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Abstract—Dynamic Bayesian Networks (DBNs) can serve as succinct probabilistic dynamic models of biochemical networks [1]. To

analyze these models, one must compute the probability distribution over system states at a given time point. Doing this exactly is

infeasible for large models; hence one must use approximate algorithms. The Factored Frontier algorithm (FF) is one such algorithm

[2]. However FF as well as the earlier Boyen-Koller (BK) algorithm [3] can incur large errors. To address this, we present a new

approximate algorithm called the Hybrid Factored Frontier (HFF) algorithm. At each time slice, in addition to maintaining probability

distributions over local states—as FF does—HFF explicitly maintains the probabilities of a number of global states called spikes. When

the number of spikes is 0, we get FF and with all global states as spikes, we get the exact inference algorithm. We show that by

increasing the number of spikes one can reduce errors while the additional computational effort required is only quadratic in the

number of spikes. We validated the performance of HFF on large DBN models of biopathways. Each pathway has more than 30

species and the corresponding DBN has more than 3,000 nodes. Comparisons with FF and BK show that HFF is a useful and powerful

approximate inferencing algorithm for DBNs.

Index Terms—Probability and statistics, symbolic and algebraic manipulation—algorithms, life and medical sciences—biology and

genetics.

Ç

1 INTRODUCTION

BIOLOGICAL pathways are usually described by a network
of biochemical reactions. The dynamics of these reaction

networks are often modeled and analyzed as a set of
Ordinary Differential Equations (ODEs). The ODEs will be
nonlinear due to the nature of the kinetic laws governing
the reactions. Except for the toy examples, the ODEs system
will also be high dimensional. Hence, closed-form solutions
will not be obtainable. One must instead resort to large scale
numerical simulations to perform analysis tasks such as
parameter estimation and sensitivity analysis. Further, only
a small amount of noisy data of limited precision will be
available to support model calibration and validation.
Guided by these considerations a method for approximat-
ing the ODE dynamics of biological pathways as a Dynamic
Bayesian Network (DBN) was developed in [1]. This
approximation—explained in more detail later—is derived

by discretizing both the time and value domains, sampling
an assumed set of initial states and using numerical
integration to generate a large number of representative
trajectories. Then by exploiting the network structure and
simple counting, the generated trajectories are compactly
stored as a DBN. One then studies the biochemical network
by applying Bayesian inferencing techniques to the much
simpler DBN model. This approach significantly reduces
the computational burden of tasks such as parameter
estimation and sensitivity analysis as demonstrated in [1]
and [4]. It also opens up the possibility of incrementally
updating the DBN model using belief propagation techni-
ques when additional experimental data becomes available
(using the ideas developed in [5]). Finally, one can also
apply probabilistic verification methods [6] to the DBN
model to gain insights into the dynamics of the biopathway.

In this scheme, the random variables associated with
each time point t represent the discretized concentrations of
the associated molecular species (protein, gene, etc.) at t. To
perform tasks such as parameter estimation and sensitivity
analysis one must repeatedly compute the probability of a
random variable assuming a specific value at a time point.
Due to conditional dependencies between the variables, this
will require an effort exponential in the number of species
in the biochemical network. Hence for large networks, exact
computation is infeasible and one must resort to approx-
imate methods. There is an efficient approximate inferen-
cing technique for DBNs which is already available and it is
called the Factored Frontier algorithm (FF) [2], [7].

FF was used extensively in [1], [4] and this subsequently
led us to consider its error behavior. Surprisingly, we could
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not find in the literature a rigorous error analysis. Further,
we found that in the models we considered—as detailed
later—though the Factored Frontier algorithm performed
well for many variables, there were a few for which it
incurred significant errors. This motivated us to construct an
improved inferencing algorithm for DBNs called the Hybrid
Factored Frontier algorithm (HFF) and it is the focus of this
paper. HFF is a parameterized version of FF and to bring out
its main features, it will be helpful to first see how FF works.

A DBN has a finite set of random variables with each
variable having a finite domain of values. The value of a
variable at time t only depends on the values of its parents
at time t� 1. The probabilistic dynamics is captured by a
Conditional Probability Table (CPT) associated with each
variable at each time point (see Fig. 1c for an example). This
table will specify how the value of a variable at t is
conditioned by the values of its parent variables at time
t� 1. The global state of the system at time t is a tuple of
values with each component denoting the value assumed
by the corresponding variable at t. One is interested in the
marginal probability, i.e., the probability of a variable X
taking value v at time t. To compute this exactly, we need
Pt, the joint probability distribution over global states at
time t. This can be computed by propagating Pt�1 through
the CPTs. FF maintains and propagates these joint prob-
ability distributions approximately. Such approximate
distributions are usually called belief states.

FF is a simplified and more efficient version of the earlier
Boyen-Koller algorithm (BK) [3]. In BK, a belief state is
maintained compactly as a product of the probability
distributions of independent clusters of variables. This
belief state is then propagated exactly at each step through
the CPTs. Then the new belief state is compacted again into
a product of the probability distributions of the clusters. In
contrast, the FF algorithm maintains a belief state as a
product of the marginal distributions of the individual
variables. Instead of computing first the new belief state as
done by BK, the FF algorithm computes the new marginal
distributions directly via the propagation of the current
marginal distributions through the CPTs.

