the current values of
the receiver object's �elds (including for �elds of primitive type int). Following
Fähndrich and DeLine [19], our veri�cation system maintains a key for each �eld
of the receiver object, which is used to track the current values of those �elds
through the method. A key o.f → x represents read/write access to �eld f of
object o holding a value represented by the concrete value x. At the end of a
public method, we pack [16] the keys back into an object proposition and check
that object proposition against the method post-condition.

4.1 Examples with Object Propositions

Cells in a spreadsheet In Figure 9, I present the Java class from Figure 8 aug-
mented with predicates and object propositions, which are useful for reasoning
about the correctness of client code and about whether the implementation of a
method respects its speci�cation. Since they contain fractional permissions which
represent resources that have to be consumed upon usage, the object proposi-
tions are consumed upon usage and their duplication is forbidden. Therefore,
I use linear logic [21] to write the speci�cations. Pre- and post-conditions are
separated with a linear implication ( and use multiplicative conjunction (⊗),
additive disjunction (⊕) and existential/universal quanti�ers (where there is a
need to quantify over the parameters of the predicates).

Newly created objects have a fractional permission of 1, and their state can
be manipulated to satisfy di�erent predicates de�ned in the class. A fractional
permission of 1 can be split into two fractional permissions which are less than
1, see Figure 18. The programmer can specify an invariant that the object will
always satisfy in future execution. Di�erent references pointing to the same ob-
ject, will always be able to rely on that invariant when calling methods on the
object.

A critical part of my work is allowing clients to depend on a property of a
shared object. Other methodologies such as Boogie [7] allow a client to depend
only on properties of objects that it owns. My veri�cation technique also allows
a client to depend on properties of objects that it doesn't (exclusively) own.

To gain read or write access to the �elds of an object, we have to unpack
it [16]. After a method �nishes working with the �elds of a shared object (an
object for which we have a fractional permission, with a fraction less than 1),
our proof rules in Section 6 require us to ensure that the same predicate as
before the unpacking holds of that shared object. If the same predicate holds,
we are allowed to pack back the shared object to that predicate. Since for an
object with a fractional permission of 1 there is no risk of interferences, we
don't require packing to the same predicate for this kind of objects. We avoid
inconsistencies by allowing multiple object propositions to be unpacked at the
same time only if the objects are not aliased, or if the unpacked propositions
cover disjoint �elds of a single object.

Packing/unpacking [16] is a very important mechanism in my system. The
bene�ts of this mechanism are the following:



class Dependency {

Cell ce;

int input;

}

class Cell {

int in1, in2, out;

Dependency dep1, dep2;

void setInputDep(int newInput) {

if (dep1!=null) {

if (dep1.input == 1) dep1.ce.setInput1(newInput);

else dep1.ce.setInput2(newInput);

}

if (dep2!=null) {

if (dep2.input == 1) dep2.ce.setInput1(newInput);

else dep2.ce.setInput2(newInput);

}

}

void setInput1(int x) {

this.in1 = x;

this.out = this.in1 + this.in2;

this.setInputDep(out);

}

void setInput2(int x) {

this.in2 = x;

this.out = this.in1 + this.in2;

this.setInputDep(out);

}

}

Fig. 8. Cell class



class Dependency {

Cell ce;

int input;

predicate OKdep(int o) ≡ this.ce→ c⊗ this.input→ i⊗
∃k1, y1, y2 . c@k1 OK(y1, y2) ⊗ c@1 Input(y1, y2, i, o)

}

class Cell {

int in1, in2, out;

Dependency dep1, dep2;

predicate Input(int x1, int x2, int i, int x) ≡ (i = 1⊗ x1 = x)⊕ (i = 2⊗ x2 = x)

predicate OK() ≡ ∃x1, x2, o, d1, d2.this.in1→ x1⊗ this.in2→ x2 ⊗
this.out→ o⊗ this.dep1→ d1⊗ this.dep2→ d2⊗ x1 + x2 = o ⊗
d1@1 OKdep(o)⊗ d2@1 OKdep(o)

void setInputDep(int i, int newInput) {

if (dep1!=null) {

if (dep1.input == 1) dep1.ce.setInput1(newInput);

else dep1.ce.setInput2(newInput);

}

if (dep2!=null) {

if (dep2.input == 1) dep2.ce.setInput1(newInput);

else dep2.ce.setInput2(newInput);

}

}

void setInput1(int x)

∃k.(this@k OK() ( this@k OK())
{ this.in1 = x;

this.out = this.in1 + this.in2;

this.setInputDep(out);

}

void setInput2(int x)

∃k.(this@k OK() ( this@k OK())
{ this.in2 = x;

this.out = this.in1 + this.in2;

this.setInputDep(out);

}

}

Fig. 9. Cell class and OK predicate



� it achieves information hiding (e.g. like abstract predicates)
� it describes the valid states of the system (similar to visible states in invariant-
based approaches)

� it is a way to store resources in the heap. When a �eld key is put (packed) into
a predicate, it disappears and cannot be accessed again until it is unpacked

� it allows us to characterize the correctness of the system in a simple way
when everything is packed

Another central idea of my system is sharing using fractions less than 1. The
insights about sharing are the following:

� with a fractional permission of 1, no sharing is permitted. There is only
one of each abstract predicate asserted for each object at run time, and the
asserted abstract predicates have disjoint �elds.

� fractional permissions less than 1 enable sharing of particular abstract pred-
icates, but only one instance of a particular abstract predicate P on a par-
ticular object o can be unpacked at once. This ensures that �eld permissions
cannot be duplicated via shared permissions.

An important aspect of my system is the ability to allow predicates to depend
on each other. Intuitively, this allows �chopping up" an invariant into its modular
constituent parts.

Like other previous systems, my system uses abstraction, which allows clients
to treat method pre/post-conditions opaquely.

The predicate OK() in Figure 9 ensures that all the cells in the spreadsheet
are in a consistent state, where the sum of their inputs is equal to their out-
put. Since we only use a fractional permissions k1, k2 < 1 for the dependency
cells, it is possible for multiple predicates OK() to talk about the same cell
without exposing the sharing. More speci�cally, using object propositions we
only need to know a1@k OK() before calling a1.setInput1(10). Before calling
a2.setInput1(20) we only need to know a2@k OK(). Since inside the recursive
predicate OK() there are fractional permissions less than 1 that refer to the
dependency cells, we are allowed to share the cell a3 (which can depend on mul-
tiple cells). Thus, using object propositions we are not explicitly revealing the
shared cells in the structure of the spreadsheet.

Simulator for Queues of Jobs The code in Figures 11, 12 and 13 represents
the code from Figures 5, 6 and 7, augmented with predicates and object proposi-
tions. The predicates and the speci�cations of each class explain how the objects
and methods should be used and what is their expected behavior. For example,
the Producer object has access to the two queues, it expects the queues to be
shared with other objects, but also that the elements of one queue will stay in
the range [0,10], while the elements of the second queue will stay in the range
[11,100]. Predicate Range is de�ned in Figure 10.

