Transfer Learning and Prior Estimation for VC Classes

Liu Yang
04/25/2012

Notation

- Instance space $X = \mathbb{R}^n$
- Concept space C of classifiers $h: X \rightarrow \{0,1\}$
 - Assume C has VC dimension $vc < \infty$
- Data Distribution D on X
- Unknown target function h^*: the true labeling function (Realizable case: h^* in C)
- Assume $\rho(h, g) = P_{x \sim D}[h(x) \neq g(x)]$ for any classifiers h, g, is a metric on C
- $\text{Err}(h) = P_{x \sim D}[h(x) \neq h^*(x)]$
Transfer Learning

- **Principle:** solving a new learning problem is easier given that we’ve solved several already!

- **How does it help?**
 - New task directly “related” to previous task
 [e.g., Ben-David & Schuller 03; Evgeniou, Micchelli, & Pontil 2005]
 - Previous tasks give us useful sub-concepts [e.g., Thrun 96]
 - Can gather statistical info on the variety of concepts [e.g., Baxter 97; Ando & Zhang 04]

- **Example:** Speech Recognition
 - After training a few times, figured out the dialects.
 - Next time, just identify the dialect.
 - Much easier than training a recognizer from scratch

Model of Transfer Learning

Motivation: Learners often Not Too Altruistic

Layer 1: draw task i.i.d. from unknown prior

Layer 2: per task, draw data i.i.d. from target

Better Estimate of Prior!!
Identifiability of priors from joint distribs

- Let prior π be any distribution on C
 - example: $(w, b) \sim$ multivariate normal
- Target $h^*_\pi \sim \pi$
- Data $X = (X_1, X_2, \ldots)$ i.i.d. $D \text{ indep } h^*_\pi$
- $Z(\pi) = ((X_1, h^*_\pi (X_1)), (X_2, h^*_\pi (X_2)), \ldots)$.
- Let $[m] = \{1, \ldots, m\}$.
- Denote $X_I = \{X_i\}_{i \in I}$ ($I : \text{ subset of natural numbers}$)
- $Z_I (\pi) = \{(X_i, h^*_\pi (X_i))\}_{i \in I}$

Theorem: $Z_{[\text{VC}]} (\pi_1) = d Z_{[\text{VC}]} (\pi_2)$ iff $\pi_1 = \pi_2$.

Identifiability of priors by VC-dim joint distri.

- Threshold:

```
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+---------------</td>
</tr>
</tbody>
</table>
```

- for two points x_1, x_2, if $x_1 < x_2$, then
- $\Pr(+,+)=\Pr(+), \Pr(-,-)=\Pr(-), \Pr(+,-)=0$,
- So $\Pr(-,+)=\Pr(+)-\Pr(++) = \Pr(+-)-\Pr(++)$
- for any $k > 1$ points, can directly to reduce number of labels in the joint prob from k to 1

```
P(-----------------(-)++++++++++++++++++)
= P( (+) )
= P( (+) ) - P( (++) )
= P( (+) ) - P( (+) )
+ P( (+-) ) (unrealized labeling !)
= P( (+) ) - P( (+) )
```
Theorem: $Z_{[VC]}(\pi_1) \equiv_d Z_{[VC]}(\pi_2)$ iff $\pi_1 = \pi_2$.

Proof Sketch:
- Let $\rho_m(h,g) = 1/m \sum_{i=1}^m \mathbb{I}(h(X_m) \neq g(X_m))$
 Then $\text{vc} < \infty$ implies w.p.1 for all h, g in C with $h \neq g$
 $\lim_{m \to \infty} \rho_m(h,g) = \rho(h,g) > 0$
- ρ is a metric on C by assumption,
 so w.p.1 each h in C labels ∞-seq (X_1, X_2, \ldots)
 distinctly $(h(X_1), h(X_2), \ldots)$
- \Rightarrow w.p.1 conditional distribution of the label seq
 $Z(\pi|X)$ identifies π
 \Rightarrow distrib of $Z(\pi)$ identifies π
 i.e. $Z_{\infty}(\pi_1) \equiv_d Z_{\infty}(\pi_2)$ implies $\pi_1 = \pi_2$

Identifiability of Priors from Joint Distributions

Theorem: $Z_{[VC]}(\pi_1) \equiv_d Z_{[VC]}(\pi_2) \iff \pi_1 = \pi_2$.