FF is attractive in terms of simplicity and efficiency but
unlike BK [3], it lacks a rigorous error analysis. More
importantly, as we observe in Section 4, FF can exhibit
significant errors. As for BK, its accuracy crucially depends
on how one clusters the variables. Further, computing the
next belief state exactly is computationally infeasible when
the clusters are large. Identifying the right set of clusters is a
difficult problem and there seem to be no efficient
techniques for doing this well. One could avoid the problem
of identifying clusters by just using singleton clusters (the
so called fully factored BK algorithm). However, as we
report in Section 4, this can also result in significant errors.

The error analysis for BK [3] suggests that the key to
minimizing the overall error is to reduce the error incurred
in one step. HFF attempts to achieve this by maintaining the
current belief state as a hybrid entity; for a small number of
global states called spikes, their current probabilities are
maintained. The probability distribution over the remaining
states is represented, as in FF, as a product of the marginal
probability distributions. The key insight underlying this

idea is that when the error produced by one step of the
inferencing algorithm is large for a global state, then either
the probability of this state or its estimate must itself be high.
If such states are chosen to be the spikes then since the total
probability is bounded by 1, the number of spikes at each
time point must be small. The main technical component of
HFF is to explicitly identify and approximately compute the
probabilities of the spikes.

A pleasing feature of HFF is that it is a parametrized
version of FF with �, the number of spikes, being the
parameter. When � ¼ 0, we get FF and when � ¼ N where
N is the total number of global states, we get the exact
inferencing algorithm. Thus by tuning �, one can gain
control over the error behavior. We have derived the single
step error bound for HFF, which then also leads to an error
analysis for FF. We show that the worst case one step error
of HFF is lower than that of FF. The time complexity of HFF
is Oðn � ð�2 þKDþ1ÞÞ where n is the number of nodes in the
DBN, � is the number of spikes, K is the maximum number
of values that a random variable (associated with each
node) can assume and D is the maximum number of
parents that a node can have. This compares favorably with
the time complexity of FF which is Oðn �KDþ1Þ. Since the
running time of HFF is linear in n, it scales well in terms of
network size. The factor D is determined by the maximum
number of reactions that a species takes part in as a product
or reactant. For most of the networks we have encountered,
D is much smaller than n.

Our experimental results confirm that HFF is a useful
and efficient algorithm. We considered four large DBNs.
Three of them arise from the EGF-NGF pathway [8] with
one model for NGF stimulation, the second for EGF
stimulation and the third for EGF-NGF costimulation. The
fourth DBN captures the behavior of the Epo mediated ERK
signaling pathway [9]. Starting from their ODE-based
models (each of which had more than 30 species), we
applied the technique developed in [1] to obtain the DBNs
each of which had more than 3,000 nodes. In all four cases,
we found that the errors suffered by FF and BK (with
singleton clusters) were high for the marginal distributions
of some biologically significant species. The errors incurred
by HFF were always lower and they reduced monotonically
when the number of spikes was increased.

1.1 Related Work

DBNs are used extensively in domains such as AI,
computer vision, signal processing and computational
biology [7], [10], [11], [12]. HFF is a generic inferencing
algorithm and it can be applied to compute and maintain
belief states in these settings as well. As done in HFF,
capturing a large probability mass using only a few values
has been considered in [13] and [14]. The main idea of [13] is
to use stochastic sampling methods to look for cut sets in
the graph structure that have high probability mass. The
approach of [14] consists of predictive pruning to remove
all but a few high probability nodes. Loosely speaking,
these methods select the spikes with methods that differ
from HFF’s. Further, they are not guaranteed to improve the
accuracy in theory as is the case for HFF.

Probabilistic dynamical models arise in many other
settings in the study of biochemical networks. In particular,
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there is a rich vein of work based on Continuous Time
Markov Chains [15], [16], [17], [18], [19], [20], [21], [22].
Typically, in these studies one maintains the number of
molecules of each species in the network and tracks the
changes in these numbers as reactions one at a time. This
approach is mandated when the number of molecules
involved in the pathway is too low to support the
“smoothness” conditions required by ODE-based models.
As might be expected, the exact inferencing problem for
large CTMCs is also computationally infeasible. Analysis
methods based on Monte Carlo simulations [23], [24], [21],
[25], probabilistic model checking [15], [26] as well as
numerically solving the Chemical Master Equation describ-
ing a CTMC [20], [27] are being developed. In these studies,
the CTMCs are presented implicitly but the analysis is
carried out on the full state space of the CTMCs. Conse-
quently, most of the current analysis methods based on
CTMCs do not cope well with large biochemical networks
(say with 30 or more species). Further, the associated
parameter estimation problem is rarely addressed.

Our overall approach may be viewed as Monte Carlo
based but with the crucial additional feature that we
generate a pool of representative trajectories just once and
compactly store these trajectories as a DBN. Then using this
representation and approximate Bayesian inferencing, we
carry out tasks such as parameter estimation and sensitivity
analysis [4]. At present it is not clear whether approximate
inferencing algorithms such as FF, BK, and HFF can be
deployed to analyze the CTMC-based models of biochem-
ical networks cited above.

1.2 Plan of the Paper

In the next section, we introduce DBNs and explain in more
detail how they arise in our context as models of
biochemical networks. In Section 3, we sketch the FF
algorithm and then present the HFF algorithm. This is
followed by an error analysis for the two algorithms. The
experimental results are presented in Section 4 and we
conclude with a discussion in Section 5. Additional
technical material and details concerning the case studies
can be found in [28].