When changing the code to re�ect the modi�cations in the right image of
Figure 4, the internal representation of the predicates changes, but their external



class Link {

int val;

Link next;

predicate Range(int x, int y) ≡ ∃v, o, k
val→ v ⊗ next→ o
⊗ v ≥ x ⊗ v ≤ y

⊗ [o@k Range(x, y) ⊕ o == null]

}

Fig. 10. Link class and Range predicate

semantics stays the same; the producers produce jobs and they direct them to
the appropriate queue, each consumer accesses only one kind of queue (either
the queue of small jobs or the queue of big jobs), and the controller is still the
manager of the system. The predicate BothInRange() of the Producer class is
exactly the same. The predicate ConsumeInRange(x,y) of the Consumer class
changes to
ConsumeInRange(x,y) ≡ startJobs1→ o1⊗ startJobs2→ o2

⊗∃k1.o1@k1 Range(x,y) ⊗∃k2.o2@k2 Range(x,y).
The predicate WorkingSystem() of the Control class does not change.
The local changes did not in�uence the speci�cation of the Control class,

thus conferring greater �exibility and modularity to the code.



public class Producer {

Link startSmallJobs,

startLargeJobs;

Link endSmallJobs,

endLargeJobs;

predicate BothInRange() ≡
∃o1, o2. startSmallJobs→ o1

⊗ startLargeJobs→ o2
⊗ ∃k1.o1@k1 Range(0,10)

⊗ ∃k2.o2@k2 Range(11,100)

public Producer

(Link ss, Link sl,

Link es, Link el) {

startSmallJobs = ss;

startLargeJobs = sl;

...}

public void produce()

∃ k.this@k BothInRange() (
∃ k.this@k BothInRange() {

Random generator = new Random();

int r = generator.nextInt(101);

Link l = new Link(r, null);

if (r <= 10)

{ if (startSmallJobs == null)

{ startSmallJobs = l;

endSmallJobs = l;}

else

{endSmallJobs.next = l;

endSmallJobs= l;}

}

else

{ if (startLargeJobs == null)

{ startLargeJobs = l;

endLargeJobs = l;}

else

{endLargeJobs.next = l;

endLargeJobs = l;}

}

}

}

Fig. 11. Producer class

public class Consumer {

Link startJobs;

predicate ConsumeInRange(int x, int y) ≡
startJobs→ o ⊗ ∃ k.o@k Range(x,y)

public Consumer(Link s) {

startJobs = s;

public void consume()

∀ x:int, y:int.

∃ k.this@k ConsumeInRange(x,y)

( ∃ k.this@k ConsumeInRange(x,y)

{ if (startJobs != null)

{System.out.println(startJobs.val);

startJobs = startJobs.next;}

}

Fig. 12. Consumer class

public class Control {

Producer prod1, prod2;

Consumer cons1, cons2;

predicate WorkingSystem() ≡
prod1→ o1⊗ prod2→ o2

⊗ cons1→ o3⊗ cons2 → o4
⊗ ∃k1.o1@k1 BothInRange()

⊗ ∃k2.o2@k2 in BothInRange()

⊗ ∃k3.o3@k3 in ConsumeInRange(0,10)

⊗ ∃k4.o4@k4 in ConsumeInRange(11,100)

public Control(Producer p1, Producer p2,

Consumer c1, Consumer c2) {

prod1 = p1; prod2 = p2;

cons1 = c1; cons2 = c2; }

public void makeActive( int i)

∃k.this@k WorkingSystem() (
∃k.this@k in WorkingSystem() {

Random generator = new Random();

int r = generator.nextInt(4);

if (r == 0) {prod1.produce();}

else if (r == 1) {prod2.produce();}

else if (r == 2) {cons1.consume();}

else {cons2.consume();}

if (i > 0) { makeActive(i-1);}

}

}

Fig. 13. Control class



4.2 Example: Simple Composite

The code for a very simple speci�cation of the composite pattern is given below.

class Composite {

Composite left, right, parent;

int count;

void setLeft(Composite l) {

l.parent=this;

this.left=l;

this.count=this.count+l.count+1;

}

void setRight(Composite r) {

r.parent=this;

this.right=r;

this.count=this.count+r.count+1;

}

}

Fig. 14. Composite class

The predicates for this class are given in Figure 15.
With the help of those predicates, the speci�cation of the method setLeft is

written as follows:
∃c1, c2.this@1 count(c1)⊗ l@1 count(c2) ( this@1 count(c1 + c2 + 1).
Below there is an example that can be veri�ed using separation logic, but

can also be veri�ed using object propositions.

...

{}
Composite a = new Composite();

{a@1 count(0)}
Composite b = new Composite();

{b@1 count(0)}
a.setLeft(b);

{a@1 count(1)⊗ b@1 count(0)}
a.setRight(c);

{a@1 count(2)⊗ b@1 count(0)⊗ c@1 count(0)}
...

As can be seen in the example above, all the fractional permissions are equal
to 1, meaning that there is no sharing of data in this example. Because the data



predicate count (int c) ≡ ∃ol, or, lc, rc. this.count→ c ⊗
c = lc+ rc+ 1 ⊗ this@1 left(ol, lc)

⊗ this@1 right(or, rc)

predicate left (Composite ol, int lc) ≡ this.left→ ol ⊗(
(ol 6= null ( ol@

1

2
count(lc))

⊕ (ol = null ( lc = 0)
)

predicate right (Composite or, int rc) ≡ this.right→ or ⊗(
(or 6= null ( or@

1

2
count(rc))

⊕ (or = null ( rc = 0)
)

Fig. 15. Predicates for Simple Composite

structure does not have sharing of data and there is no danger of exposing any
shared data, it is very suitable to veri�cation using separation logic. But it can
also be veri�ed using object propositions. The notion of a fractional permission
of 1 is incorporated in object propositions, which basically means that data is
not shared and can be changed only from one reference point.

5 Formal System

5.1 Grammar

The programming language that I are using is inspired by Featherweight Java
[22], extended to include object propositions. I retained only Java concepts rel-
evant to the core technical contribution of this paper, omiting features such as
inheritance, casting or dynamic dispatch that are important but are handled by
orthogonal techniques.

Below I show the syntax of my simple class-based object-oriented language.
In addition to the usual constructs, each class can de�ne one or more abstract
predicates Q in terms of concrete formulas R. Each method comes with pre and
post-condition formulas. Formulas include object propositions P , terms, prim-
itive binary predicates, conjunction, disjunction, keys, and quanti�cation. We
distinguish e�ectful expressions from simple terms, and assume the program is
in let-normal form. The pack and unpack expression forms are markers for when
packing and unpacking occurs in the proof system. References o and indirect
references l do not appear in source programs but are used in the dynamic se-



mantics, de�ned later. In the grammar, r represents a reference to an object and
i represents a reference to an integer.