Proof Sketch:
Fix any $m > \text{vc}$, $x_1, \ldots, x_m \in \mathcal{X}$, $y_1, \ldots, y_m \in \{0, 1\}$.
Note C cannot shatter (x_1, \ldots, x_m).
Let $\tilde{y}_1, \ldots, \tilde{y}_m \in \{0, 1\}$ be s.t. $\exists h \in C$ with $\forall i, h(x_i) = \tilde{y}_i$.
Clearly $\mathbb{P}(Z_m(\pi) = \{(x_i, y_i)\}_{i \in [m]} | X_m = \{x_i\}_{i \in [m]}) = 0$.
If $\exists k$ s.t. $y_k \neq \tilde{y}_k$, then letting $y'_i = y_i$ for $i \neq k$, and $y'_k = \tilde{y}_k$,

\[
\begin{align*}
\mathbb{P}(Z_m(\pi) & = \{(x_i, y'_i)\}_{i \in [m]} | X_m = \{x_i\}_{i \in [m]}) \\
& = \mathbb{P}(Z_m(\pi _{\{k\}}) = \{(x_i, y'_i)\}_{i \in [m]\{k\}} | X_m \{k\} = \{x_i\}_{i \in [m]\{k\}}) \\
& \quad - \mathbb{P}(Z_m(\pi) = \{(x_i, y'_i)\}_{i \in [m]} | X_m = \{x_i\}_{i \in [m]})
\end{align*}
\]

Induction: $\mathbb{P}(Z_m(\pi) = \cdot | X_m)$ function of $\mathbb{P}(Z_{[VC]}(\pi) = \cdot | X_{[VC]})$.
Identifiability of Priors from Joint Distributions

Theorem: \(Z_{[\text{vc}]}(\pi_1) \overset{d}{=} Z_{[\text{vc}]}(\pi_2) \iff \pi_1 = \pi_2. \)

Proof Sketch:

By the above,
\(Z_{[\text{vc}]}(\pi_1) \overset{d}{=} Z_{[\text{vc}]}(\pi_2) \Rightarrow \forall m \in \mathbb{N}, Z_{[m]}(\pi_1) \overset{d}{=} Z_{[m]}(\pi_2). \)

Classic result:
set of distibs of \(Z_{[m]}(\pi) : m \in \mathbb{N} \) identify distrib of \(Z(\pi) \), so
\(Z_{[m]}(\pi_1) \overset{d}{=} Z_{[m]}(\pi_2), \forall m \in \mathbb{N} \Rightarrow Z(\pi_1) \overset{d}{=} Z(\pi_2). \)

Showed above that
\(Z(\pi_1) \overset{d}{=} Z(\pi_2) \Rightarrow \pi_1 = \pi_2. \)

Theorem: \(Z_{[\text{vc}]}(\pi_1) \overset{d}{=} Z_{[\text{vc}]}(\pi_2) \iff \pi_1 = \pi_2. \)

Theorem: \(\exists \mathcal{D}, \pi_1 \neq \pi_2 \text{ s.t. } \forall m < \text{vc}, Z_{[m]}(\pi_1) \overset{d}{=} Z_{[m]}(\pi_2). \)

Proof Sketch:

Let \((x_1, \ldots, x_{\text{vc}}) \) be shattered by \(\mathcal{H} = \{h_1, \ldots, h_{2\text{vc}}\} \subseteq \mathbb{C}. \)
Let \(\mathcal{D} \) be uniform on \(\{x_1, \ldots, x_{\text{vc}}\} \),
let \(\pi_1 \) be uniform on \(\mathcal{H}. \)
Let \(\mathcal{H}' = \{h'_1, \ldots, h'_{2\text{vc}-1}\} \subset \mathcal{H} \) shatter \((x_1, \ldots, x_{\text{vc}-1}) \)
s.t. \(h'_i(x_{\text{vc}}) = \text{Parity}({h'_1(x_1), \ldots, h'_i(x_{\text{vc}-1})}). \)
Let \(\pi_2 \) be uniform on \(\mathcal{H}'. \)
Clearly \(\pi_1 \neq \pi_2. \)

But for \(m < \text{vc}, Z_{[m]}(\pi_1) \overset{d}{=} Z_{[m]}(\pi_2): \)
unif cond on labels given distinct \(X_1, \ldots, X_m. \)
Transfer Learning Setting

