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ABSTRACT

We present a multi-agent architecture for coordinating large
numbers of mobile agents (e.g. robots) cooperating in un-
certain environments. Our approach addresses the problem
of navigating large numbers of goal-driven agents through
an environment whose state is unknown and has to be dis-
covered during navigation. In our approach, each agent uses
an approximate POMDP planner for generating contingency
plans, and an efficient control brokering scheme for dispatch-
ing agents to goal locations. Extensive experimental results
have been obtained in the context of natural disaster relief.
Our experiments have been carried out in a realistic simu-
lation of Honduras after Hurricane Mitch destroyed most of
the country’s infrastructure.

1. INTRODUCTION

This paper proposes a solution to the multi-agent Canadian
Traveler Problem (CTP). The CTP is the problem of finding
a shortest path to a goal location in a graph, where individ-
ual edges of the graph might or might not be traversable [1].
Whether or not an edge is traversable can only be found out
by moving there. Hence, an optimal solution to a CTP is a
contingency plan, which offers alternative routes if edges are
not available. The CTP differs from other hard planning and
optimization problems in that the state of the environment
is only partially observable. It can be viewed as a partially
observable Markov Decision Process (POMDP) with local
and deterministic observations [7, 8, 2]. Finding an optimal
contingency plan is known to be NP-hard.

The focus of the paper is a multi-agent CTP, which involves
multiple agents attempting to reach multiple target loca-
tions. Finding an optimal solution is even harder, since the
space of actions at each point in time is exponential in the
number of agents. In practice optimal solutions can only be
found for very small graphs (e.g., 10 edges) and a small num-
ber of agents (e.g., 3), whereas many practical multi-agent
CTP problems possess hundreds of edges and agents.

The multi-agent CTP plays an important role in many prac-
tical problems. A classical example is packet routing in the
Internet, where communication nodes might be up or down
at random [6]. Clearly, packet routing has to be performed
with extremely limited computation, making extensive plan-
ning (as proposed here) infeasible. More related to the work
described here is the multi-robot exploration problem [5, 11,
12] where teams of robots jointly explore an unknown en-
vironment. Here, the relative speed of the moving agents
(robots) is much slower than in the packet routing prob-
lem, offering the opportunity for planning and multi-agent
coordination.

The problem that motivated the research described here is
based on a disaster relief operation, which plays a central
role in DARPA’s Control of Agent-Based Systems program
(known there as the MIATA Technology Integration Exper-
iment). The problem is isomorphic to the two problems
above: a large number of mobile agents (e.g., supply trucks)
are tasked to bring emergency supplies to a number of popu-
lation centers in a country devastated by a natural disaster.
The road conditions are unknown. Hence, the optimal so-
lution must offer backups from non-traversable roads. In
particular, the natural disaster studied here takes place in
October 1998 in Honduras, while and after Hurricane Mitch
(Figure 1) destroyed up to 90% of the country’s infrastruc-
ture in certain regions. The simulation used to validate our
approach is based on high-fidelity data collected by the US
Geological Survey in the aftermath of the disaster, in an
attempt to improve relief operations for future disasters.

As noticed above, the multi-agent CTP has been studied
extensively in the networking literature, with a strong em-
phasis on protocols and reactive policies that require lit-
tle, if any, run-time computation or additional communica-
tion. The relative slowness of physical agents, such as relief
trucks or robots, open the opportunity for on-line commu-
nication, planning, and coordination [9], which play central
roles in the approach proposed here. Within AT and OR, the
problem of acting under uncertainty has been studied in the
POMDP literature, but virtually all existing approaches ad-
dress the single-agent planning problem only. The standard
solutions are exponentially hard in the number of agents and
require exponential communication overhead, which renders
them inapplicable to the multi-agent CTP.

We propose a scalable multi-agent architecture that approaches

the above mentioned set of intractable problems in a effi-
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Figure 1: Multi-Agent Honduras Simulation and Hurricane Mitch

cient, real-time manner. The architecture supports a large
number of mobile, goal-driven information agents that strive
to maximize their reward for reaching goals. These agents
are coordinated at a higher level by dispatcher agents whose
purpose is to maximize the total reward cumulated over
time.

2. PROBLEM DESCRIPTION

In our setting the agent’s position [ is certain but the state
w of the unseen environment is unknown. Thus the agent
state, which we call belief state, is represented as a pair:

(I, P(w|o)) (M

where P(wlo) is the distribution representing the agent’s be-
lief of the state of the world given its observations. The belief
space is the set of all possible belief states an agent could
have given its observations. Our goal is to efficiently gener-
ate a good plan by searching the space of possible actions
and the resulting belief states. This setting is commonly
used in the POMDP literature [4].