Prog ::= ClDecl e

ClDecl ::= class C { FldDecl PredDecl MthDecl }

FldDecl ::= T f

PredDecl ::= predicate Q(T x) ≡ R

MthDecl ::= T m(T x) MthSpec { e; return e }

MthSpec ::= R ( R

R ::= P | R ⊗ R | R ⊕ R |
∃z.R | ∀z.R | r.f → x | t binop t

P ::= r@k Q(t) | unpacked(r@k Q(t))

k ::= n1
n2

(where n1, n2 ∈ N and 0 < n1 ≤ n2)

e ::= t | r.f | r.f = t | r.m(t) | newC(t) |
if (t) { e } else { e } | let x = e in e |
t binop t | t && t | t ‖ t | ! t |
pack r@k Q(t)in e | unpack r@k Q(t)in e

t ::= x | n | null | true | false

x ::= r | i
binop ::= + | − | % | = | ! = | ≤ | < | ≥ | >

T ::= C | int | boolean

In my system, I will assume that all the formulas R are in disjunctive normal
form. A formula R of my system is in disjunctive normal form if and only if it
is an additive disjunction of one or more multiplicative conjunctions of one or
more of the predicates P , t1 binop t2 , r.f → x , ∃z.P , ∀z.P.

5.2 Permission Splitting

In order to allow objects to be aliased, we must split a fraction of 1 into multiple
fractions less than 1 [13]. The fraction splitting rule is de�ned in Figure 18. An
invariant of the rules is that a fraction of 1 is never duplicated. We also allow
the inverse of splitting permissions: joining, where we de�ne the rules in Figure
19.

6 Proof Rules

This section describes the proof rules that can be used to verify correctness
properties of code. The judgement to check an expression e is of the form Γ ;Π `
e : ∃x.T ;R. This is read �in valid context Γ and linear context Π, an expression
e executed has type T with postcondition formula R�.This judgement is within
a receiver class C, which is mentioned when necessary in the assumptions of the
rules. By writing ∃x, we bind the variable x to the result of the expression e
in the postcondition. Γ gives the types of variables and references, while Π is a
pre-condition in disjunctive normal form. Π should be just as general as R.

type context Γ ::= · | Γ, x : T
linear context Π ::=

⊕n
i=1Πi

Πi ::= · | Πi ⊗ P | Πi ⊗ t1 binop t2 |
Πi ⊗ r.f → x | ∃z.P | ∀z.P



The static proof rules also contain the following judgements: Γ ` r : C,
Γ ;Π ` R and Γ ;Π ` r.T ;R. The judgement Γ ` r : C means that in valid type
context Γ , the reference r has type C. The judgement Γ ;Π ` R means that from
valid type context Γ and linear context Π we can deduce that object proposition
R holds. The judgement Γ ;Π ` r.T ;R means that from valid type context Γ
and linear context Π we can deduce that reference r has type T and object
proposition R is true about r. The ⊗ linear logic operator is symmetric. Thus
in the rules for adding fractions, we can have a rule symmetric to (Add2) that
adds the fraction of a packed object propositions to the fraction of an unpacked
object proposition.

Additionally in 16 I present a deductive rule for the principle that if we have
two permissions with the same name to the same object, then their arguments
must be equal. In 17 I present a rule that is needed for reasoning by contradiction.
Both these rules are used in the proof of the Composite pattern that I present
in section 10.

r@k Q(t1) r@k Q(t2)

t1 = t2
(SameArgs)

Fig. 16. Rule for predicates with same arguments

Q(t) (!Q(t))

false
(Contr1)

r@k1 Q(t1) r@k2 Q(t1) k1 + k2 > 1

false
(Contr2)

Fig. 17. Rules for reasoning about contradiction

Before presenting the detailed rules, I provide the intuition for why my sys-
tem is sound (the formal soundness theorem is given below, and proved in the
supplemental material). The �rst invariant enforced by my system is that there
will never be two con�icting object propositions to the same object. The fraction
splitting rule can give rise to only one of two situations, for a particular object:
there exists a reference to the object with a fraction of 1, or all the references to
this object have fractions less than 1. For the �rst case, sound reasoning is easy
because aliasing is prohibited.

The second case, concerning fractional permissions less than 1, follows an
inductive argument. The argument is based on the property that the invariant
of a shared object (one can think of an object with a fraction less than 1 as



k ∈ (0, 1]

r@k Q(t) ` r@ k
2
Q(t)⊗ r@ k

2
Q(t)

(Split)

Fig. 18. Rule for splitting fractions

ε ∈ (0, 1) k ∈ (0, 1] ε < k

r@ε Q(t1)⊗ r@(k − ε) Q(t2) ` r@k Q(t1)
(Add1)

ε ∈ (0, 1) k ∈ (0, 1] ε < k

unpacked(r@ε Q(t1))⊗ r@(k − ε) Q(t2) `
unpacked(r@k Q(t1))

(Add2)

Fig. 19. Rules for adding fractions

being shared) always holds whenever that object is packed. The base case in
the induction occurs when an object with a fraction of 1, whose invariant holds,
�rst becomes shared. In order to access an object, we must �rst unpack it; by
induction, we can assume its invariant holds as long as the object is packed. But
we know the object is packed immediately before the unpack operation, because
the rules of my system ensure that a given predicate over a particular object
can only be unpacked once; therefore, we know the object's invariant holds.
Assignments to the object's �elds may later violate the invariant, but in order
to pack the object back up we must restore its invariant. For a shared object,
packing must restore the same invariant the object had when it was unpacked;
thus the invariant of an object never changes once that object is shared, avoiding
inconsistencies between aliases to the object. (Note that if at a later time we add
the fractions corresponding to that object and get a fraction of 1, we will be able
to change the predicates that hold of that object. But as long as the object is
shared, the invariant of that object must hold.) This completes the inductive case
for soundness of shared objects. All of the predicates we might infer will thus be
sound because we will never assume anything more about that object than the
predicate invariant, which should hold according to the above argument. In the
following paragraphs, we describe the proof rules while inlining the rules in the
text.

The rule Term below formalizes the standard logical judgement for existen-
tial introduction. The notation [e′/x]e substitutes e′ for occurrences of x in e.
The Field rule checks �eld accesses analogously.



Γ ` t : T Γ ;Π ` [t/x]R

Γ ;Π ` t : ∃x.T ;R Term

Γ ` r : C r.fi : T is a field of C
Π ` r.fi → ri Γ ;Π ` [ri/x]R

Γ ;Π ` r.fi : ∃x.T ;R
Field

New checks object construction. We get a key for each �eld and the remaining
linear context from which we consumed the keys.

fields(C) = T f Γ ` t : T

Γ ;Π ` new C(t) : ∃z.C; z.f → t⊗Π1

New

If introduces disjunctive types in the system and checks if -expressions. A cor-
responding ⊕ rule eliminates disjunctions in the pre-condition by verifying that
an expression checks under either disjunct.

Γ ; (Π ⊗ t = true) ` e1 : ∃x.T ;R1

Γ ` t : bool Γ ; (Π ⊗ t = false) ` e2 : ∃x.T ;R2

Γ ;Π ` if(t){e1}else{e2} : ∃x.T ;R1 ⊕R2
If

Let checks a let binding, extracting existentially bound variables and putting
them into the context (a limitation of my current system is that universal quan-
ti�cation is supported only in method speci�cations).