- Collection Π of distributions on C. (known)
- Target distribution π^* in Π. (unknown)
- Independent target functions $h_1^*, \ldots, h_T^* \sim \pi^*$ (unknown)
- Independent i.i.d. data sets $X^{(t)} = (X_1^{(t)}, X_2^{(t)}, \ldots)$, t in $[T]$.
- Define $Z^{(t)} = ((X_1^{(t)}, h_t^*(X_1^{(t)})), (X_2^{(t)}, h_t^*(X_2^{(t)})), \ldots)$.
- Learning algorithm “gets” $Z^{(1)}$, then produces \hat{h}_1, then “gets” $Z^{(2)}$, then produces \hat{h}_2, etc. in sequence.
- Interested in: values of $\rho(\hat{h}_t, h^*(t))$, and the number of h_t^* at $X_j^{(t)}$ value that alg. needs to access.

Estimating the prior

- **Principle**: learning would be easier if know π^*
- **Fact**: π^* is identifiable by distribution of $Z_{[VC]}^{(t)}$
- **Strategy**: Take samples $Z_{[VC]}^{(i)}$ from past tasks 1, $\ldots, t-1$, use them to estimate distribution of $Z_{[VC]}^{(i)}$, convert that into an estimate π'_t of π^*.
- Use π'_t in a prior-dependent learning alg for new task h_t^*
- Assume Π is totally bounded in total variation
- Can estimate π^* at a bounded rate:
 $\| \pi^* - \pi'_t \| < \delta_t$ converges to 0 (holds whp)
Main Theorem

Theorem 1 There exists an estimator \(\theta_{j,k} = \theta_T(Z_{1}(\theta_k), \ldots, Z_{T}(\theta_k)) \) and functions \(R : \mathbb{N}_0 \times [0,1] \to [0,\infty] \) and \(\delta : \mathbb{N}_0 \times [0,1] \to [0,1] \), such that for any \(\alpha > 0 \), \(\lim_{T \to \infty} R(T, \alpha) = \infty \), and for any \(T \in \mathbb{N}_0 \) and \(\theta \in \Theta \),

\[
P \left(\| \theta_{j,k} - \theta_k \| > R(T, \alpha) \right) \leq \delta(T, \alpha) \leq \alpha.
\]

Pf Idea: relate convergence of estimator for \(d \)-dim joint to convergence of estimator for the prior

Transfer Learning

- Given a prior-dependent learning \(A(\varepsilon, \pi) \), with \(E[\# \text{ labels accessed}] = \Lambda(\varepsilon, \pi) \) and producing \(\hat{h} \) with \(E[\rho(\hat{h}, h^*)] \leq \varepsilon \)

For \(t = 1, \ldots, T \)

- **If** \(\delta_{t-1} > \varepsilon / 4 \),
 - run prior-indep learning on \(Z_{[\text{VC} / \varepsilon]}(t) \) to get \(\hat{h}_t \)
- **Else** let \(\pi''_t = \arg\min_{\pi} \Delta_{t+1, \delta_{t+1}}(\varepsilon / 2, \pi) \) and run \(A(\varepsilon / 2, \pi''_t) \) on \(Z(t) \) to get \(\hat{h}_t \)

Theorem: For all \(t \), \(E[\rho(\hat{h}_t, h_t^*)] \leq \varepsilon \), and \(\limsup_{T \to \infty} E[\# \text{labels accessed}] / T \leq \Lambda(\varepsilon / 2, \pi^*) + \text{vc} \).
Relate Prior to k-dim joint

Lemma: There exists a sequence \(r_k = o(1) \) such that \(\forall k \in \mathbb{N}, \forall \theta, \theta' \in \Theta, \)
\[\| P_{Z_t(\theta)} - P_{Z_t(\theta')} \| \leq \| \pi_\theta - \pi_{\theta'} \| \leq \| P_{Z_{t_k}(\theta)} - P_{Z_{t_k}(\theta')} \| + r_k. \]

Proof:

