
The Modularity of Object Propositions

Ligia Nistor
School of Computer Science, Carnegie Mellon University, USA

lnistor@cs.cmu.edu

Abstract
A significant concern in verification research is the ability to rea-
son modularly about programs with state. Recent work has used
substructural logics including separation logic, permissions, and
Hoare Type Theory to specify each function in terms of its effect
on its footprint. The motivation of our work is the need for for-
mal specifications that allow one to hide shared data between two
abstractions. In 2014, we proposed object propositions [1] as an
automatable extension to abstract predicates. We allow state to be
shared between two objects, by providing fractional permissions to
access the common data hidden in a predicate, without revealing
this sharing in the objects’ specifications. Unlike conventional ob-
ject invariant and ownership-based work, our system allows own-
ership transfer by passing unique permissions (permissions with a
fraction of 1) from one reference to another. Unlike separation logic
and permission systems, we can modify objects without owning
them. This has information-hiding and system-structuring benefits.

Categories and Subject Descriptors D.2.4 [Software/Program
verification]

Keywords Object propositions, modularity, observer pattern

1. The Theory of Object Propositions
Object propositions combine predicates on objects with aliasing
information about the objects, represented by fractional permis-
sions. They are declared by programmers as part of method pre- and
post-conditions. An object proposition looks like obj@k Pred(x),
where obj is a reference to an object, k is a fraction represent-
ing how much of a permission obj has to the abstract predicate
Pred(x) that obj satisfies. A critical part of our work is allowing
clients to depend on a property of a shared object. To gain read or
write access to the fields of an object, we have to unpack it. After a
method finishes working with the fields of a shared object , we pack
back the shared object to that predicate (or to another predicate if
we had a fraction of 1 to it).

2. Using Separation Logic for Verification
We explore the modularity of our system by analyzing an example,
where our specifications do not expose the shared information. We
consider the example of a spreadsheet in which each cell contains
a formula that adds two integer inputs. Each cell may point to two

other cells. Whenever the user changes a cell, each of the two cells
which transitively depend upon it must be updated (an instance of
the observer pattern).

Let us assume we have two cells a1 and a2 at the top of the
spreadsheet, a1 points to a4 and a3, while a2 points to a3 and a5.
Finally a3 points to (and uses its additive output as one of the inputs
to) a6. Let us say we have a method setInput1(x) that sets the
first input of a cell (one of the two inputs of a cell).

In conventional first-order separation logic, the specification of
any method has to describe the entire footprint of the method (all
heap locations that we read/write to inside the method). The verifi-
cation using separation logic is as follows. We define the predicate
SepOK(cell) to state that the sum of the two inputs of cell is
equal to the output, and that the predicate SepOK is verified by all
the cells that directly depend on the output of the current cell. In
separation logic, the natural pre- and post-conditions of the method
setInput1() are both SepOK(this), i.e., the method takes in a
cell that is in a consistent state in the spreadsheet and returns a cell
with the input changed, but that is still in a consistent state. Before
calling setInput1(x) on a2, we have to combine SepOK(a3) *
SepOK(a5) into SepOK(a2) (where * is the separating conjunction
of separation logic). We observe the following problem: in order
to call setInput1() on a2, we have to take out SepOK(a3) and
combine it with SepOK(a5), to obtain SepOK(a2). But the specifi-
cation of the method is not expressive enough to allow it, hence the
problem in conventional separation logic. Because the shared cells
a3 and a6 have to be mentioned in the specification of all methods
that modify the cells a1 and a2, the specification in separation logic
exposes some of the shared data.

3. Using Object Propositions for Verification
We verified the same example using object propositions and the
predicate OK(), which uses fractions to ensure that all the cells in
the spreadsheet are in a consistent state, where the sum of their
inputs is equal to their output. Since we only use a fractional per-
mission for the dependency cells (such as a3), it is possible for
multiple predicates OK() to talk about the same cell without ex-
posing the sharing in the spreadsheet. More specifically, using ob-
ject propositions we only need to know a1@k OK() before calling
a1.setInput1(10) (same for a2) and we can share the cell a3 by
using the fractional permissions of object propositions. Here k is
an arbitrary fraction in the (0,1] interval meaning that a1 holds a k
permission to the predicate OK().

I thank Prof. Jonathan Aldrich for his guidance.

References
[1] Ligia Nistor, Jonathan Aldrich, Stephanie Balzer, and Hannes Mehnert.

Object propositions. In FM, 2014.