Γ ;Π ` e1 : ∃x.T1;R1 ⊗Π2

(Γ, x : T1); (R1 ⊗Π2) ` e2 : ∃w.T2;R2

Γ ;Π ` let x = e1 in e2 : ∃w.T2;R2
Let

Γ ;Π1 ` e : ∃x.T ;R1 Γ ;Π2 ` e : ∃x.T ;R2

Γ ; (Π1

⊕
Π2) ` e : ∃x.T ;R1 ⊕R2

⊕

The Call rule simply states what is the object proposition that holds about
the result of the method being called. This rule �rst identi�es the speci�cation of
the method (using the helper judgement Mtype) and then goes on to state the
object proposition holding for the result. The ` notation in the fourth premise
of the Call rule represents entailment in linear logic.

The reader might see that there are some concerns about the modularity of
the CALL rule: Π1 shouldn't contain unpacked predicates. Indeed, it is impor-
tant that the CALL rule tracks all shared predicates that are unpacked. It does
not track predicates that are packed, nor unpacked predicates that are unique.
The normal situation is that all shared predicates are packed, and any method
can be called in this situation. In the intended mode of use, we only make calls



with a shared unpacked predicate when traversing a data structure hand-over-
hand as in the Composite pattern, and we claim that modularity problems are
minimized in this situation. This does represent a limitation in our system, how-
ever, it is one that goes hand in hand with the advantage of supporting shared
predicates.

Γ ` r0 : C0 Γ ` t1 : T
Γ ;Π ` [r0/this][t1/x]R1 ⊗Π1

mtype(m,C0) = ∀x : T .∃result.Tr;R
′
1 ( R

R1 ` R′
1

Π1 cannot contain unpacked predicates

Γ ;Π ` r0.m(t1) : ∃ result.Tr; [r0/this][t1/x]R⊗Π1
Call

class C{...M...} ∈ CL
Tr m(Tx)R1 ( R {e1; return e2} ∈M

mtype(m,C) = ∀x : T .∃result.Tr;R1 ( R
Mtype

The rule Assign assigns an object t to a �eld fi and returns the old �eld
value as an existential x. For this rule to work, the current object this has to be
unpacked, thus giving us permission to modify the �elds.

Γ ;Π ` t1 : Ti; t1@k0 Q0(t0)⊗Π1

Γ ;Π1 ` r1.fi : Ti; r
′
i@k

′ Q′(t′)⊗Π2

Π2 ` r1.fi → r′i ⊗Π3

Γ ;Π ` r1.fi = t1 : ∃x.Ti;x@k
′ Q′(t′)⊗ t1@k0 Q0(t0)

⊗ r1.fi → t1 ⊗Π3

Assign

The rules for packing and unpacking are Pack1, Pack2, Unpack1 and Un-
pack2. When we pack an object to an predicate with a fraction less than 1,
we have to pack it to the same predicate that was true before the object was
unpacked. The restriction is not necessary for a predicate with a fraction of 1:
objects that are packed to this kind of predicate can be packed to a di�erent
predicate that the one that was true for them before unpacking.



Γ ;Π ` r : C; [t2/x]R2 ⊗Π1

predicate Q2(Tx) ≡ R2 ∈ C
Γ ; (Π1 ⊗ r@1 Q2(t2)) ` e : ∃x.T ;R

Γ ;Π ` pack r@1 Q2(t2) in e : ∃x.T ;R
Pack1

Γ ;Π ` r : C; [t1/x]R1 ⊗ unpacked(r@k Q(t1))⊗Π1

predicate Q(Tx) ≡ R1 ∈ C 0 < k < 1
Γ ; (Π1 ⊗ r@k Q(t1)) ` e : ∃x.T ;R

Γ ;Π ` pack r@k Q(t1) in e : ∃x.T ;R
Pack2

As mentioned earlier, we allow unpacking of multiple predicates, as long as the
objects don't alias. We also allow unpacking of multiple predicates of the same object,
because we have a single linear write permission to each �eld. There can't be any two
packed predicates containing write permissions to the same �eld. In the rules below we
assume that there is a class C that is �xed.

Γ ;Π ` r : C; r@1 Q(t1)⊗Π1

predicate Q(Tx) ≡ R1 ∈ C
Γ ; (Π1 ⊗ [t1/x]R1) ` e : ∃x.T ;R

Γ ;Π ` unpack r@1 Q(t1) in e : ∃x.T ;R
Unpack1

Γ ;Π ` r : C; r@k Q(t1)⊗Π1

predicate Q(Tx) ≡ R1 ∈ C 0 < k < 1
Γ ; (Π1 ⊗ [t1/x]R1 ⊗ unpacked(r@k Q(t1)) ` e : ∃x.T ;R
∀r′, t : ( unpacked(r′@k′ Q(t)) ∈ Π ⇒ Π ` r 6= r′)

Γ ;Π ` unpack r@k Q(t1) in e : ∃x.T ;R
Unpack2

I have also developed rules for the dynamic semantics, that are used in proving
the soundness of my system. The dynamic semantics rules can be found in the
technical report.



7 Implementation

7.1 Object Proposition Inference Algorithm

The proof rules presented in the section 6 are deterministic because at each point
in the program there is a unique rule that can be applied. The proof rules have
not been written in this deterministic form from the beginning. For example,
the rule Pack2 was �rst written as below:

Γ ;Π ` r : C; [t1/x]R1 ⊗ unpacked(r@k Q(t1))

predicate Q(Tx) ≡ R1 ∈ C 0 < k < 1
Γ ; (Π ′ ⊗ r@k Q(t1)) ` e : ∃x.T ;R

Γ ;Π ⊗Π ′ ` pack r@k Q(t1) in e : ∃x.T ;R
Pack2

The above rule is not deterministic because there is a context split that has to
be guessed. The tool Oprop would have to guess which part of the linear context
in the conclusion is Π and which part is Π ′. We have rewritten the Pack2 rule
to make it deterministic and to eliminate the need to split contexts. The current
form of the rule is:

Γ ;Π ` r : C; [t1/x]R1 ⊗ unpacked(r@k Q(t1))⊗Π1

predicate Q(Tx) ≡ R1 ∈ C 0 < k < 1
Γ ; (Π1 ⊗ r@k Q(t1)) ` e : ∃x.T ;R

Γ ;Π ` pack r@k Q(t1) in e : ∃x.T ;R
Pack2

In order to manage context splits, we have used resource management tech-
niques for linear proof search [14].These techniques add an additional output,
the �leftover� resources, to judgements. The idea of resource management is that
we can make context splits deterministic by sending all resources for proving the
�rst premise, then use the leftover resources to prove the second premise, then
use the leftover resources from the second premise to prove the third premise,
and so on.