- The left inequality follows from, for any \(\theta, \theta' \) in \(\Theta \) and \(t \) (natural num), \(\| P_{Z_{t_k}(\theta)} - P_{Z_{t_k}(\theta')} \| \leq \| \pi_\theta - \pi_{\theta'} \| = \| \nabla_{\theta} \| \).
- To show the right inequality: Fix \(\theta, \theta' \) in \(\Theta \), let \(\gamma > 0 \), let \(B \) subset eq \((X \times \{-1, +1}\))^\infty be a measurable set s.t.
\[\| \pi_\theta - \pi_{\theta'} \| = \| P_{Z_{t_k}(\theta)}(B) - P_{Z_{t_k}(\theta')}(B) \| > 0. \]
- Carathéodory’s extension theorem implies there exist disjoint sets \(\{A_i\}_{i \in \mathbb{N}} \) in \(\mathbb{N} \) where \(A_i \) is an event for finite number of data pts, s.t. \(B \subseteq \bigcup_{i \in \mathbb{N}} A_i \).
\[P_{Z_{t_k}(\theta)}(B) - P_{Z_{t_k}(\theta')}(B) < \sum_{i \in \mathbb{N}} P_{Z_{t_k}(\theta)}(A_i) - \sum_{i \in \mathbb{N}} P_{Z_{t_k}(\theta')}(A_i) + \gamma. \]
- Since these sums are bounded, there must exist \(n \) in \(\mathbb{N} \) s.t.
\[\sum_{i \in \mathbb{N}} P_{Z_{t_k}(\theta)}(A_i) \leq \gamma + \sum_{i \in \mathbb{N}} P_{Z_{t_k}(\theta')}(A_i) + \gamma. \]

In sum, \(\| \pi_\theta - \pi_{\theta'} \| \leq \lim_{k \to \infty} \| P_{Z_{t_k}(\theta)} - P_{Z_{t_k}(\theta')} \| + 3\gamma. \)

- Taking the limit as \(\gamma \to 0 \) implies \(\| \pi_\theta - \pi_{\theta'} \| \leq \lim_{k \to \infty} \| P_{Z_{t_k}(\theta)} - P_{Z_{t_k}(\theta')} \| \)
- Particularly, it implies there exists a sequence \(r_k(\theta, \theta') = o(1) \) s.t.
\[\forall k \in \mathbb{N}, \| \pi_\theta - \pi_{\theta'} \| \leq \| P_{Z_{t_k}(\theta)} - P_{Z_{t_k}(\theta')} \| + r_k(\theta, \theta'). \]

QED
Relate k-dim Joint to k-dim Cond.

- Want to bound between tvd of k-dim joints
- Easier to bound diff between tvd of k-dim cond. distri.s
- Use Jensen’s ineqn to relate tvd of k-dim joint distri. to k-dim cond. distri. :
 \[|P_{Z_{tk}(\theta)} - P_{Z_{tk}(\theta')}| \leq E[|P_{Y_{tk}(\theta)} |X_{tk} - P_{Y_{tk}(\theta')} |X_{tk}|] \]

Relate k-dim Cond. to d-dim Cond.

- By def of total variation dist.
 \[||P_{Y_{tk}(x)} - P_{Y_{tk}(y')}|| = (1/2) \sum_{y^d \in \{-1, +1\}^d} |P_{Y_{tk}(x)}(y^d) - P_{Y_{tk}(y')}(y^d)|. \]
- By Sauer’s Lemma this is \[\leq \]
- By def of total variation dist.
- Notations:
 \[I \subseteq \{1, \ldots, k\}, \text{fix } \bar{x}_I \in A^{|I|} \text{and } \bar{y}_I \in \{-1, +1\}^{|I|}. \text{Then the } \bar{y}_I \in \{-1, +1\}^{|I|} \text{for which no } h \in C \text{has } h(\bar{x}_I) = \bar{y}_I \text{for which } ||\bar{y}_I - \bar{y}_I||, \text{is minimal, has } ||\bar{y}_I - \bar{y}_I|| \leq d + 1, \text{and for any } i \in I \text{ with } \bar{y}_I \neq \bar{y}_I, \text{letting } \bar{y}_I = \bar{y}_I \text{for } j \in I \setminus \{i\} \text{and } \bar{y}_I = \bar{y}_I, \text{we have} \]
 \[P_{Y_{tk}(x)}(\bar{y}_I|\bar{x}_I) = P_{Y_{tk}(x)}(\bar{y}_I|\bar{x}_I), \]
 (By P(A and B) = P(A) - P(A and not B). Two terms, one reduce dim by 1, the other brought y vector closer to the unrealizable labeling by one bit)

- Apply this to theta and theta’, interested in the tvd between the cond. Prob.
 \[|P_{Y_{tk}(y|x)}(y|x) - P_{Y_{tk}(x|x)}(y|x)| \]
 \[\leq |P_{Y_{tk}(y|x)}(y|x) - P_{Y_{tk}(x|x)}(y|x)| \]
 \[+ |P_{Y_{tk}(y|x)}(y|x) - P_{Y_{tk}(x|x)}(y|x)|. \]

© Liu Yang 2012
Tree Argument: Combinatorics

- Consider these two terms inductively define a binary tree
- Branch based on modification to the \(y \) vector

At any level, left to right nodes have decreasing \(|I|\) values.

