Active Learning
Drifting Distributions, and
Convex Surrogate Losses

Liu Yang

Carnegie Mellon University
Outline

• Active Learning with a Drifting Distribution ([Yang11 NIPS])
Active Learning with a Drifting Distrib: Model

• Scenario:
 - Unobservable seq. of distrib.s \(D_1, D_2, \ldots \) with each \(D_t \in \mathcal{D} \)
 - Unobservable time-indep. regular cond. distrib. represent by fn \(\eta : X \rightarrow [0, 1] \)

• Active learning protocol
 - At each time \(t \), alg is presented with \(X_t \), and is required to predict a label \(\hat{Y}_t \) \in \{-1, +1\}, then it may optionally request to see true label value \(Y_t \)

• Interested in cumulative #mistakes up to time \(T \) and total #labels requested up to time \(T \)
Definition and Notations

- Instance space $X = \mathbb{R}^n$
- Distribution space \mathcal{D} of distributions on X
- Concept space C of classifiers $h: X \rightarrow \{-1,1\}$
 - Assume C has VC dimension $vc < \infty$
- D_t: Data distrib. on X at t
- Unknown target fn h^*: true labeling fn
- $\text{Err}_t(h) = P_{x \sim D_t} [h(x) \neq h^*(x)]$
- In realizable case, $h^* \in C$ and $\text{err}_t(h^*) = 0$
- For $V \subseteq C$, $\text{diam}_t(V) = \sup_{h,g \in V} D_t(\{x : h(x) \neq g(x)\})$
Def: disagreement coefficient, tvd

- The disagreement coefficient of h^* under a distri. P on X, is define as, $(r > 0)$

 $$\theta_P(\epsilon) = \sup_{r>\epsilon} \frac{P(DIS(B_P(h^*, r)))}{r}.$$

 $DIS(V) = \{x \in X : \exists h, g \in V \text{ s.t. } h(x) \neq g(x)\}$

 $B_P(h, r) = \{g \in C : P(x : h(x) \neq g(x)) \leq r\}$

- Total variation distance of probability measures P and Q on a sigma-algebra \mathcal{G} of subsets of the sample space is defined via

 $$\|P - Q\| = \sup_{A \in \mathcal{G}} |P(A) - Q(A)|$$
Assumptions

• Independence of the X_t variables
• V_c-dim < ∞
• Assumption 1 (totally bounded): \mathcal{D} is totally bounded (i.e. satisfies $\forall \epsilon > 0, |\mathcal{D}_\epsilon| < \infty$)
 - For each $\epsilon > 0$, \mathcal{D}_ϵ denote a minimal subset of \mathcal{D} s.t.
 $\forall D \in \mathcal{D}, \exists D' \in \mathcal{D}_\epsilon$ s.t. $\|D - D'\| < \epsilon$ (i.e. a minimal ϵ-cover of \mathcal{D})
• Assumption 2 (poly-covers)

$$\forall \epsilon > 0, |\mathcal{D}_\epsilon| < c \cdot \epsilon^{-m}$$

where $c, m \geq 0$ are constants.
Realizable-case Active Learning

CAL

1. \(t \leftarrow 0, \mathcal{Q}_0 \leftarrow \emptyset \), and let \(\hat{h}_0 = A(\emptyset) \)
2. Do
3. \(t \leftarrow t + 1 \)
4. Predict \(\hat{Y}_t = \hat{h}_{t-1}(X_t) \)
5. If \(\max_{y \in \{-1,+1\}} \min_{h \in C} \hat{\epsilon}(h; \mathcal{Q}_{t-1} \cup \{(X_t, y)\}) = 0 \)
6. Request \(Y_t \), let \(\mathcal{Q}_t = \mathcal{Q}_{t-1} \cup \{(X_t, Y_t)\} \)
7. Else let \(Y'_t = \arg\min_{y \in \{-1,+1\}} \min_{h \in C} \hat{\epsilon}(h; \mathcal{Q}_{t-1} \cup \{(X_t, y)\}) \), and let \(\mathcal{Q}_t = \mathcal{Q}_{t-1} \cup \{(X_t, Y'_t)\} \)
8. Let \(\hat{h}_t = \arg\min_{h \in C} \hat{\epsilon}(h; \mathcal{Q}_t) \)