Another source of non-determinism is that object propositions can be split
an arbitrary number of times and merged back together. The formal system
�guesses� exactly how a given permission inside of an object proposition has to be
split up and merged in order to satisfy di�erent object propositions (for example
in order to satisfy a pre-condition). For example, a fractional permission of 1 can
be split into two fractions 1

4 and 3
4 , or into two fractions of 1

2 . In this case, we
would have the following constraints C for the fractions k1 and k2: k1 + k2 = 1,
k1, k2 ∈ (0, 1). We track constraints C together with the current linear context
Π. The constraints accumulated during the veri�cation procedure allow us to



know everything about the permissions needed inside a piece of code. In order
to prove that a program is correct, we will have to prove that the constraints
are satis�able. As discussed in [9], Fourier-Motzkin elimination can be used to
check the satis�ability of the fractional constraints.

One �nal source of non-determinism comes from situations where multiple
proof rules for linear logic are applicable. For example, for proving the choice
P1 ⊕ P2 there are two linear logic rules that can be applied:

Γ ;Π ` P1

Γ ;Π ` P1 ⊕ P2
⊕L

Γ ;Π ` P2

Γ ;Π ` P1 ⊕ P2
⊕R

There are two options when multiple proof rules can be applied: we either can
use backtracking or we can use forward reasoning. Backtracking would mean
that we arbitrarily choose one of the applicable rules and if it turns out that the
chosen rule does not work, we roll back and try the other one.

In our setting, backtracking is not the best solution. We are trying to verify
an entire program. For doing this, we have to prove linear logic predicates for
every method call and object construction. Whenever such a proof does not
succeed, we would have to backtrack to the last call or construction site in the
program where we made a choice. Similarly to [9], our tool is going to implement
a data�ow analysis. Backtracking to the last call or construction site as part of a
data�ow analysis is di�cult because we would have to roll back the entire state
of the �ow analysis. Due to these reasons, we choose to carry all possible choices
forward.

8 The Oprop Eclipse Plugin

The tool that I am going to implement will be called Oprop and will be a plug-
in to the Eclipse IDE. The tool represents the implementation of the object
proposition system as a static data�ow analysis for Java. In the remainder of
this section I discuss practical details of the implementation and other existing
Java packages and plug-ins that are going to help with the implementation. The
Oprop tool will be able to verify the correctness of single-threaded programs.
The extension of Oprop into a tool that can verify multi-threaded programs is
left as future work.

In order to specify method pre- and post-conditions using object propositions,
developers will need to use annotations that can express linear logic concepts
and fractional permissions. A Java package needs to be implemented to express
the syntax of object propositions. The classes in that package will be used to
write object propositions such as those in Figure 9. Annotations will be the main
way in which developers interact with Oprop.

8.1 Eclipse

Eclipse [4] is a software development environment comprising an integrated de-
velopment environment (IDE) and an extensible plug-in system. Since Eclipse



provides the infrastructure to develop plug-ins that improve the standard Eclipse
capabilities, we are going to use Eclipse both to write the Oprop plugin and as
the target of our plug-in. We are going to use the following Eclipse component:
the Java AST.

Eclipse o�ers a parser, typechecker and abstract syntax tree (AST) for Java
source �les. This might help Oprop with the parsing, typechecking and repre-
senting of Java code, which could simplify my work. Oprop will only handle a
Java subset and I might not be able to use the Eclipse parser, but the Eclipse
parser could give me some insight into how to construct my own.

8.2 Implementation of Oprop

Abstract predicates can be used to express properties of �elds using integers, but
reasoning about integers is di�cult. We are going to employ a theorem prover
to prove properties about integers. Most probably, we are going to use the Z3
theorem prover [3].

Kevin Bierho� has implemented a tool called JavaSyp [1] that uses the SMT
solver Z3 to formally verify Java code. We initially wanted to modify JavaSyp
in order to implement Oprop, but that proved to be a di�cult task. There are
many details that are di�erent between JavaSyp and what Oprop needs to do:

� JavaSyp uses borrowing and capture/release because the tool does not im-
plement fractional permissions. Oprop does not use borrowing, but instead it
uses fractional permissions. Fractions give more precision than the borrowing
mechanism and we are going to implement fractional permissions.

� Oprop will implement the pack/unpack mechanism, while JavaSyp does not
implement this mechanism. JavaSyp implements instead �exposure blocks"
that show how �elds should be accessed. These features are closely related:
when the �elds of an object are unpacked (when the object proposition that
encapsulated them is unpacked), we can think of them as being �exposed".
In Bierho�'s system, there are �unique" and �immutable" exposure blocks.
Fields can be assigned inside unique exposure blocks, with �eld reads yield-
ing the �eld's original permission. Inside an immutable block, reading �elds
results in a weakened �eld permission. The technical di�erence is that in my
system I do not have immutable permissions, but instead one can always
write to the �elds of an object (in some cases, one has to make sure that the
invariant is preserved). I acknowledge that this is just an incidental di�erence
and the ideas of pack/unpack vs. exposure blocks are very similar.

� JavaSyp has class invariants, but Oprop will not have them and instead it
will have invariants for objects that are shared.

Our plan is to create a tool similar to JavaSyp that �rst translates the code
and speci�cations into an intermediary language (such as those used by Dafny
or Chalice, from the RiSE group at Microsoft Research [7]) and then use that
intermediary tool together with Z3 to obtain the �nal result.



9 Validation and Evaluation

We will evaluate the usefulness of the Oprop tool and of the object proposition
methodology by designing a user study where we observe how the Oprop plug-
in improves the e�ciency of programmers. We will also try to solve the open
problem Finalizers, that will be described below, using our methodology. We
have already made some contributions to the speci�cation and veri�cation of
the Composite pattern, and we will �nalize the veri�cation of the Composite
pattern.

9.1 User Study

The primary purpose of the user study is to see if programmers can use the
Oprop plugin to �nd errors in their code. A secondary purpose is to see if the
speci�cations help programmers that are not familiar with the code to better
understand the meaning of the code and the aliasing patterns. In this sense, one
could say that the speci�cations act like documentation.

The �rst step would be to teach the programmers how to use the object
proposition methodology. This would be done in a two hour seminar. Next,
we would present the programmers with multiple programs that contain errors.
We would observe how the programmers use Oprop and take notes about their
experience using Oprop.

Additionally, we would show to a �rst set of developers some new programs
(that the developers have not seen before) that do not contain any annotations
and see how well they understand the meaning of the programs. Next, we would
show to a second set of developers the same programs to which we add the object
propositions annotations. We would see how well the second set of programmers
understand the programs and if the annotations facilitate the understanding of
code. Additionally, we could also use one set of programmers and instruct them to
think aloud in order to see if they are using the object propositions annotations.
The challenge is to �nd sets of programmers that have similar knowledge and
skills, so that we can compare the �ndings from the di�erent sets. We believe
that we can �nd such sets of programmers.

9.2 Finalizers

This open problem was presented in [29] and I restate it here.