Branches left once, gets a diff. of prob.s for set \(I \) of one less element.

Branches right once, gets a difference of prob.s for a \(y_I \) one closer to an \(y_I \) unrealized than parent.

Stop branching upon reaching a set \(I \) and a \(y_I \) s.t. either \(y_I \) is an unrealized labeling, or \(|I| = d\).

Any path can branch left \(\leq k - d \) times (total) before reaching a set \(I \) w/ only \(d \) elements; can branch right \(\leq d + 1 \) times in a row before reaching a \(y_I \) s.t. both prob.s zero, so the diff is zero.

Tree Argument: Conclusions

- Bound original (root node) diff of prob.s by sum of the diff of prob.s for leaf nodes with \(|I| = d\).
- Depth of any leaf node with \(|I| = d\) is at most \((k - d)d\).
- Maximum width of the tree is at most \(k - d\).
- So total #leaf nodes with \(|I| = d\) is at most \(d(k - d)^2\).
 - For any \(y_I \in \{-1, +1\}^k\), \(x \in \mathbb{X}^k\)

 \[
 \left| P_{Y_A(y)|X_A}(y|x) - P_{Y_A(y')}|X_A}(y'|x) \right| \\
 \leq (k - d)^2d \cdot \max_{y \in \{-1, +1\}^d} \max_{D \in \{1, \ldots, k\}^d} \left[|P_{Y_A(y)|X_A}(D|x_D) - P_{Y_A(y')}|X_A}(D'|x_{D'})| \right].
 \]
Relate k-dim Joint to d-dim Joint

- Note

\[
\max_{g^d \in \{-1,+1\}^d} \max_{D \in \{1,\ldots,k\}^d} \mathbb{E} \left[\max_{g^d \in \{-1,+1\}^d} \mathbb{E} \left[P_{Y_d|X_d}(g^d^k) - P_{Y_d|X_d}(g^d) \right] \right]
\]

\[
\leq \sum_{g^d \in \{-1,+1\}^d} \sum_{D \in \{1,\ldots,k\}^d} \mathbb{E} \left[P_{Y_d|X_d}(g^d) - P_{Y_d|X_d}(g^d) \right]
\]

\[
\leq (2k)^d \max_{g^d \in \{-1,+1\}^d} \mathbb{E} \left[P_{Y_d|X_d}(g^d) - P_{Y_d|X_d}(g^d) \right]
\]

- By exchangeability, the last line equals

\[
(2k)^d \max_{g^d \in \{-1,+1\}^d} \mathbb{E} \left[P_{Y_d|X_d}(g^d) - P_{Y_d|X_d}(g^d) \right].
\]

- Want d-dim joint instead of d-dim cond.

Claim:

\[
\mathbb{E} \left[P_{Y_d|X_d}(g^d|X_d) - P_{Y_d|X_d}(g^d|X_d) \right] \leq 4 \|P_{Z_d}(\theta) - P_{Z_d}(\theta')\|
\]

Proof of the Claim

Proof:
Suppose

\[
\mathbb{E} \left[P_{Y_d}(g^d|X_d) - P_{Y_d}(g^d|X_d) \right] \geq \epsilon,
\]

for some \(g^d \). Then either

\[
P \left(P_{Y_d}(g^d|X_d) - P_{X_d}(g^d|X_d) \geq \epsilon/4 \right) \geq \epsilon/4,
\]

or

\[
P \left(P_{Y_d}(g^d|X_d) - P_{X_d}(g^d|X_d) \geq \epsilon/4 \right) \geq \epsilon/4.
\]

For whichever is the case, let \(A_\epsilon \) denote the corresponding measurable subset of \(X^d \), of probability at least \(\epsilon/4 \). Then

\[
\|P_{Z_d}(\theta) - P_{Z_d}(\theta')\| \geq \|P_{Z_d}(\theta)(A_\epsilon \times \{g^d\}) - P_{Z_d}(\theta')(A_\epsilon \times \{g^d\})\|
\]

\[
\geq \left(\epsilon/4 \right) P_{X_d}(A_\epsilon) \geq \epsilon^2/16.
\]