© Liu Yang 2012
Theorem. If \mathcal{D} is totally bounded, then CAL achieves an expected mistake bound $\bar{M}_T = o(T)$

And if $\theta_D(\epsilon) = o(1/\epsilon)$, then CAL makes an $E[\#queries]$ $\bar{Q}_T = o(T)$

[Proof Sketch]:
Partition \mathcal{D} into buckets of diam < eps.
Pick a time T_{ϵ} past all indices from finite buckets and all the infinite bucket has at least

$$L(\epsilon) = \lceil \frac{8}{\sqrt{\epsilon}} \left(d \ln \frac{24}{\sqrt{\epsilon}} + \ln \frac{4}{\sqrt{\epsilon}} \right) \rceil$$
Number of Mistakes

- **Alternative scenario:**
 - Let P_i be in bucket i
 - Swap the $L(\varepsilon)$ samples for bucket i with $L(\varepsilon)$ samples from P_i
 - $L(\varepsilon)$ large enough so $E[diam(V)]_{\text{alternative}} < \sqrt{\varepsilon}$.

- Note: $E[diam(V)] \leq E[diam(V)]_{\text{alternative}} + \sum_{\text{values}} L(\varepsilon) \cdot ||P_i - D_t|| < \sqrt{\varepsilon} + L(\varepsilon) \cdot \varepsilon$.

 So $E[diam] \to 0$ as $T \to \infty$

- $E[\#\text{mistake}] \leq \sum_{t=1}^{T} E[diam(V_{t-1})]$

- Since $E[diam(V_{t-1})] \to 0$, $\sum_{t=1}^{T} E[diam(V_{t-1})] = o(T)$
Number of Queries

- \(E[\#\text{queries}] = \sum_{t=1}^{T} P(\text{make query}) \)
- \(P(\text{make query}) = E[P(\text{DIS}(V_{t-1}))] \)
- \(E[\theta(r) \max\{diam, r\}] \leq \theta(r) E[diam] + \theta(r) \cdot r \)

- Let \(r_T = \frac{1}{T} \sum_{t=1}^{T} E[diam_t(V_{t-1})] \)

 \(r_t \to 0 \) and

\[E[\#\text{queries}] \leq \theta(r_T) \sum_{t=1}^{T} E[diam_t(V_{t-1})] + \theta(r_T)r_T = \theta(r_T)r_T(T + 1) \]

- \(\theta(\epsilon) = o(1/\epsilon) \implies \theta(r_T)r_T \to 0 \implies \theta(r_T)r_T(T + 1) = o(T) \)
Explicit Bound: Realizable Case

Theorem. If poly-covers assumption is satisfied \(|D_\varepsilon| < (1/\varepsilon)^m\) then CAL achieves an expected mistake bound \(\hat{M}_T\) and \(E[\#queries] \hat{Q}_T\) such that

\[
\hat{M}_T = O\left(T \frac{m}{m+1} d \frac{1}{m+1} \log^2 T\right)
\]
\[
\hat{Q}_T = O\left(\theta_D(\varepsilon_T) T \frac{m}{m+1} d \frac{1}{m+1} \log^2 T\right)
\]

where \(\varepsilon_T = (d/T)^{\frac{1}{m+1}}\)

[Proof Sketch]
Fix any \(\varepsilon > 0\), and enumerate \(D_\varepsilon = \{P_1, P_2, \ldots, P_{|D_\varepsilon|}\}\)
For \(t\) in \(\mathbb{N}\), let \(K(t)\) be the index \(k\) of the closest \(P_k \in D_\varepsilon\) to \(D_t\).