When an action a; is taken the belief state is updated ac-
cording to success or failure. On success the agent traverses
the edge and arrives at a new location I’. On failure the
agent remains in the original location [. In either case the
observed history is updated with the new observation o;:

(I, P(wlo1..i-1)) — { ((ll/’allj((5||511...,:)))) gﬁ zi(l:ﬁizs @

The scenario consists of a natural disaster relief mission
where immediate aid has the most impact and where the
value of subsequent actions decreases exponentially with
time. The agent attempts to maximize its reward in an
uncertain environment. The reward R(t) is discounted ex-
ponentially over time :

R(t)=e (3)

where « is the decay parameter. The agent receives re-
ward only at the goal state. Therefor during planning, the
agent should take into account the conditions under which
it receives reward as well as the fact that reward decreases
exponentially.

Finding the optimal solution involves an exhaustive search
to determine the effect of every action in every belief state.
We examine the space of actions, but limit the belief state
exploration. We estimate the effects of actions in a trade-off
of computation time for accuracy.

The problem becomes even harder in the multi-agent regime
since the optimal solution is the best pairing of agents and
goals. In a deterministic setting, for a large number of
agents, the dispatching complexity is exponential in the num-
ber of agents. However, since the dispatchers have to analyze
combinations of plans and joint probabilities of failure, the
problem becomes even harder.

We have devised a planner that is very efficient under re-
source limitations (i.e. belief space exploration limitation),
and we have incorporated it into our goal-driven information
agents. In order to overcome the intractability of multi-
agent coordination, we propose a dispatcher that makes use
of plan information precomputed by information agents in
parallel.

3. INFORMATION AGENTS

In this paper we consider information sharing, goal driven
agents that operate according to optimal plans limited by

their computational power and response (action) time. Bounded

by these resources, each agent generates a set of contingency
plans based on its own observed history as well as observa-
tions shared by its peers.

From the set of constructed plans the agent selects the best
plan and then acts according to it, sharing its discoveries
with interested agents within the system. We consider ac-
tion cost to be dependent only on the base state, regardless
of the outcome state. Finally, before each action the agent
needs to reevaluate the soundness of its plans and replan if
necessary.



BASTAR(goal, set of contingency plans, knowledge)
agent’s task is to reach the goal; the set of contingency plans is initially empty. One contingency plan will eventually be
selected by the cummulative FDR measure; the agent also possesses an acquired knowledge based on observed history

e INITIALIZE a priority queue with initial belief state
e empty set of contingency plans<— initial belief state node

e UNTIL the queue is empty or the expansion limit is reached, Do

1. belief state <— state with highest estimated FDR value in queue
2. if belief state = goal

— skip to the next iteration
3. FOR ALL possible actions from belief state

— FOR action’s BOTH success and failure
x if action does not contradict the belief state’s history or the agent’s knowledge
- new belief state < belief state, action, observation (successs or failure)
- new belief state — queue
- new node in the set of contingency plans «— new belief state

e SELECT AND MARK best plan in the set of contingency plans based on the cumulative FDR measure

Table 1: The BA* algorithm

3.1 Planning with BA*

Traditionally, planning problems in deterministic spaces in-
volve finding a path from an agent to its goal. A commonly
used algorithm is A* which uses an optimistic (and thus
admissible) measure of goal distance to efficiently find the
optimal path [10]. A* makes use of a heuristic which pro-
vides an optimistic estimate of the remaining cost to the
goal. This does not apply to uncertain environments where
a path to the goal might be shorter but might also have a low
probability of being traversable. Under uncertainty, agents
have to plan for contingencies and cannot ignore the uncer-
tainty inherent in the world. Thus, agents must plan in the
space of all possible plans, accounting for contingencies [3].

discounted reward K

We propose Belief A* (BA¥*), an algorithm based on A*
which efficiently handles planning under uncertainty. BA*
searches in the space of all possible plans and produces the
best contingency plan over the belief space found under time
restrictions. For our planning problem, the algorithm gener-
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the expected future discounted reward (FDR) and on the

probability of an agent passing through a particular belief Figure 2: Expected Reward

state given the plan so far. An information agent associates
an observed history h to each belief state it plans for. Since
this is the planning stage and the agent has not actually
observed anything, this history represents the sets of obser-
vations made by the agent in its path to the belief state.
The reward R(g|h) the agent would receive upon reaching
the goal state g is:



R(glh) = e~ (4)

where a(g) is the time it took the agent to reach the goal.