This is an expanded and improved version of the
conference paper [29]. The present paper contains the main
proofs and many additional technical details including a
complete error analysis of FF and HFF. In the experimental
part of the work, we have used here a more sophisticated
sampling method—as explained in Section 4—to generate
the initial states of the trajectories. Further, we have
validated the quality of the DBN approximations in all
our case studies.

2 DBN MODELS OF BIOPATHWAYS

We start with an introduction to DBNs and related notions.
We fix an ordered set of n random variables fX1; . . . ; Xng
and let i, j range over f1; 2; . . . ; ng. We denote by X the tuple
ðX1; . . . , XnÞ. The random variables are assumed to take
values from the finite set V of cardinalityK. We let xi, ui, vi to
denote a value taken byXi. In the present setting, we need to
consider only finite DBNs with no hidden variables.

A Dynamic Bayesian Network is a structure D ¼ ðX ; T ; Pa,
fCt

igÞ where,

. T is a positive integer with t ranging over the set of
time points f0; 1; . . . ; Tg.

. X ¼ fXt
i j 1 � i � n; 0 � t � Tg is the set of random

variables. As usual, these variables will be identified
with the nodes of the DBN. Xt

i is the instance of Xi at
time slice t.

. Pa assigns a set of parents to each node and
satisfies: 1) PaðX0

i ¼ ;Þ, 2) If Xt0

j 2 PaðXt
iÞ then

t0 ¼ t� 1. 3) If Xt�1
j 2 PaðXt

iÞ for some t then Xt0�1
j 2

PaðXt0
i Þ for every t0 2 f1; 2; . . . ; Tg. Thus, the way

nodes at the ðt� 1Þth time slice are connected to
nodes at the tth time slice remains invariant as t
ranges over f1; 2; . . . ; Tg.

. Ct
i is the Conditional Probability Table associated with

node Xt
i specifying the probabilities P ðXt

i j PaðXt
iÞÞ.

Suppose PaðXt
iÞ ¼ fXt�1

j1
; Xt�1

j2
; . . . ; Xt�1

jm
g and ðxj1

;
xj2 ; . . . ; xjmÞ 2 V m. Then as usual we require,X

xi2V
Ct
iðxi j xj1

; xj2 ; . . . ; xjmÞ ¼ 1:

Thus, the structure of our DBNs will be time invariant, in
the sense that, the way nodes at the ðt� 1Þth time slice are
connected to nodes at the tth time slice will remain the same
as t ranges over f1; 2; . . . ; Tg. However, we do not require
the local probabilistic dynamics as captured by the CPTs to
be time invariant. More precisely, for the random variable
Xi, we allow the CPT Ct

i to be different from the CPT Ct0
i if

t 6¼ t0. This is despite the fact that PaðXt
iÞ can be obtained

from PaðXt0
i Þ by replacing every appearance of t0 by t in

PaðXt0
i Þ. This flexibility is required due to the discretization

of the value space and the fact that the CPTs will be
representing local probabilistic dynamics induced the ODE
dynamics. This will become clear in the next section.

A state of the DBN at t will be a member of V n, say
x ¼ ðx1; x2; . . . ; xnÞ specifying that Xt

i ¼ xi for 1 � i � n.
This in turn stands for Xi ¼ xi for 1 � i � n at t. Suppose
PaðXt

iÞ ¼ fXt�1
j1
; Xt�1

j2
; . . . ; Xt�1

jm
g. Then a CPT entry of the

form Ct
iðxi j xj1 ; xj2

; xjmÞ ¼ p says that if the system is in a
state at t� 1 in which Xjl ¼ xjl for 1 � l � m, then the
probability of Xi ¼ xi being the case at t is p. In this sense
the CPTs specify the probabilistic dynamics locally.

The regular structure of our DBNs induces the function
PA given by: Xj 2 PAðXiÞ iff Xt�1

j 2 PaðXt
iÞ. We define î ¼

fj j Xj 2 PAðXiÞg to capture Pa in terms of the correspond-
ing indices.

In the following, xI will denote a vector of values over
the index set I � f1; 2; . . .ng. It will be viewed as a map
xI : I ! V . We will often denote xI ðiÞ as xI ;i or just xi if I
is clear from the context. If I ¼ fig and xI ðiÞ ¼ xi, we will
identify xI with xi. If I is the full index set f1; 2; . . . ; ng, we
will simply write x. Further, we denote by Xt the vector of
random variables ðXt

1; . . . ; Xt
nÞ.

Using these notations, we can write Ct
iðxi j uîÞ ¼ p to

mean that p is the probability that Xi ¼ xi at time t given
that at time t� 1, Xj1

¼ uj1
; Xj2

¼ uj2
; . . . ; Xjm ¼ ujm with

î ¼ fj1; j2; . . . jmg.
The probability distribution P ðXt

1; X
t
2; . . . ; Xt

nÞ describes
the possible states of the system at time t. In other words,
P ðXt ¼ xÞ is the probability that the system will reach the
state x at t. Starting from P ðX0Þ at time 0, given by
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P ðX0 ¼ xÞ ¼
Q

i C
0
i ðxiÞ, one would like to compute

P ðXt
1; . . . ; Xt

nÞ for a given t.
We can use the CPTs to inductively compute this:

P ðXt ¼ xÞ ¼
X

u

P ðXt�1 ¼ uÞ
Y
i

Ct
iðxi j uîÞ

 !
; ð1Þ

with u ranging over V n.
Since jV j ¼ K, the number of possible states at t is Kn.