Alternative data sequence:
Let \(\{X'_t\}_{t=1}^{\infty}\) be indep., with \(X_t \sim P_{K(t)}\)
This way all samples corresp. to distrib.\'s in a given bucket all came from same distri.
Let \(V'_t\) be the corresponding version spaces.
$$\mathbb{E}[\#\text{mistakes}] \leq \mathbb{E}\left[\sum_{t=1}^{T} \text{diam}_{P_K(t)}(V'_{t-1})\right] + \sum_{t=1}^{T} \|D_t - P_K(t)\|$$
$$\leq \sum_{t=1}^{T} \mathbb{E}[\text{diam}_{P_K(t)}(V'_{t-1})] + \epsilon T$$

Classic PAC bound \Rightarrow $\mathbb{E}[\text{diam}_{P_K(t)}(V'_{t-1})] \leq O\left(\frac{d \log t}{|\{i \leq t: K(i) = K(t)\}|}\right)$

So $\sum_{t=1}^{T} \mathbb{E}[\text{diam}_{P_K(t)}(V'_{t-1})] \leq O(d \log T) \sum_{t=1}^{T} \frac{1}{|\{i \leq t: K(i) = K(t)\}|}$
$$\leq O\left(d \log T|\mathcal{D}_\epsilon| \sum_{u=1}^{T} \frac{1}{u} \leq O(d|\mathcal{D}_\epsilon| \log^2(T))\right)$$

(each bucket has at most T samples)

So $\mathbb{E}[\#\text{mistakes}] \leq O\left(d\left(\frac{1}{\epsilon}\right)^m \log^2(T) + \epsilon T\right)$

Take $\epsilon = (T/d)^{-\frac{1}{m+1}}$ to get the stated theorem.

To bound $\mathbb{E}[\#\text{queries}]$, again it is
$$\leq \mathbb{E}\left[\sum_{t=1}^{T} D_t(DIS(V_{t-1}))\right] \leq \mathbb{E}\left[\sum_{t=1}^{T} \theta(\epsilon) \max\{\text{diam}_t(V_{t-1}, \epsilon)\}\right]$$
$$\leq \theta(\epsilon) \mathbb{E}\left[\sum_{t=1}^{T} \text{diam}_t(V_{t-1})\right] + \theta(\epsilon)\epsilon T$$

just showed this is $\leq O\left(d\left(\frac{1}{\epsilon}\right)^m \log^2(T) + \theta(\epsilon)\epsilon T\right)$

So $O(\theta(\epsilon)d \left(\frac{1}{\epsilon}\right)^m \log^2(T) + \theta(\epsilon)\epsilon T)$

Again, taking $\epsilon = (T/d)^{-\frac{1}{m+1}}$ gives the stated result.
• **Strictly benign noise condition:**
 \[h^* = \text{sign}(\eta - 1/2) \in C \quad \text{and} \quad \forall x, \eta(x) \neq 1/2 \]

• **Special case: Tsybakov's noise conditions**

• \(\eta \) satisfies strictly benign noise condition and for some \(c > 0 \) and \(\alpha \geq 0 \), \(\forall t > 0 \), \(P(|\eta(x) - 1/2| < t) < c \cdot t^\alpha \)

\[P(h(x) \neq h^*(x)) \leq c' \left(er(h) - er(h^*) \right) \frac{\alpha}{\alpha + 1} \]

• **Unif Tsybakov assumption:** Tsybakov Assumption is satisfied for all \(D \in \mathcal{D} \) with the same \(c \) and \(\alpha \) values.
Agnostic CAL [DHM]