Therefore,

\[
\mathbb{E} \left[P_{Y_d}(g^d|X_d) - P_{Y_d}(g^d|X_d) \right] \leq 4 \|P_{Z_d}(\theta) - P_{Z_d}(\theta')\|.
\]
Reflect the Path of Proof

Earlier, $\|\pi_\theta - \pi_{\theta'}\| \leq \|P_{Z_{th}(\theta)} - P_{Z_{th}(\theta')}\| + r_k$

Just showed

$$\|P_{Z_{th}(\theta)} - P_{Z_{th}(\theta')}\| \leq 4(2ek)^{2d+2}\sqrt{\|P_{Z_{td}(\theta)} - P_{Z_{td}(\theta')}\|}$$

So in total

For any k in \mathbb{N}, $\|\pi_\theta - \pi_{\theta'}\| \leq 4(2ek)^{2d+2}\sqrt{\|P_{Z_{td}(\theta)} - P_{Z_{td}(\theta')}\|} + r_k$

In particular, $r_k \to 0$ as $k \to \infty$. Let $g(\epsilon) = \min_{k}(4(2ek)^{2d+2}\sqrt{\epsilon} + r_k)$.

Claim: $g(\epsilon) \to 0$ as $\epsilon \to 0$.

(Why? Let $\epsilon_k = (r_k/(4(2ek)^{2d+2}))^2$. $\epsilon_k = o(1)$. $g(\epsilon_k) \leq 4(2ek)^{2d+2}\sqrt{\epsilon_k} + r_k = 2r_k$

g is monotonic in $\epsilon \Rightarrow \lim_{\epsilon \to 0} g(\epsilon) = \lim_{k \to \infty} g(\epsilon_k) = \lim_{k \to \infty} 2r_k = 0$.)

Distri. Estimation Rate

• The last component: rate of conv. of our estimate of $P_{Z_{d}(\theta)}$.
 - $N(\epsilon)$ is the ϵ-covering number $\{P_{\delta,\epsilon}(\theta) : \theta \in \Theta\}$
 - Taking $\theta_{T_{d}}$ as the minimum distance skeleton estimate of Yatracos (1985) achieves expected tvd ϵ from $\theta_{T_{d}}$, for some $T = O((1/\epsilon^2)\log N(\epsilon/4))$

Solving for ϵ in terms of T implies $E[\text{tvd of d-dim}] \to 0$ as $T \to \infty$

• Conclusion for prior estimation:
 - Pick the sequence of R_t s.t. $R_t \to 0$, but with $E[w_t]/R_t \to 0$
 - Let w_t be $E[\text{tvd of d-dim}]$ for any t, apply Markov ineq. $\Rightarrow P(w_t > R_t) < E[w_t]/R_t$
 - Since $E[\text{tvd of d-dim}] \to 0$, Markov’s ineq. \Rightarrow there is a bound on tvd $\to 0$ which holds with prob. that $\to 1$, as $T \to \infty$
 - If tvd of d-dim joints $\to 0$, plugging into $g()$ (just proved), tvd of priors $\to 0$.

• Together we just proved the theorem

Theorem 1 There exists an estimator $\hat{\Theta}_{T_{d}(\theta)} = \hat{\theta}(Z_{td}(\theta), \ldots, Z_{td}(\theta))$, and functions $R : \mathbb{N}_0 \times (0,1) \to [0,\infty)$ and $\delta : \mathbb{N}_0 \times (0,1) \to [0,1]$, such that for any $\alpha > 0$, $\lim_{T \to \infty} \delta(T, \alpha) = 0$ and for any $T \in \mathbb{N}$ and $\theta \in \Theta$,

$$P\left(\|\pi_{\hat{\theta}_T} - \pi_{\theta}\| > R(T, \alpha)\right) \leq \delta(T, \alpha) \leq \alpha.$$
Rate of Conv. under Hölder–Smooth

Definition: For $L \in (0, \infty)$ and $\alpha \in (0, 1]$, a function $f: C \to \mathbb{R}$ is (L, α)-Hölder smooth if
\[\forall h, g \in C, |f(h) - f(g)| \leq L \rho(h, g)^{\alpha}. \]