�Finalizers are special methods that are invoked by the runtime system be-
fore an unreachable object is de-allocated. Their purpose is mainly to free system
resources. For instance, the �nalize method in Figure 20 closes the �les used by
its receiver object. Since the runtime environment of languages like Java and C#
may invoke the garbage collector in any execution state, programs have no con-
trol over the execution of �nalizers. This leads to two problems for veri�cation.



import java.io.*;

public class TempStorage {

private /*@ nullable @*/ FileReader tempFile;

private /*@ nullable @*/ FileWriter logFile;

//@ private invariant tempFile != null && logFile != null;

public TempStorage() throws IOException {

tempFile = new FileReader("/tmp/dummy");

logFile = new FileWriter("/tmp/log");

}

protected void finalize() throws Throwable {

super.finalize();

logFile.write("Bye bye");

logFile.close();

tempFile.close();

}

}

Fig. 20. The �nalize method closes the �les used by the receiver object. Although
non-null is the default in JML, we include, for emphasis, a declaration that makes this
invariant explicit.

�First, a �nalizer might be invoked in a state in which certain object invariants
do not hold. In our example, the constructor of TempStorage throws an exception
if opening the �les fails. In this case, the object is never fully initialized and thus
its invariant does not hold. However, the �nalizer of TempStorage relies on the
object invariant and, therefore, will abort with a null-pointer exception when
a partly-initialized object is destroyed. A veri�cation technique can prevent an
application program from calling a method on a partly-initialized object, for
instance, by making explicit which object invariant may be assumed to hold.
However, �nalizers are called by the runtime system and, therefore, cannot be
controlled.

�Second, like any other method, a �nalizer potentially modi�es the heap.
Since �nalizers might be called in any execution state, a veri�cation technique
has to deal with spontaneous heap changes, which is even worse than the heap
changes caused by static initializers.

�Dealing with these problems is an open challenge: to develop a veri�cation
technique for �nalizers. A solution to this challenge is necessary to guarantee
that veri�cation is not unsound for programs containing �nalizers.�

We think that we can provide a solution to the Finalizers open problem by
using the object proposition methodology.

First, we could use object propositions to make sure that the required in-
variant holds for the object manipulated by the �nalizer. A problem could be
that Oprop will statically verify the correctness of programs, while any property
that a �nalizer requires has to be checked at runtime. We can go around this



inconvenience by asserting the �nalizer precondition after every statement of the
program. This will statically simulate the fact that the �nalizer can be called at
runtime at any point in the program that we want to verify.

A second possible solution stems from the fact that a �nalizer is invoked by
the runtime system before an unreachable object is de-allocated. Unlike destruc-
tors, �nalizers are usually not deterministic [2]. A destructor is run when the
program explicitly frees an object. In contrast, a �nalizer is executed when the
internal garbage collection system frees the object. Depending on the garbage
collection method used, this may happen at an arbitrary moment after the object
is freed, possibly never. Since the garbage collector frees an object when that
object is not reachable anymore, we could do the following: for every object,
we determine through a static analysis when that object may not be reachable
anymore. This analysis might be imprecise in the following two ways: either an
object is not reachable but the analysis reports that it is reachable, or the object
is reachable but the analysis states that it is not reachable. The latter case will
only increase the number of points in the program where the �nalizer might
potentially be called. The �rst case however will make the approach unsound
because it will not check that the �nalizer holds in all points where it should.
Thus the requirement is that the static analysis has to be sound and it �nds
out when an object is not reachable. Only at that point the garbage collector
will free the object and the �nalizer will be called. Hence only at that point the
pre-condition of the �nalizer has to hold for the object that is being freed.

The �nalizer will also have its pre-condition written using object propositions
and we could verify that the pre-condition is satis�ed every time the �nalizer
is called. The object propositions that appear in the pre-condition depend very
much on the body of the �nalizer method. For example, the pre-condition of the
�nalizer in class TempStorage from Figure 20 could ensure that this object has
both �elds tempFile and logF ile properly initialized.

According to [29] �Concerning the second problem, it seems necessary to
allow a �nalizer to modify only those objects and system resources that are
exclusively used by the object that is being destroyed. In particular, �nalizers
must not modify global state such as static �elds. Techniques such as ownership
type systems may be useful for reasoning about the sharing of objects. However,
it is unclear how to guarantee that certain system resources are not shared, for
instance, how to prevent two objects from creating handlers for the same �le.�

We can use fractional permissions to make sure that the �nalizer only modi�es
objects that are exclusively used by the object that is being destroyed. When
a �nalizer is called on an object, it means that the main program does not
have a permission to that object anymore (or it has a permission of the kind
∃k.obj@k pred(), but this permission is not usable). Thus the �nalizer should
only be allowed to modify objects to which the main program has no more
permissions.

In the special case when there is a circular data structure such as a circular
linked list, there will be permissions between the linked cells of the list, but
there should be no permissions to the cells of the list from the outside. When



analyzing the permissions, it could happen that we erroneously state that there
are permissions to the cells of the list and do not acknowledge that these per-
missions come from the other cells. One way to solve this problem is to pay
special attention when we have a circular data structure and make sure that the
only permissions that still exist to the data structure come from within it and
not from the encompasing code. This is the condition that has to hold for any
object that the �nalizer modi�es. Keeping track of the fractional permissions in
the program is possible with the object proposition methodology.

The risk of tackling the veri�cation of �nalizers is that we might not be able
to write pre-conditions accurate enough for the �nalizer. Thus the �nalizer would
potentially be called in a moment when although the pre-condition holds, the
pre-condition is not enough to ensure the well-formedness of the objects in the
program. We will be able to asses this risk better once we write the speci�cations
and analyze some programs involving �nalizers.

10 Composite

The Composite design pattern [20] expresses the fact that clients treat individ-
ual objects and compositions of objects uniformly. Verifying implementations of
the Composite pattern is challenging, especially when the invariants of objects
in the tree depend on each other [29], and when interior nodes of the tree can
be modi�ed by external clients, without going through the root. As a result,
verifying the Composite pattern is a well-known challenge problem, with some
attempted solutions presented at SAVCBS 2008 (e.g. [11, 24]). We describe a
new formalization and proof of the Composite pattern using fractions and ob-
ject propositions that provides more local reasoning than prior solutions. For
example, in Jacobs et al. [24] a global description of the precise shape of the
entire Composite tree must be explicitly manipulated by clients; in our solution
a client simply has a fraction to the node in the tree it is dealing with.

We solve a practical problem that has been a challenge problem so far: the
speci�cation and veri�cation of an instance of the composite pattern. As a down-
side, the speci�cation of the composite is verbose� we have four predicates that
are recursive and depend on each other. The source of this verbosity comes
from the the fact that the composite example itself is complicated and thus
necessitates a complicated speci�cation and veri�cation. Our speci�cation and
veri�cation of the composite pattern allows clients to directly mutate any place
in the tree, using predicates that reason about one object in the composite at
a time and treat other objects in the composite abstractly. Note that a simpler
speci�cation is possible in our system but would limit mutation to the root of
the tree.