ACAL
1. $t \leftarrow 0$, $L_t \leftarrow \emptyset$, $Q_t \leftarrow \emptyset$, let \hat{h}_t be any element of \mathcal{C}
2. Do
3. $t \leftarrow t + 1$
4. Predict $\hat{Y}_t = \hat{h}_{t-1}(X_t)$
5. For each $y \in \{-1, +1\}$, let $h(y) = \text{LEARN}(L_{t-1} \cup \{(x_t, y)\}, Q_{t-1})$
6. If either y has $h(-y) = \emptyset$ or
 \[
 \hat{e}_r(h(-y); L_{t-1} \cup Q_{t-1}) - \hat{e}_r(h(y); L_{t-1} \cup Q_{t-1}) > \hat{\epsilon}_{t-1}(L_{t-1}, Q_{t-1})
 \]
7. $L_t \leftarrow L_{t-1} \cup \{(X_t, y)\}$, $Q_t \leftarrow Q_{t-1}$
8. Else Request Y_t, and let $L_t \leftarrow L_{t-1}$, $Q_t \leftarrow Q_{t-1} \cup \{(X_t, Y_t)\}$
9. Let $\hat{h}_t = \text{LEARN}(L_t, Q_t)$
10. If t is a power of 2
11. $L_t \leftarrow \emptyset$, $Q_t \leftarrow \emptyset$

Based on subroutine: $\text{LEARN}(L, Q) = \arg\min_{h \in \mathcal{C}} \hat{e}_r(h; Q)$ if $\min_{h \in \mathcal{C}} \hat{e}_r(h; L) = 0$, and otherwise $\text{LEARN}(L, Q) = \emptyset$.

© Liu Yang 2012
Theorem. If \mathcal{D} is totally bounded and η satisfies strictly benign noise condition, then ACAL achieves an excess expected mistake bound

$$M_T - M_T^* = o(T)$$

and if additionally $\theta_\mathcal{D}(\epsilon) = o(1/\epsilon)$, then ACAL makes an expected number of queries $\bar{Q}_T = o(T)$

Theorem. If poly-covers Assumption and Unif Tsybakov assumption are satisfied, then ACAL achieves an expected excess number of mistakes ACAL achieves expected excess mistakes \bar{M} and expected queries \bar{Q}_T such that, for $\epsilon_T = T^{-\frac{\alpha}{(\alpha+2)(m+1)}}$

$$\bar{M}_T - M_T^* = \tilde{O} \left(T^{\frac{(\alpha+2)m+1}{(\alpha+2)(m+1)}} \right)$$

$$\bar{Q}_T = \tilde{O} \left(\theta_\mathcal{D}(\epsilon_T) \cdot T^{\frac{(\alpha+2)(m+1)-\alpha}{(\alpha+2)(m+1)}} \right)$$
Outline

• Convex Losses in Active Learning
 (Joint work with Steve Hanneke)
Negative Results for AL with Convex Losses [AISTATS'10]

\[F_{\text{offs}} : f : \mathcal{X} \to R \]

\[\text{Loss fn } l : R \to [0, \infty) \]

Interested in convex nonincreasing loss

Data distri. \(D \) still on \(\mathcal{X} \times -1, +1 \)

Risk \(R_l(f) = E[l(f(x)Y)] \) for \((X, Y) \sim D_{XY} \)

Question: How many labels needed to find \(\hat{f} \in \mathcal{F} \) with \(R_l(\hat{f}) - \inf_{f \in \mathcal{F}} R_l(f) \leq \epsilon \)?

We'll study "Bounded Noise" Scenario where \(\exists f \in \mathcal{F} \) s.t. \(P(Y = \text{sign}(f(x)) | x) > c \) for some \(c > 1/2 \)

These are easy for active learning under 0-1 loss. Now let us see about under convex losses.
\[\mathcal{F} = \{ f_t(x) = x - t : t \in \mathbb{R} \} \quad D_X = \text{Uniform}(0, 4z) \]

Slope-one Linear fns. Corresponds to “threshold” classifiers when we take signs. e.g. would be intervals if has used quadratic fns instead.