Hence, explicitly computing and maintaining the probabil-
ity distributions is feasible only if n is small or if the
underlying graph of the DBN falls apart into many disjoint
components. Neither restriction is realistic, and hence, one
needs approximate ways to maintain P ðXtÞ compactly and
compute it efficiently. Before we get into methods for doing
this, we shall describe how we use DBNs to model the
dynamics of biopathways.

2.1 DBN Models of Biopathways

Biological pathways are often described as a network of
biochemical reactions. Fig. 1a shows a simple network
consisting of 3 reactions; a pair of reversible reactions and
one irreversible reaction. The dynamics of such a network
can be modeled as a system of ODEs; one equation of the
form dy

dt ¼ fðy; rÞ for each molecular species y, with f
describing the kinetics of the reactions that produce and
consume y, while y is the set (vector) of molecular species
taking part in these reactions and r is the rate constants
associated with these reactions. The term corresponding to
each reaction will be determined by the kinetic law
governing this reaction. Fig. 1b illustrates this idea, where
we have assumed that the kinetics of all three reactions is
governed by the mass law [30], which states that the rate at
which a reaction proceeds is directly proportional to the
current concentration levels of the reactants taking part in the
reaction. Thus the rate at which the forward reaction
produces the enzyme substrate complex ES from the
substrate S and the enzyme E is directly proportional to
the current concentrations ofE and S. Further the constant of
proportionality, the rate constant for this reaction, is given to
be 0.1 in this example. This produces the term 0:1� S � E in
the equation for S which will capture the rate at which S is
being depleted due to the forward reaction. Similarly, the
term 0:2� ES will capture the rate which S is being
produced by the reverse reaction where we are given that

the rate constant for this reaction is 0.2. (the other aspects of
Fig. 1 will be explained later in this section).

Due to the nature of kinetic laws governing biochemical
reactions, the ODE models of biopathways will be non-
linear. They will also be high dimensional and hence closed
form solutions will not be available. Hence, one must resort
to numerical simulations. For carrying tasks such as
sensitivity analysis, the number of simulations one must
carry out can be very large. Further, many of the rate
constant values and initial concentrations will be unknown
and will have to be estimated by searching through a high
dimensional parameter value space. For each “guessed”
value of the parameters one will have to compare the
dynamics generated through numerical simulations with
experimental data. For high dimensional systems this will
again result in a very large number of simulations. Further
the experimental data available for calibrating the para-
meters will be very limited in quantity and precision.

Motivated by these considerations, a method for approx-
imating a system of ODEs as a dynamic Bayesian network
was developed in [1]. The discretized nature of DBN helps
to bridge the gap between the lack of precision in
experimental data and the precise nature of ODE solutions.
Further, the DBN can be analyzed using Bayesian inferen-
cing techniques. As demonstrated in [1] the one-time cost of
building the DBN is easily amortized by carrying out
parameter estimation, sensitivity analysis, and other tasks
on the DBN approximation.

The first step in this approximation procedure is to
discretize the time domain. For biopathways, experimental
data will be available only for a few time points with the
value measured at the final time point typically signifying
the steady state value. Hence, we assume the dynamics is of
interest only for discrete time points and, furthermore, only
up to a maximal time point. We denote these time points as
f0; 1; . . . ; Tg. It is not necessary to uniformly discretize the
time domain though we shall often do so for convenience.

Next, we assume that the values of the variables can be
observed with only finite precision and accordingly parti-
tion the range of each variable yi into a set of intervals Ii (Ij).
Again, it is not necessary to partition the value range of each
variable evenly. The initial values as well as the parameters
of the ODE system are assumed to be distributions (usually
uniform) over certain intervals. We then sample the initial
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Fig. 1. (a) The enzyme catalytic reaction network. (b) The ODE model. (c) The DBN approximation.



states of the system many times [1] and generate a trajectory
by numerical integration for each sampled initial state. The
resulting set of trajectories is then treated as an approxima-
tion of the dynamics of ODE system.

Unknown rate constants are handled as additional
variables. We assume that the minimum and maximum
values of these unknown rate constant variables are known.
We then partition these ranges of values also into a finite
numbers of intervals, and fix a uniform distribution over all
the intervals. For each such variable rj we add the equation
drj
dt ¼ 0 to the system of ODEs. This will reflect the fact that
once the initial value of a rate constant has been sampled,
this value will not change during the process of generating
a trajectory. Naturally, different trajectories can have
different initial values.

A key idea is to compactly store the generated set of
trajectories as a dynamic Bayesian network. This is achieved
by exploiting the network structure and by simple counting.
First, we specify one random variable Yi for each variable yi
of the ODE model. For each unknown rate constant rj, we
add one random variable Rj. The node Y t�1

k will be in
PaðY t

i Þ iff k ¼ i or yk appears in the equation for yi. Further,
the node Rt�1

j will be in PaðY t
i Þ iff rj appears in the equation

for yi. On the other hand, Rt�1
j will be the only parent of the

node Rt
j. In Fig. 1, we show a simple enzymatic reaction

network, its ODE model and the structure of its DBN
approximation. In this example, we have assumed that r3 is
the only unknown rate constant.