We implement a popular version of the Composite design pattern, as an
acyclic binary tree, where each Composite has a reference to its left and right
children and to its parent. The code is given below.

c l a s s Composite {
p r i va t e Composite l e f t , r i ght , parent ;



pr i va t e i n t count ;

pub l i c Composite
{
t h i s . count = 1 ;
t h i s . l e f t = nu l l ;
t h i s . r i g h t = nu l l ;
t h i s . parent = nu l l ;

}

p r i va t e void updateCountRec ( )
{
i f ( t h i s . parent != nu l l )

t h i s . updateCount ( ) ;
t h i s . parent . updateCountRec ( ) ;

e l s e
t h i s . updateCount ( ) ;

}

p r i va t e void updateCount ( )
{
i n t newc = 1 ;
i f ( t h i s . l e f t == nu l l )
e l s e
newc = newc + l e f t . count ;

i f ( t h i s . r i g h t == nu l l )
e l s e
newc = newc + r i gh t . count ;

t h i s . count = newc ;
}

pub l i c void s e tL e f t ( Composite l )
{
l . parent = th i s ;
t h i s . l e f t = l ;
t h i s . updateCountRec ( ) ;

}

pub l i c void setRight ( Composite r )
{
r . parent = th i s ;
t h i s . r i g h t = r ;
t h i s . updateCountRec ( ) ;

}
}



Each Composite caches the size of its subtrees in a count �eld, so that a par-
ent's count depends on its children's count. The dependency is in fact recursive,
as the parent and right/left child pointers must be consistent. Clients can add
a new subtree at any time, to any free position (where the current reference is
null). This operation changes the count of all ancestors, which is done through a
noti�cation protocol. The pattern of circular dependencies and the noti�cation
mechanism are hard to capture with veri�cation approaches based on ownership
or uniqueness.

We assume that the noti�cation terminates (that the tree has no cycles) and
we verify that the Composite tree is well-formed: parent and child pointers line
up and counts are consistent.

Previously the Composite pattern has been veri�ed with a related approach
based on access permissions and typestate [11]. This veri�cation abstracted
counts to an even/odd typestate and relied on non-formalized extensions of a
formal system, whereas we have formalized the proof system and provide a full
proof in the supplemental material. Our veri�cation proves partial correctness
of this version of the Composite pattern.

10.1 Speci�cation

A Composite tree is well-formed if the �eld count of each node n contains the
number of nodes of the tree rooted in n. A node of the Composite tree is a leaf
when the left and right �elds are null.

The goals of the speci�cation are to allow clients to add a child to any node of
the tree that has no left (or right) child. Since the count �eld of a node depends
on the count �elds of its children nodes, inserting a child must not violate the
transitive parents' invariants.

We use the following methodology for veri�cation: each node has a fractional
permission to its children, and each child has a fractional permission to its parent.
We allow unpacking of multiple object propositions as long as they satisfy the
heap invariant: if two object propositions are unpacked and they refer to the
same object then we require that they do not have �elds in common.(Note that
the invariant needs to hold irrespective of whether the object propositions are
packed or unpacked.)

The predicates of the Composite class are presented in Figure 21.

The predicate count has a parameter c, which is an integer representing the
value at the count �eld. There are two existentially quanti�ed variables lc and
rc, for the count �elds of the left child lc and the right child rc. By c = lc+rc+1
we make sure that the count of this is equal to the sum of the counts for the
children plus 1. By this@ 1

2 left(ol, lc) ⊗ this@ 1
2 right(or, rc) we connect lc to

the left child (through the left predicate) and rc to the right child (through the
right predicate).

The predicate left expresses that the predicate count(lc) holds for this.left,
the left child of this. The predicate right expresses that the predicate count(rc)
holds for this.right, the right child of this. The permission for the left (right)



predicate count (int c) ≡ ∃ol, or, lc, rc. this.count→ c ⊗

c = lc+ rc+ 1 ⊗ this@
1

2
left(ol, lc)

⊗ this@1

2
right(or, rc)

predicate left (Composite ol, int lc) ≡ this.left→ ol ⊗(
(ol 6= null ( ol@

1

2
count(lc))

⊕ (ol = null ( lc = 0)
)

predicate right (Composite or, int rc) ≡ this.right→ or ⊗(
(or 6= null ( or@

1

2
count(rc))

⊕ (or = null ( rc = 0)
)

predicate parent () ≡ ∃op, c, k <
1

2
. this.parent→ op ⊗

op 6= this ⊗ this@
1

2
count(c) ⊗((

op 6= null ( op@k parent() ⊗

(op@
1

2
left(this, c)

⊕ op@
1

2
right(this, c))

)
⊕

(op = null ( this@
1

2
count(c))

)
Fig. 21. Predicates for Composite



predicate is split in equal fractions between the count predicate and the left
(right) child's parent predicate.

Inside the parent predicate of this, there is a fractional permission to the
count predicate (and implicitly to its count �eld) of this. The parent predicate
contains only a fraction of k < 1

2 to the parent of this so that any clients can
use the remaining fraction to reference the node and add children to the parent.
A client can actually use this to update the parent �eld, but in order to pack
the parent predicate, the client has to conform to the well-formedness condition
mentioned earlier.

If a new node is added to the tree as the left child of this, we need to change
the count �eld of this. The �eld left of this must be null and the permission
with a half fraction has to be acquired by unpacking the count predicate of
this. This requires us to unpack the parent's left predicate, which requires the
parent's count predicate, and so on to the root node. We can only pack it back
when the tree is in a well-formed state. As the noti�cation algorithm goes up the
tree, from the current node to the root, we successively unpack the predicates
corresponding to each node and we pack them back when the tree is well-formed.
This ensures that if a new node is added, in order to pack the predicates again,
the count �elds must be updated and consistent!

The proof of partial correctness of the Composite pattern is presented in the
supplemental material. The proof is currently done by hand.

The complete speci�cation for each method is given below:

c l a s s Composite {
p r i va t e Composite l e f t , r i ght , parent ;
p r i va t e i n t count ;

pub l i c Composite
( this@half parent() ⊗
this@half left(null, 0) ⊗ this@half right(null, 0)

{ . . . }

p r i va t e void updateCountRec ( )
∃ k1. (unpacked(this@ k1 parent()) ⊗
∃ opp, lcc, k<half.unpacked(this@half count(lcc))
⊗this.parent → opp ⊗ opp 6= this ⊗((

opp 6= null ( opp@k parent() ⊗
(opp@half left(this, lcc) ⊕ opp@half right(this, lcc))

)
⊕

(opp = null ( this@half count(lcc))
)
⊗

∃ ol, lc, or, rc, lcc'. this.count → lcc ⊗ lcc' = lc + rc + 1 ⊗
this@half left(ol, lc) ⊗ this@half right(or, rc)
( this@k1 parent())

{ . . . }

p r i va t e void updateCount ( )



∃ c, c1, c2, nc. unpacked(this@1 count(c)) ⊗
this.count → c ⊗ c = c1 + c2 + 1 ⊗
∃ ol, lc, or, rc. this@half left(ol, lc) ⊗
this@half right(or, rc) ⊗
∃ k1. unpacked(this@k1 parent())
( this@1 count(nc) ⊗
nc = lc + rc + 1 ⊗ ∃ k. unpacked(this@k parent())

{ . . . }

pub l i c void s e tL e f t ( Composite l )
this 6= l ⊗
∃k2.(∃ k1.this@k1 parent() ⊗ l@k2 parent() ⊗
this@half left(null, 0) (
∃ k.this@k parent() ⊗ l@k2 parent())

{ . . . }
}

The constructor of the class Composite returns half of the permission for the
left and right predicate, and half of a permission to the parent predicate.