Minimizer of \(R_l \)

Increasing fn of \(\nu \)

Calculus + convexity \[R_l(f_t) - R_l(f_{t^*}) \geq c(t - t^*)^2 \]

Let \(\nu_t \) be the \(\nu \) that would make \(t^* = t \)

More calculus \[(t - t^*)^2 \geq (\nu_t - \nu_{t^*})^2 \]

So \[R_l(f_t) - R_l(f_{t^*}) \leq \epsilon \Rightarrow (\nu_t - \nu_{t^*})^2 < c\epsilon \]

estimating a Bernouli mean requires \(\Omega(1/\epsilon) \) samples
Definition: Surrogate Losses

[BJM06]: For η_0 in [0,1], define
\[
l^*(\eta_0) = \inf_{z \in R} (\eta_0 l(z) + (1 - \eta_0) l(-z))
\]
\[
l_-(\eta_0) = \inf_{z \in R: z(2\eta_0 - 1) \leq 0} (\eta_0 l(z) + (1 - \eta_0) l(-z))
\]

- **Loss l** is **classification-calibrated** if, for every η_0 in [0,1]\{1/2\},
\[
l^*(\eta_0) > l^*(\eta_0)
\]
Calibration means: fn with minimal surrogate loss \Rightarrow fn with minimal err
\[
l^*(\eta(X)) : \text{minimum value of conditional-risk at } X \text{ s.t.}
\]
\[
\text{sign}(h(X)) \neq \text{sign} (\eta(X) - 1/2)
\]
\[
l^*(\eta(X)) : \text{minimum conditional l-risk at } X, \text{ s.t. } E[l^*(\eta(X))] = \inf_h R_l(h)
\]

- **Ψ-transform of a loss fn:**
- BJM06 defined a loss-dependent function Ψ to convert excess surrogate risk bounds into excess error rate bounds, specifically,
\[
(\varepsilon_r(h) - \varepsilon_r(h^*))^{\alpha/(1+\alpha)} \Psi((\varepsilon_r(h) - \varepsilon_r(h^*))^{1/(1+\alpha)}) \leq R_l(h) - R_l(h^*)
\]

- **Modulus of convexity:**
\[
\delta(\epsilon) = \max \{(f(x) + f(y))/2f((x + y)/2) : |x - y| > \epsilon \}
\]
suppose $\delta(\epsilon) \geq \epsilon^p$
Alg: A modification on ACAL stream-based

ACAL
1. $t \leftarrow 0, \mathcal{L}_t \leftarrow \emptyset, Q_t \leftarrow \emptyset$, let \hat{h}_t be any element of \mathbb{C}
2. Do
3. $t \leftarrow t + 1$
4. Predict $\hat{Y}_t = \hat{h}_{t-1}(X_t)$
5. For each $y \in \{-1, +1\}$, let $h(y) = \text{LEARN}(\mathcal{L}_{t-1} \cup \{(x_t, y)\}, Q_{t-1})$
6. If either y has $h(-y) = \emptyset$ or
 \[
 \hat{e}_r(h(-y); \mathcal{L}_{t-1} \cup Q_{t-1}) - \hat{e}_r(h(y); \mathcal{L}_{t-1} \cup Q_{t-1}) > \hat{E}_{t-1}(\mathcal{L}_{t-1}, Q_{t-1})
 \]
7. $\mathcal{L}_t \leftarrow \mathcal{L}_{t-1} \cup \{(X_t, y)\}, Q_t \leftarrow Q_{t-1}$
8. Else Request Y_t, and let $\mathcal{L}_t \leftarrow \mathcal{L}_{t-1}, Q_t \leftarrow Q_{t-1} \cup \{(X_t, Y_t)\}$
9. Let $\hat{h}_t = \text{LEARN}(\mathcal{L}_t, Q_t)$
10. If t is a power of 2
11. $\mathcal{L}_t \leftarrow \emptyset, Q_t \leftarrow \emptyset$

Based on subroutine:

\[
\text{LEARN}(\mathcal{L}, Q) = \arg\min_{f \in F; \text{er}_\mathcal{L}(f) = 0} R_L(f; Q)
\]

\[
\text{LEARN}(\mathcal{L}, Q) = \arg\min_{h \in \mathbb{C}: \hat{e}_r(h; \mathcal{L}) = 0} \hat{e}_r(h; Q) \text{ if } \min_{h \in \mathbb{C}} \hat{e}_r(h; \mathcal{L}) = 0, \text{ and otherwise LEARN}(\mathcal{L}, Q) = \emptyset.
\]
Can we do it efficiently?