Suppose PaðY t
i Þ ¼ fZt�1

1 ; Zt�1
2 ; . . . ; Zt�1

k g. Then a CPT

entry of the form Ct
iðI j I1; I2; . . . ; IkÞ ¼ p says that p is the

probability of the value of yi falling in the interval I at

time t, given that the value of Zj was in Ij for 1 � j � k. The

probability p is calculated through simple counting.

Suppose N is the number of generated trajectories. We

record, for how many of these trajectories, the value of Zj
falls in the interval Ij simultaneously for each j 2 f1; 2; kg.
Suppose this number is J . We then determine for how

many of these J trajectories, the value of Yi falls in the

interval I at time t. If this number is J 0 then p is set to be J 0

J

(It should now be clear why Ct
iðI j I1; I2; . . . ; IkÞ will be in

general different from Ct0
i ðI j I1; I2; . . . ; IkÞ if t 6¼ t0).

If rj is an unknown rate constant, in the CPT ofRt
j we will

have P ðRt
j ¼ I j Rt�1

j ¼ I 0Þ ¼ 1 if I ¼ I 0 and P ðRt
j ¼ I j

Rt�1
j ¼ I 0Þ ¼ 0, otherwise. This is because the sampled initial

value of rj does not change during numerical integration.

Suppose rj appears on the right hand side of the equation for

yi and PaðY t
i Þ ¼ fZt�1

1 ; Zt�1
2 ; . . . ; Zt�1

‘ g with Zt�1
‘ ¼ Rt�1

j .

Then for each choice of interval values for nodes other than

Rt�1
j in PaðY t

i Þ and for each choice of interval value bI for rj
there will be an entry in the CPT of Y t

i of the form

P ðyti ¼ I j Zt�1
1 ¼ I1; Z

t�1
2 ¼ I2; . . . ; Rt�1

j ¼ bIÞ ¼ p. This is so,

since we will sample for all possible initial interval values

for rj. In this sense the CPTs record the approximated

dynamics for all possible combinations of interval values for

the unknown rate constants. These features are illustrated in

Fig. 1c for the unknown rate constant r3.
After building this DBN, we use a Bayesian inference-

based technique to perform parameter estimation to
complete the construction of the model (the details can be

found in [1]). This will result in a calibrated DBN in which
each unknown rate constant will have a specific interval
value assigned to it. In a similar way unknown initial
concentrations can also be handled.

The one time cost of constructing the DBN can be easily
recovered through the substantial gains obtained in doing
parameter estimation and sensitivity analysis [1]. This
method can cope with large biochemical networks with
many unknown parameters. It has been used to uncover new
biological facts about the complement system [4] where the
starting point was a ODE-based model with 71 unknown
parameters. In these studies FF was used as the core
inferencing algorithm. It was then that we began to consider
its shortcomings and started to seek an improved version.

3 THE HYBRID FACTORED FRONTIER ALGORITHM

In this section, we present the HFF algorithm. Since it is a
parametrized version of FF, we first present FF. In doing so
we will use the notations developed in Section 2.

Approximate probability distributions will be called
belief states and denoted by B, Bt, etc. Exact probability
distributions will be denoted by P , Pt, etc. Formally, a belief
state B is a map from V n ! ½0; 1� such that

P
u2V n BðuÞ ¼ 1.

Thus a belief state is just a probability distribution but it will
be convenient to linguistically separate them.

The FF algorithm uses marginal functions to represent

belief states. A marginal function is a map M : f1; . . . ; ng �
V ! ½0; 1� such that

P
v2V Mði; vÞ ¼ 1 for each i. In what

follows, u, v will range over V while u and v will range over

V n. A belief state B induces the marginal function MB via

MBði; vÞ ¼
P

ujui¼v BðuÞ. On the other hand, from a margin-

al function M, one can obtain a belief state BM via

BMðuÞ ¼
Q

i Mði;uiÞ. From the above definitions it follows

that for a marginal function M, we have MBM
¼M. That is,

for any

i; v;MBM
ði; vÞ ¼

X
ujui¼v

BMðuÞ ¼
X

ujui¼v

Y
j

Mðj;ujÞ

¼
Y
j

X
ujui¼v

Mðj;ujÞ ¼
Y
jjj 6¼i

X
uj

Mðj;ujÞ

0@ 1A �Mði; vÞ
¼Mði; vÞ:

On the other hand, for a belief state B, unless B ¼ BM , we
may have BMB

6¼ B.
For a DBN D ¼ ðX ; T ; Pa; fCt

igÞ recall that î ¼ fj j Xj 2
PAðXiÞg captures the set of indices of the parents of i. In
what follows, Vî will denote the tuple of values defined by î.
Thus, with a slight abuse of notation, u;v will be used to
denote jîj-dimensional vectors of values over V .