Theorem. For Θ, any class of priors on C having (L, α)-Hölder smooth densities $\{f_\theta : \theta \in \Theta\}$, for any $T \in \mathbb{N}$, there exists an estimator $\hat{\theta}_T = \hat{\theta}_T(Z_{1d}(\theta), \ldots, Z_{Td}(\theta))$ such that
\[\sup_{\theta, \theta'} \mathbb{E} \|\pi_{\theta'} - \pi_{\theta}\| = O \left(LT^{-\frac{\rho^2}{(d+2)(d+2d+1)}} \right). \]

\[\|\pi_{\theta} - \pi_{\theta}\| \leq \min_k 4 \cdot (2ek)^{d+2} \| P_{Z_{td}(\theta)} - P_{Z_{td}(\theta')} \|^1/2 + r_k, \]

Under Hölder–smooth $r_k = O(L(d/k \log(k/d))^\alpha)$

Rate of Conv. under Hölder–Smooth

Definition: For $L \in (0, \infty)$ and $\alpha \in (0, 1]$, a function $f: C \to \mathbb{R}$ is (L, α)-Hölder smooth if
\[\forall h, g \in C, |f(h) - f(g)| \leq L \rho(h, g)^{\alpha}. \]

Theorem. For Θ, any class of priors on C having (L, α)-Hölder smooth densities $\{f_\theta : \theta \in \Theta\}$, for any $T \in \mathbb{N}$, there exists an estimator $\hat{\theta}_T = \hat{\theta}_T(Z_{1d}(\theta), \ldots, Z_{Td}(\theta))$ such that
\[\sup_{\theta, \theta'} \mathbb{E} \|\pi_{\theta'} - \pi_{\theta}\| = O \left(LT^{-\frac{\rho^2}{(d+2)(d+2d+1)}} \right). \]

Proof:
- By PAC bound, for any $\gamma > 0$, w.p. $1 - \gamma$, a sample of $k = O(d/\gamma \log(1/\gamma))$ partition C into regions of width $< \gamma$.
- For any $\theta \in \Theta$, π' denote a (conditional on X_1, \ldots, X_d) distribution
 \[f_\theta' \] denote the (conditional on X_1, \ldots, X_d) density function of π' with respect to π_0.
- For any $g \in C$,
 \[f_\theta'(g) = \frac{\pi'(\{h \in C : h(X_i) = g(X_i)\})}{\pi'(\{h \in C : h(X_i) = g(X_i)\})}. \]
 (or 0 if $\pi_0(\{h \in C : h(X_i) = g(X_i)\}) = 0$).
- By smoothness, w. p. $\gamma > 1 - \gamma$, we have everywhere $|f_\theta(h) - f_\theta'(h)| < L_\gamma^\alpha$.

© Liu Yang 2012
Rate of Conv. under Hölder-Smooth

- Thus for any $\theta, \theta' \in \Theta$, w.p. $1-\gamma$,

$$\|\pi_\theta - \pi_{\theta'}\| = (1/2) \int |f_\theta - f_{\theta'}|d\pi_0 < L \gamma^n + (1/2) \int |f'_\theta - f'_{\theta'}|d\pi_0.$$

- Since the regions that define f'_θ and $f'_{\theta'}$ are the same,

$$\begin{align*}
(1/2) \int |f'_\theta - f'_{\theta'}|d\pi_0 &= (1/2) \sum_{y_{k-1} = -1}^{y_{k+1}} \pi_\theta(\{h \in C : \forall i \leq k, h(X_i) = y_i\}) - \pi_{\theta'}(\{h \in C : \forall i \leq k, h(X_i) = y_i\}) \\
&= \|P_{\{h \in C : \forall i \leq k, h(X_i) = y_i\}} - P_{\{h \in C : \forall i \leq k, h(X_i) = y_i\}}\|.
\end{align*}$$

- Thus, w.p. $\geq 1-\gamma$,

$$\|\pi_\theta - \pi_{\theta'}\| < L \gamma^n + \|P_{\{h \in C : \forall i \leq k, h(X_i) = y_i\}} - P_{\{h \in C : \forall i \leq k, h(X_i) = y_i\}}\|.$$

- Proceed as before, we get

$$\|\pi_\theta - \pi_{\theta'}\| < (L + 1) \gamma^n + 4(2c)^{d+2} \frac{\sqrt{\|P_{\{h \in C : \forall i \leq k, h(X_i) = y_i\}} - P_{\{h \in C : \forall i \leq k, h(X_i) = y_i\}}\|}}{\gamma}.$$

- Plug in $k = c(d/\gamma) \log(1/\gamma)$, get $(L + 1) \gamma^n + 4(2c)^{d+2} \frac{\sqrt{\|P_{\{h \in C : \forall i \leq k, h(X_i) = y_i\}} - P_{\{h \in C : \forall i \leq k, h(X_i) = y_i\}}\|}}{\gamma}$.