For planning, the agent needs to know the utility of each
intermediate belief state encountered during the search. For
any belief state s we can describe the expected reward R*(s)
under an optimal plan:

R*(s)= Y P(w|h)R(s,w) ()

weW

where W is the set of all possible state configurations of
the environment, P(wlh) is the distribution of world states
given the observed history, and R(s,w) is the reward gained
by applying the optimal plan from the state s to the goal
(shown in Figure 2). Unfortunately, computing R(s,w) is
intractable since it is exponential in the number of belief
states.

Hence, there is a need to estimate the utility of intermediate
states in reaching the goal. Rather than explicitly attempt-
ing to compute the expected reward for intermediate belief
states, the agents use a heuristic to guide the search in belief
space [3]. The BA* algorithm uses this heuristic in order to
direct the search toward states with higher expected reward.
The estimated utility is measured by the expected FDR.

In a deterministic setting the value of any state s is be
bounded by the minimal cost of any path that must travel
through s to reach the goal. This value is used by A* as
a heuristic. To account for uncertainty, the BA* algorithm
introduces an optimistic estimate P(s|h) > P(g|h) of the
probability of reaching the goal along a path that travels
through state s. Thus we can define a heuristic guaran-
teed to be optimistic in its estimate R(s|h) of the expected
reward of a sub-plan that passes through state s:

R(s|h) = P(s|h) - e~ (*(=)F0() (6)

where a(s) is time the agent would take to reach belief state
s following a trajectory in h, and b(s) is a lower bound on
the time the agent will take to reach the goal from s.

The Belief A* planning scheme reflects a preference for shorter
paths through higher probability belief states. Response
time and computational resources dictate how much BA*
expands belief states during planning. Table 1 describes an
information agent planner using the BA* algorithm with an
estimated FDR heuristic.

3.2 Plan Evaluation

Each information agent evaluates the quality of a potential
plan and computes the expected reward of reaching the goal
Rpian over the set of potential future histories |H| leading

to the goal by following plan:

Rpian = Y R(g|h)- P(g|h) (7)

he|H|

In order to choose the best available plan, the informa-
tion agent maximizes the expected future discounted reward
Rynaa over the spectrum of generated plans:

Ryaz = argmalXplan; {Rplani} (8)

The advantage of the BA* algorithm is that it tends to gen-
erate relevant belief states towards reaching the goal. Thus,
based on the expected reward, the information agent effi-
ciently chooses a plan that is very likely to produce a gen-
erous reward.

3.3 Acting

The architecture allows agents to move through the environ-
ment and provides appropriate responses when the traversabil-
ity of an edge is discovered. These external observations
place the agent in a non-deterministic partially observable
world which it has to traverse towards the goal. The reac-
tion time and the computation power limit the quality of the
produced plan. However, the quality of the plan also affects
which actions are being performed. Thus, the quality of the
solution found by the agent is related to its processing power
and dependent on action cost - the time it takes to perform
an action.

Upon discovery of new information, agents broadcast the
finding, and interested peers can choose to remember it and
process it if they consider it useful. Agents could also choose
to ignore externally discovered information. In assessing the
overall solution quality, we also considered probability-blind
agents which act upon action cost alone and disregard the
probability of reaching a state. They act close to optimal
when state transition probabilities are high - i.e. when nat-
ural disasters affect the world lightly. In reality natural dis-
asters do affect the environment and agents perform better
when choosing actions with using cost and success probabil-
ity in the interest of increasing expected reward values.

3.4 Replanning

Individual agents have the opportunity to replan as soon as
the current belief state changes. Belief states change as a
result of actions and new knowledge acquisition and plans
become obsolete if goals are fulfilled by other agents. Re-
planning could be done as differential process, updating and
enhancing the current plan. However, if the information in-
flow is considerable, the agent could choose to discard the
current plan. In this case, the information agent would con-
struct and evaluate a new set of plans.

4. DISPATCHER AGENTS

A multi-agent architecture that assumes independence among
agents is inefficient and does not maximize the overall re-
ward. Under independence, agents select their own goals
based on some utility measure. If a goal is faster to at-
tain or has a higher probability to be reached, many agents



Figure 3: a) Sequential pairing of agents to goals
(A1,G1); (A2,G2) without accounting for distances.
b)Euclidean pairing of agents to goals (A1,G2);
(A2,G1) without accounting for probabilities.

would pursue it. While only one agent would attain the goal
first, many others would have wasted time and resources
and would have had to turn their attention towards other
goals. Another problem is that agents could enter an oscil-
lation mode if they are between two sets of goals that are
serviced by other agents in close proximity. An oscillating
agent might be indeterminately attempting to reach goals
but never actually succeeding. A solution that involves full
communication between agents must assume that the agents
construct very frequently plans for all the goals taking into
account their peers’ plans as well. This solution cannot be
considered under the real-time constraint.