Given a DBN D ¼ ðX ; T ; Pa; fCt
igÞ, FF computes induc-

tively a sequence Mt of marginal functions as:

. M0ði; uÞ ¼ C0
i ðuÞ,

. Mtði; uÞ ¼
P

v2Vî ½
Q

j2î M
t�1ðj;vjÞ�Ct

iðu j vÞ.
It is easy to check that these are indeed marginal functions,
i.e.,

P
u2V M

tði; uÞ ¼ 1 for all t and i. Thus FF maintains Bt,
the belief state at t, compactly via the marginal function Mt.
More precisely, BtðuÞ ¼

Q
j M

tðj;ujÞ ¼ BMtðuÞ.
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Let t � 1. Suppose that the DBN transforms the belief

state Bt�1 into the new belief state bBt. In other words, bBt is

the belief state obtained by performing t� 1 steps of FF and

exact computation at the tth step. Then by (1), we have

bBtðxÞ ¼
X

u

Bt�1ðuÞ
Y
i

Ct
iðxi j uîÞ

 !
: ð2Þ

However, the tth step of FF computes directly the marginal

function Mt, which then represents the new belief state at

time t as Bt ¼ BMt . In general, Bt 6¼ bBt, that is, the belief

state Bt represented via Mt is an approximation of the belief

state bBt as defined above. However, the computation of Mt

is itself accurate in the following sense.

Proposition 1. For all t 2 f1; . . . ; Tg, Mtði; vÞ ¼MbBt
ði; vÞ for

each i and v.

Proof. For t > 0, we have

MbBt
ði; vÞ ¼

X
vjvi¼v

bBtðvÞ

¼
X

vjvi¼v

X
u

Y
j

Bt�1ðuÞ
�
Ct
jðvj j uĵÞ

�
ðby ð2ÞÞ
¼
X

u

Bt�1ðuÞ
X

vjvi¼v

Y
j

�
Ct
jðvj j uĵÞ

�
¼
X

u

Bt�1ðuÞ
X
vn

Ct
nðvn j un̂Þ

 !
. . .

�
Ct
iðv j uîÞ

�
. . .

X
v1

Ct
1ðv1 j u1̂Þ

 !
¼
X

u

Bt�1ðuÞ
�
Ct
iðv j uîÞ

�
:

The last of the above equalities follows since each of
the summands within the expression add up to one.
Now, using Bt�1ðuÞ ¼

Q
k M

t�1ðk;ukÞ and splitting the
above summation, we obtain

MbBt
ði; vÞ ¼

X
u2Vî

X
u62Vî

Y
k

Mt�1ðk;ukÞ
�
Ct
iðv j uîÞ

�
¼
X
u2Vî

Y
k2î

Mt�1ðk;ukÞ
�
Ct
iðv j uîÞ

�
X
u62Vî

Y
k62î

Mt�1ðk;ukÞ

¼
X
u2Vî

Y
k2î

Mt�1ðk;ukÞ
�
Ct
iðv j uîÞ

�
Y
k62î

X
uk

Mt�1ðk;ukÞ

¼
X
u2Vî

Y
k2î

Mt�1ðk;ukÞ
�
Ct
iðv j uîÞ

�
¼Mtði; vÞ:

The second factor above is just a product of 1s (by the

definition of marginals) and the proposition follows. tu
AsB0 is accurate by definition,M1 will also be accurate but

not necessarily B1. A simple but crucial observation is that

whenever the errormaxu2V nfj bBtðuÞ �BtðuÞjg incurred by FF

at step t > 0 (ignoring the error made in the previous steps) is

large for some u then Mtði;uiÞ is large for every i. This is so

since,Mtðj;ujÞ ¼MbBt
ðj;ujÞ � maxð bBtðuÞ; BtðuÞÞ, which fol-

lows from Proposition 1 and the definition of marginals.
A second important observation is that there can only be

a few instances of u such that Mtði;uiÞ is large for every i.
For instance, there can be only one such u if we want
Mtði;uiÞ > 1

2 for every i. Hence, by computing bBtðuÞ for a
small subset of V n for which Mt is high for all dimensions
and maintaining it explicitly, one can hope to reduce the
one step error incurred FF and hence the overall error too.
This is the intuition underlying the HFF algorithm.

3.1 The Hybrid Factored Frontier Algorithm

The overall structure of HFF is as follows: starting with
t ¼ 0, we inductively compute and maintain the tuple
ðMt; St; Bt

H; �
tÞ, where

. Mt is a marginal function.

. St � V n is a set of tuples called spikes.

. Bt
H : V n ! ½0; 1� is a function s.t. Bt

HðuÞ ¼ 0 if u 62 St
and

P
u2St B

t
HðuÞ < 1.

. �t ¼
P

u2St B
t
HðuÞ.

This hybrid state ðMt; St; Bt
H; �

tÞ represents the follow-
ing belief state Bt:

BtðuÞ ¼ Bt
HðuÞ þ ð1� �tÞ

Y
i

Mt
Hði;uiÞ;where

Mt
Hði; vÞ ¼ ½Mtði; vÞ �

X
fu2Stjui¼vg

Bt
HðuÞ�=ð1� �tÞ:

The first component of BtðuÞ is the probability mass
Bt
HðuÞ of the spike (if u is not a spike, Bt

HðuÞ ¼ 0). The
second component is the product of (uniformized) margin-
als Mt

Hði; vÞ, as in FF. Notice that we need to use Mt
H rather

than Mt since the cumulative weight of the contribution
made by the spikes needs to be discounted from Mt. The
coefficient ð1� �tÞ must be used first to ensure that Mt

H is a
marginal function, and second to ensure that Bt is a belief
state, as will be demonstrated subsequently.