Rate of Conv. under Hölder-Smooth

- Rate of conv. of estimate of $P_{\{h \in C : \forall i \leq k, h(X_i) = y_i\}}$

- ε-cover size bounded by grid-argument under hölder-smooth, plug that into the SC of Yachocos (1985), get $T = O(\varepsilon^{-2} (L/\varepsilon)^{d/\alpha} \log(1/\varepsilon))$ for ε. Solving for ε, we get $\varepsilon = O(L (\log(TL)/T)^{\alpha/(\alpha+2d)}).$

- Plug this into (*)*, get the follow (hold for any γ)

$$\mathbb{E}\|\pi_{\theta'} - \pi_{\theta}\| < (L + 1) \gamma^n + 4 \left(2c \frac{\varepsilon}{\gamma} \log \left(\frac{1}{\gamma}\right)\right)^{d+2} \frac{\sqrt{\|P_{\{h \in C : \forall i \leq k, h(X_i) = y_i\}} - P_{\{h \in C : \forall i \leq k, h(X_i) = y_i\}}\|}}{\gamma}.$$

- With $\gamma = \tilde{O}(T^{-\frac{\alpha}{2d+2\alpha+2\alpha(d+2)}})$, $\mathbb{E}\|\pi_{\theta'} - \pi_{\theta}\| = \tilde{O}(LT^{-\frac{\alpha}{2d+2\alpha+2\alpha(d+2)}}).$

QED
Is this Better than without Transfer?

• The question becomes:
 - How much does knowledge of target distrib π^* help?
• There are some (constant factor) gains for passive learning [e.g. HKS1992]
• It really helps in Active learning:
 - Earlier, we showed can get $o(1/\varepsilon)$ for all π
• For many C (e.g. linear separators), no prior-indep alg has this guarantee.
• Plugging in that method, transfer method accesses $o(1/\varepsilon)$ labels on avg.

An Example of Prior-Dependent Learning

Self-verifying Bayesian Active Learning
 (a special type of stopping criterion)
- Given ε, adaptively decides # of query, then halts
- has the property that $E[\text{err}] < \varepsilon$ when halts
Question: Can you do with $E[\text{#query}] = o(1/\varepsilon)$? (passive learning need $1/\varepsilon$ labels)
Example: Intervals

Verification Lower Bound

In non-Bayesian setting, supposing h^* is empty interval.

Given any classifier h, just to verify $\text{err}(h) < \varepsilon$.

Need to verify h^* is not an interval of width 2ε.

Need an example in $\Omega(1/\varepsilon)$ regions to verify this fact.

![Diagram showing an example with intervals](image)

Interval Example with prior

- - - - - |+++++++++| - - - - -

- **Algorithm:** Query random pts till find first +, do binary search to find end-pts. Halt when reach a pre-specified prior-based query budget. Output posterior's Bayes classifier.

- **Let budget N be high enough so $E[\text{err}] < \varepsilon$**
 - $N = o(1/\varepsilon)$ sufficient for $E[\text{err}|w^*>0] < \varepsilon$: if $w^* > 0$, even prior-independent analysis needs only $E[\#\text{queries}|w^*] = O(1/w^* + \log(1/\varepsilon)) = o(1/\varepsilon)$.
 - $N = o(1/\varepsilon)$ sufficient for $E[\text{err}|w^*=0] < \varepsilon$: if $P(w^*=0)>0$, then after some $L = O(\log(1/\varepsilon))$ queries, w.p.$>1-\varepsilon$, most prob. mass on empty interval, so posterior's Bayes classifier has 0 error rate.
Can do o(1/eps) for any VC-class

Theorem: With the prior, can get o(1/ε) QC

• There are methods that find a good classifier in o(1/eps) queries (though they aren’t self-verifying) [BHW08]

• Need set a stopping criterion for those alg

• The stop criterion we use: budget

• Set the budget to be just large enough so E[err] < ε.