We introduce dispatcher agents, a dynamic, fast and scal-
able mechanism that coordinates the assignment of agents
to goals. Dispatcher agents attempt to maximize the total
reward attained by the information agents Riotai, using only
an estimate of individual agent reward expectations Riotal:

Riotal = Z e (9)

geG

This formulation represents the goal-centric view held by
the dispatcher, which attempts to minimize the times ¢4
required by the information agents to reach the full set of
goals G.

With large numbers of agents, optimal dispatching is in-
tractable if we are assessing the expected reward of all the
combinations of agents and goals. We propose a fast re-
sponse time, greedy dispatcher that allows agents to com-
municate. The dispatcher avoids the redundant computa-
tion of expected reward. Instead, the dispatcher uses an
expected FDR measure computed in parallel by informa-
tion agents. Based on the precomputed FDR the dispatcher
assigns agents to goals.

The fastest dispatcher agent algorithm performs sequential,

queue-based allocation of agents to goals. If there is no fa-
vored ordering on the agent and goal queues, the dispatcher
agent could have a very low performance (Figure 3 a). A
greedy algorithm based on Euclidean distance performs bet-
ter, but still does not account for the probabilistic nature of
the environment. It also does not account for the exponen-
tial decrease in reward over time (Figure 3 b).

We propose a fast, greedy expected FDR dispatcher agent.
The dispatching algorithm overcomes the need to analyze
the quality of individual assignments of agents to goals. The
dispatcher instructs each information agent to find a plan for
each goal. It then uses the information agents’ precomputed
FDR and plan information in order to assign appropriate
agent-goal pairs in a greedy fashion.

5. AMULTI-AGENT ARCHITECTURE

Different types of information agents and dispatcher agents
coexist in a scalable architecture (Figure 4 ). Their goal and
planning engine are encapsulated such that communication
is minimal and still conveys the desired information. The in-
formation agents perform the initial planning and communi-
cate with their dispatcher agents. Upon receiving their goal
assignments, the mobile agents attempt to reach their goals.
Planning and acting are the information agent’s responsibil-
ity and discoveries are shared with their peers. Communica-
tion is agent type free and the architecture does not coerce
agents to plan or acquire any shared knowledge.

One requirement is to minimize on-line communication so
that the architecture remains scalable. However, the ar-
chitecture must also allow enough communication so that
agents benefit from knowledge sharing. The greedy expected
FDR dispatcher allows these restrictions to be practical.
The FDR dispatcher absorbs planning information using lit-
tle communication while benefiting from the parallelism and
coordination inherent in the multi-agent architecture.

6. EVALUATION

Experiments show that our multi-agent architecture sup-
ports a large number of agents that plan and act efficiently,
in real-time in realistic uncertain environments.

6.1 The Simulator

The MapleSim simulator was used to prepare data for agent
experiments, and can be used as a test environment in which
planning agents work in a realistic setting. The simulator
and the agent architecture presented here were developed for
the MIATA technology integration experiment group within
the DARPA CoABS initiative. The simulation provides a
means for distributed control of many heterogeneous agents
in the Honduras disaster relief scenario using real data. In
the scenario, the network of roads, cities, airports, and com-
munications is critically damaged as hurricane Mitch passes
through, and foreign aid groups are tasked with providing
supplies and rebuilding the infrastructure quickly. What
makes the problem particularly difficult is that the extent
of the damage is largely unknown in advance, and must be
discovered in the process of providing relief.

6.2 Environment



Figure 4: A scalable, extensible multi agent architecture. Dispatcher Agents (DAs) coordinate Information

Agents (IAs)

The experiments were performed in a large environment sim-
ulating Honduras following a natural disaster. We have
implemented a synchronous multi-agent architecture that
keeps track of the environment responses, time and rewards,
and information exchange. Agent actions trigger environ-
ment responses which let the information agents know the
traversability of edges. These responses also entail the sub-
sequent belief state of the information agent. The architec-
ture synchronizes the information agents’ actions based on
cost (time). The environment also provides the structure
and state transition mappings that information agents use
for planning purposes. Information exchange is also sup-
ported and it is initiated by each individual information
agent upon new discovery, or by dispatcher agents for agent-
goal matching.