The method updateCountRec() takes in a fraction of k1 to the unpacked
parent predicate and a half fraction to the unpacked count predicate of this,
and it returns the k1 fraction to the packed parent predicate. This means that
after calling this method, the parent predicate holds for this.

In the same way, the method updateCount takes in the unpacked predicate
count for this object and it returns the count predicate packed for this. Thus,
after calling updateCount(), the object this satis�es its count predicate.

The method setLeft(Composite l) takes in a fraction to the parent predicate
of this, a fraction to the parent predicate of l and the left predicate of this with
a null argument (saying that the left �eld of this is null and thus a client can
attach a new left child here). The post-condition shows that after calling setLeft,
some of the permission to the parent predicate of this has been consumed, while
the fraction to the predicate parent of l stays the same.

11 Related Work

There are two main lines of research that give partial solutions for the veri�cation
of object-oriented code in the presence of aliasing: the permission-based work and
the separation logic approaches.

Bierho� and Aldrich [10] developed access permissions, an abstraction that
combines typestate and object aliasing information. Developers use access per-
missions to express the design intent of their protocols in annotations on methods
and classes. Our work is a generalization of their work, as we use object propo-
sitions to modularly check that implementations follow their design intent. The
typestate [16] formulation has certain limits of expressiveness: it is only suited
to �nite state abstractions. This makes it unsuitable for describing �elds that
contain integers and can take an in�nite number of values and can satisfy various



arithmetical properties. Our object propositions have the advantage that they
can express predicates over an in�nite domain, such as the integers.

Access permissions allow predicate changes even if objects are aliased in un-
known ways. States and fractions [13] capture alias types, borrowing, adoption,
and focus with a single mechanism. In Boyland's work, a fractional permission
means immutability (instead of sharing) to ensure non-interference of permis-
sions. We use fractions to keep object propositions consistent but track, split,
and join fractions in the same way as Boyland. Similary, in [12] the fractional
permissions are treated as in Boyland's work: when a fraction is 1, then there
is write access, but when a fraction is less than 1, one can only read from the
shared resource. This is very di�erent from our work because we allow multiple
clients to write to a common resource even if the fractional permission is less
than 1. The trick is that those clients can only write to the resource if they
maintain an invariant on the resource.

Boogie [7] is a modular reusable veri�er for Spec# programs. It provides
design-time feedback and generates veri�cation conditions to be passed to an
automatic theorem prover. While Boogie allows a client to depend on properties
of objects that it owns, we allow a client to depend on properties of objects that
it doesn't own, too.

Krishnaswami et al. [27] show how to modularly verify programs written
using dynamically-generated bidirectional dependency information. They intro-
duce a rami�cation operator in higher-order separation logic that explains how
local changes alter the knowledge of the rest of the heap. Their solution is ap-
plication speci�c, as they need to �nd a version of the frame rule speci�cally for
their library. Our methodology is a general one that can potentially be used for
verifying any object-oriented program.

Nanevski et al. [33] developed Hoare Type Theory (HTT), which combines
a dependently typed, higher-order language with stateful computations. While
HTT o�ers a semantic framework for elaborating more practical external lan-
guages, our work targets Java-like languages and does not have the complexity
overhead of higher-order logic.

Summers and Drossopoulou [38] introduce Considerate Reasoning, an invariant-
based veri�cation technique adopting a relaxed visible-state semantics. Consid-
erate Reasoning allows distinguished invariants to be broken in the initial states
of method executions, provided that the methods re-establish the invariant in
the �nal state. The authors demonstrate Considerate Reasoning based on the
Composite pattern and provide the encoding of their technique in the Boogie
intermediate veri�cation language [7], facilitating the automatic veri�cation of
the Composite pattern speci�cation. Despite the fundamental di�erences in un-
derlying methodology (visble-state invariants vs. abstract predicates) and logic
between Considerate Reasoning and our approach, there are interesting analo-
gies in the speci�cation of the Composite pattern. For instance, the method that
triggers the bottom-up traversal of the Composite to update a composite's count
�eld in the Considerate Reasoning speci�cation does not expect the composite



invariant in the method's initial state. This is similar to our method update-
CountRec() which requires the predicates parent and count to be unpacked.

Cohen et al. [15] use locally checked invariants to verify concurrent C pro-
grams. In their approach, each object has an invariant, a unique owner and they
use handles (read permissions) to accommodate shared objects. The disadvan-
tage is their high annotation overhead and the need to introduce ghost �elds.
We do not have to change the code in order to verify our speci�cations.

Our work uses abstract predicates, similar to the work of Parkinson and Bier-
man [34] and Dinsdale-Young et al. [17]. The abstraction makes it easy to change
the internal representation of a predicate without modifying the client's external
view of it. The main mechanism is still separation logic, with its shortcomings.
Unlike separation logic, we permit sharing of predicates with an invariant-based
methodology. This avoids non-local characterizations of the heap structure, as
required (for example) in Bart Jacob's Composition pattern solution [24].

There exist a set of veri�cation methodologies for object-oriented programs
in a concurrent setting: [17, 23, 30, 26]. These approaches can express externally
imposed invariants on shared objects, but only for invariants that are associated
with the lock protecting that object. In many cases, it may be inappropriate
to associate such an invariant with the lock: for example, in a singlethreaded
setting, there is no such lock. Even in multithreaded settings, a high level lock
may protect a data structure with internal sharing, in which case specifying that
sharing in the lock would break the modularity of the data structure. Thus, these
systems do not provide an adequate solution to the modular veri�cation problem
we consider.

12 Future Work

There are two lines of work that would lead to the improvement of Oprop.

First, the features of the target language can be augmented. Now, the target
language that is being veri�ed using the object proposition technology is a vari-
ant of Featherweight Java. In order for Oprop to become a tool used in industry,
the target language would have to be as close to Java as possible. During the
implementation of Oprop, I will add enough features in order to be able to verify
more practical examples of programs. After the completion of this thesis, I want
other contributors to be able to add features to the target language. For this
to happen, I will construct Oprop so that it is easy to add new features to the
target language. I will also write a thorough documentation for Oprop and write
comments in the code of the tool.

Second, this work can be extended for multi-threaded programs. Oprop can
only verify single-threaded programs, but I hope that it will be a starting point
for writing a tool that veri�es multi-threaded Java programs.



13 Research Plan

Below is an estimated time-line for the completion of my thesis work. This time-
line begins after my thesis proposal talk. The total estimated time is 18 months.

6 months Implementation of Oprop
6 months Running the user study and solving the Finalizers problem
6 months Writing and defense

14 Conclusion

In conclusion, I propose a veri�cation system that is used for single-threaded
object-oriented programs. The object proposition methodology uses abstract
predicates and fractional permissions. Developers will interact with the Oprop
plug-in that implements the object proposition methodology by writing annota-
tions.

I hope that by using Oprop, developers will be more e�cient in writing correct
programs.
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