General Results

• In general, we have results on how many labels are required to obtain a given excess error rate with this method, for general classification calibrated losses.

• Generally, if \(\varepsilon_t \) denotes the solution of
 \[
 t = \tilde{O} \left(\left(\frac{1}{\varepsilon \Psi(1-\varepsilon)} \right)^{2-2/p} \right)
 \]
 for \(\varepsilon \) in terms of \(t \), then
 \[
 \mathbb{E}[\text{excess mistakes}] = \tilde{O} \sum_{t=1}^{T} \varepsilon_t
 \]
 \[
 \mathbb{E}[\#\text{queries}] = \tilde{O} \left(\sum_{t=1}^{T} \theta(\varepsilon_t^\alpha) \varepsilon_t^\alpha \right)
 \]
 e.g., when \(l \) is squared loss = \((1-x)^2\), \(\Psi(x) = x^2 \), \(p = 2 \)
Can we do it efficiently?
(Streamed-based, just for one distri.)

- Theorem. If loss is square loss, under surrogate loss assumption, optimal fn is in fn class, fn class is VC subgraph, satisfying Tsybkov noise with exponent \(\alpha/(1-\alpha)\), alg \(A'\) has excess \#mistake

\[
\begin{align*}
E[\text{excess #mistake}] &= \tilde{O}(T^{1-\alpha}/2) \\
E[\#queries] &= \tilde{O}(\theta(T^{2-\alpha})T^{2-2\alpha}/2)
\end{align*}
\]

[Proof Sketch] By BJM06 analysis,

- If \(t = \left(\frac{1}{e^\alpha \psi(1-e^{1-\alpha})}\right)^{2-2/p}\text{polylog}(\log 1/\epsilon)\) then excess err rate < \(\epsilon\). This is sample complexity of passive learning with surrogate loss.
- E excess error under 0-1 loss
- Solve for \(t = \frac{1}{e^\alpha \psi(1-e^{1-\alpha})} = T\)
- Get current excess error rate (as fn of \(t\), bound on excess error rate, excess mistake = pr(make mistake but optimal fn doesn't)
give excess err

E[excess #mistake] sublinear - if \(\theta = o(1/\epsilon)\),
E[#queries] sublinear.
Proof Sketch (cont.)

- If the loss is squared loss, fill in all the value, we get
 \[\sum_{t=1}^{T} \left(\frac{1}{t} \right)^{\frac{1}{2-\alpha}} = T^{\frac{1-\alpha}{2-\alpha}} \]

- How to convert excess error to \(\Pr(\text{make a query}) \)
- use Tsybakov noise condition

- Take \(\left(\frac{1}{t} \right)^{\frac{1}{2-\alpha}} \), raise to the power of \(\alpha \), get diameter
- relate that to \(\Pr(\text{in DIS}) \) by multiplying with \(\theta \) (the disagreement coefficient, taking an argument)
- do that get
 \[\sum_{t=1}^{T} \theta(t^{\frac{-\alpha}{2-\alpha}}) \left(\frac{1}{t} \right)^{\frac{\alpha}{2-\alpha}} \leq \theta(T^{\frac{-\alpha}{2-\alpha}}) \sum_{t=1}^{T} t^{\frac{-\alpha}{2-\alpha}} = T^{\frac{2-2\alpha}{2-\alpha}} \]
- plug in the bound on the diameter
- If \(\theta \) is \(o(1/\varepsilon) \), this is sublinear
Thanks!