We analyzed the performance of the system using differ-
ent disaster scenarios which entail different state transition
probabilities. We varied the world instance as a sampling
of random variables representing more than 300 road seg-
ments and having the distributions dictated by each specific
scenario. For these world instances we varied the number of
agents and goals as well as their physical locations. We con-
sidered different information agent types that could commu-
nicate and we also considered different dispatchers in each
case. The simulations were performed on up to 100 informa-
tion agents and we found that a single dispatcher managed
these information agents well.

6.3 Information Agent

Our information agent experiments involved simulating in-
cremental numbers of agents, in many different scenarios. In
most situations the BA* based algorithm took advantage of
state transition probability information in order to weigh the
impact of low cost, but high risk actions. Using realistic sce-
narios, we compared information agents using a BA* heuris-
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Figure 6: Not a favorable scenario for the BA* In-
formation Agents. They do however behave similar
to the Deterministic Agents

tic versus information agents using a deterministic, short-
est path approach.Performance improvement is the ratio of
naive agents’ average reward to that of the agents under
evaluation. The naive agents use simple shortest-path plan-
ning, do not communicate, and use a random dispatcher.
The plots in Figure 5 present results on two realistic scenar-
ios and do not represent the best case scenario for the BA*
information agent.

However, since the BA* heuristic exploits probability in-
formation in expected reward calculations, we evaluated a
hypothetical scenario in a nearly-deterministic world where
roads are up or down with high certainty. We found that in
this case, the BA* approach also exhibits a similar behavior
(Figure 6).

We limited planning time through the BA* belief state ex-
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pansion limit so that a tradeoff exists between response time
and accuracy. The information agents develop high-reward
plans in our large scale Honduras environment in under 5
seconds on a 500MHz PC.

6.4 Dispatcher Agents

In order to test the performance of our proposed dispatcher,
we set up an experiment where each dispatcher type coor-
dinates information agents in different world scenarios. The
sequential dispatcher matches the agents and goals as they
are appear in queue. The greedy expected FDR dispatcher
requires the information agents to plan for every goal, and
selects a corresponding set of best plans. The greedy dis-
patcher would then proceed and couple goals and agents.

In order to assess the quality of the greedy expected FDR
dispatching scheme, we constructed an “exact” expected
FDR dispatcher, which fully searches the space of agent-
goal assignments to maximize the expected reward. Due to
the combinatorial nature of the search, this exact dispatcher
can only handle very few agents, but offers an insight into
the quality of the greedy expected FDR scheme. Its proce-
dure is similar to the greedy expected FDR dispatcher, but
it searches all combinations, rather than performing hill-
climbing. The results shown in Figure 7 allow agents to

1 50 100
10—

5 Determinstic

€ 095 — BA*

o

>

o

o

E 0.9

o

2

s 0.85

E

£

H 08

o

50 100
number of agents

Figure 8: Large scale multi-agent experiment show-
ing the performance increase of BA* Information
Agents over Deterministic Information Agents

communicate. We found that dispatching overhead is in-
significant compared to the amount of planning information
agents are required to perform.

6.5 Large scale experiment

In a large scale experiment, we averaged the performance
of 100 information agents over a set of instances of a sce-
nario with multiple random sampling the physical locations
of goals and agents. BA* based agents have a 20% perfor-
mance improvement in a realistic setting (Figure 8).

7. DISCUSSION

Through a multi-agent architecture we address the problem
of coordinating large numbers of mobile agents cooperating
in uncertain environments. Large numbers of goal-driven
agents act in an environment with an initially unknown
state. Each information agent uses an approximate POMDP
planner for generating contingency plans. The information
agents are coordinated by dispatcher agents and assigned to
goal locations that yield a good overall reward.

Experiments show that our multi-agent architecture when
applied to large number of coordinated information agents
is both practical and efficient. Information agents are able
to devise efficient plans based on the realistic measure of
expected FDR. Dispatcher agents use the plan information



precomputed in parallel by information agents in order to
map agents to goals. Significant improvement is seen in
simulated realistic disaster scenarios, while simulations of
environments under normal conditions yield results close to
those of deterministic planners.

The design of a practical large scale multi-agent architec-
ture poses many difficult problems some of which we plan
to address in future work. The current approach does not
consider the sequence of actions information agents choose.
If two agents have similar plans, then the probability that
one will fail is closely correlated with the probability that
the other will fail as well. Future work will focus on im-
proving dispatcher agents by reducing the joint probability
of failure in information agents.

Further future work will address an ever-changing environ-
ment. The setting entails that agent observations do not pre-
serve their information content over time. State transition
probabilities in this case would not be fixed, and therefor
agents would possess ephemeral knowledge. Re-dispatching
and additive dispatching are two more issues we are consid-
ering for future research.
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