The HFF Algorithm. We initialize with M0 ¼ C0, S0 ¼ ;,
B0
H ¼ 0, and �0 ¼ 0 and fix a parameter �. This � will be the

number of spikes we choose to maintain. It is a crucial
parameter as our results will show. We inductively
compute ðMtþ1; Stþ1; Btþ1

H ; �tþ1Þ from ðMt; St; Bt
H; �

tÞ as
follows.

Step 1: We first compute Mtþ1 as

Mtþ1ði; xÞ ¼
X
u2St
½Bt

HðuÞ � Ctþ1
i ðx j uîÞ�

þ ð1� �tÞ
X
uî

Y
j2î
Mt

Hðj;ujÞ � Ctþ1
i ðx j uîÞ

24 350@ 1A:
Step 2: We next compute a set Stþ1 of at most � spikes

using Mtþ1. We want to consider as spikes u 2 V n where
Mtþ1ði;uiÞ is large for every i. To do so, we find a constant
�tþ1 such that Mtþ1ði;uiÞ � �tþ1 for every i for a subset of
V n containing � elements and for all other u0, there exists i
with Mtþ1ði;u0iÞ < �tþ1. We compute �tþ1 via binary search.
First we fix the precision with which we want to compute
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�tþ1 to be �. We have found � ¼ 10�6 to be a good choice. For
this choice there will be at most 20 iterations of the loop
described below. The search for �tþ1 proceeds as follows:

. �1 ¼ 0 and �2 ¼ 1.

. While �2 � �1 > � do

- � ¼ �1þ�2

2 .
- Determine the set of values Ui such that v 2 Ui

iff Mtþ1ði; vÞ > �.
- Set ai to be the cardinality of Ui.
- If

Q
iðaiÞ > � then �1 ¼ �; otherwise �2 ¼ �

. endwhile

. Return �tþ1 ¼ �2 and Stþ1 ¼
Q

i Ui.

Step 3: Finally, we compute Btþ1
H ðuÞ for each u in Stþ1 as

follows, by only taking into account the contribution of the
current spikes.

Btþ1
H ðuÞ ¼

X
v2St

BtðvÞ �
Y
i

Ctþ1
i ðui j vîÞ

 !
:

End of Algorithm. As in the case of FF, we denote by bBtþ1

the belief state obtained from Bt through an exact step of
the DBN

bBtþ1ðuÞ ¼
X
v2V n

BtðvÞ �
Y
i

Ctþ1
i ðui j vîÞ

 !
:

Notice that Btþ1
H ðuÞ � bBtþ1ðuÞ for all u. We recall that T

is the number of time points, � the number of spikes, n the
number of variables, V is the set of values with K ¼ jV j,
and D be the maximum in degree of the DBN graph.

Theorem 2. HFF has the following properties.

1. if � ¼ 0, the HFF algorithm is the same as FF and if
� ¼ Kn, it is the exact algorithm.

2. Mtði; vÞ ¼MbBt
ði; vÞ for every v. Further, Bt is a

belief state while Mt
H and Mt are marginal

functions, for every t.
3. The time complexity of HFF is OðT � n � ð�2 þ

KDþ1ÞÞ.
Proof. � ¼ 0 implies that the set of spikes St ¼ ; for all t.

This implies that �t ¼ 0 and the computation done by
HFF is the same as FF. If � ¼ Kn, then St ¼ V for all t and
�t ¼ 1 (of course, Mt

H is then not computed). Thus, this
boils down to perform exact inferencing. We have now
established part (1).

We prove that for all t � 1, if Bt�1 is a belief state and

Mt�1;Mt�1
H are marginals, then Mt ¼MbBt

and Bt is a

belief state and Mt;Mt
H are marginals. We thus obtain

part (2) by induction on t, using the fact that B0 is a belief

state and M0;M0
H are marginals by definitions. For t � 0,

let Mtði; vÞ;Mt
Hði; vÞ be marginals and Bt be a belief state.

Then at tþ 1, let us start by proving MbBtþ1
ði; vÞ ¼

Mtþ1ði; vÞ. The first step is the same as in Proposition 1

MbBtþ1
ði; vÞ ¼

X
vjvi¼v

bBtþ1ðvÞ

¼
X

u

BtðuÞ
�
Ctþ1
i ðv j uîÞ

�
ðby 2ÞÞ:

Now, however, the definition of Bt is different for HFF
and so we have from part

MbBtþ1
ði; vÞ ¼

X
u

Bt
HðuÞ

�
Ctþ1
i ðv j uîÞ

�
þ ð1� �tÞ

X
u

Yn
k¼1

Mt
Hðk;ukÞ

 !
�
Ctþ1
i ðv j uîÞ

�
:

ð3Þ

But if u 62 St, then Bt
HðuÞ ¼ 0. Further splitting the

second term as in Proposition 1, we obtain

MbBtþ1
ði; vÞ ¼

X
u2St

Bt
HðuÞ

�
Ctþ1
i ðv j uîÞ

�
þ ð1� �tÞ

X
u2Vî

X
u 62Vî

Y
k

Mt
Hðk;ukÞ�

Ctþ1
i ðv j uîÞ

�
¼
X
u2St

Bt
HðuÞ

�
Ctþ1
i ðv j uîÞ

�
þ ð1� �tÞX

u2Vî

Y
k2î

Mt
Hðk;ukÞ

�
Ctþ1
i ðv j uîÞ

�
X
u62Vî

Y
k 62î

Mt
Hðk;ukÞ

¼
X
u2St

Bt
HðuÞ

�
Ctþ1
i ðv j uîÞ

�
þ ð1� �tÞX

u2Vî

Y
k2î

Mt
Hðk;ukÞ

�
Ctþ1
i ðv j uîÞ

�
Y
k 62î

X
uk

Mt
Hðk;ukÞ

¼
X
u2St

Bt
HðuÞ

�
Ctþ1
i ðv j uîÞ

�
þ ð1� �tÞX

u2Vî

Y
k2î

Mt
Hðk;ukÞ

�
Ctþ1
i ðv j uîÞ

�
� 1

¼Mtþ1ði; vÞ:

In the step above,
P

uk
Mt

Hðk;ukÞ ¼ 1 follows from our
inductive hypothesis that Mt

H is a marginal. Now, we
will prove the remainder of this part, i.e., Mtþ1;Mtþ1

H are
marginals and Btþ1 is a belief state. For all i, again from
�t ¼

P
u2St B

t
HðuÞ and

P
v2V C

tþ1
i ðv j uîÞ ¼ 1, we have

X
v2V

Mtþ1ði; vÞ ¼
X
u2St

X
v2V

Ctþ1
i ðv j uîÞ �Bt

HðuÞ
" #

þ ð1� �tÞ
X
uî

X
v2V

Ctþ1
i ðv j uîÞ �

Y
j2î
Mt

Hðj;ujÞ

24 350@ 1A
¼
X
u2St

Bt
HðuÞ þ ð1� �tÞ

X
uî

Y
j2î

Mt
Hðj;ujÞ

¼ �t þ ð1� �tÞ
Y
j2î

X
uj

Mt
Hðj;ujÞ ¼ 1:

Now, using the above and �tþ1 ¼
P

u2Stþ1 Btþ1
H ðuÞ

(assuming �tþ1 6¼ 1), we have
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X
v2V

Mtþ1
H ði; vÞ

¼
X
v2V

Mtþ1ði; vÞ �
X
v2V

X
u2Stþ1jui¼v

Btþ1
H ðuÞ

0@ 1A� 1

1� �tþ1

¼ 1�
X

u2Stþ1

Btþ1
H ðuÞ

 !
1

1� �tþ1
¼ 1X

u2V n

Btþ1ðuÞ ¼
X
u2V n

Btþ1
H ðuÞ

þ ð1� �tþ1Þ
X
u2V n

Y
i

Mtþ1
H ði;uiÞ

¼
X

u2Stþ1

Btþ1
H ðuÞ þ ð1� �tþ1Þ � 1 ¼ 1:

It now follows easily that for any i; v,

1 �Mtþ1ði; vÞ � 0;

and 1 �Mtþ1
H ði; vÞ. It remains to prove that

Mtþ1
H ði; vÞ � 0;

that is Mtþ1ði; vÞ �
P

u2Stþ1jui¼v B
tþ1
H ðuÞ. As Btþ1

H ðuÞ �bBtþ1ðuÞ for all u, we have,X
u2Stþ1jui¼v

Btþ1
H ðuÞ �

X
u2Stþ1jui¼v

bBtþ1ðuÞ

¼MbBtþ1
ði; vÞ ¼Mtþ1ði; vÞ:

which completes the proof of part (2).

Turning to part (3), we note that at each time point, the

step 1 of HFF has the same complexity as FF together with

the spikes contributing: OðK � n � ðKD þ �ÞÞ. Step 2 makes

at most K � n comparisons for each iteration of the loop

and there are only a constant number of iterations of the

loop. Thus the complexity of this step per time point is
OðK � nÞ. Step 3 computes for each spike, BtðuÞ from the

values of Bt
HðuÞ and Mtði; uÞ which takes OðKnþ �nÞ.

Then, we sum over all the spikes the value computed by

multiplying n values of the CPT which takes Oð�� nÞ.
Thus, this step overall takes Oð�Knþ n�2Þ. Hence the

overall time complexity of HFF is the sum of all these

quantities which is OðT � n � ðKDþ1 þK�þ �2ÞÞ which is

bounded by OðT � n � ðKDþ1 þ �2ÞÞ. tu
HFF gathers in one sweep—just as FF does—the required

information about the belief states. However, it can take

more time than FF depending on the number of spikes but

the added complexity is only quadratic in the number of

spikes.

3.2 Error Analysis

It is easy to see that with each time slice t of the DBN one

can associate a stochastic matrix T t. This stochastic matrix

will capture the transformation of probability distributions

effected by the n CPTs associated with the time slice t as

dictated by (1) in Section 2. In particular, we will have

P ðXtÞ ¼ T tðP ðXt�1ÞÞ.
We now denote the cumulative error at t as �t and

define it to be: �t ¼ maxu2V nðjP ðXt ¼ uÞ �BtðuÞjÞ. Toward

deriving an upper bound for �t, we first note that Markov

chain theory (for instance, using the Dobrushin’s coefficient,
see chapter 6.7 in [31]) guarantees the following:

Theorem 3. Let T be an n-dimensional stochastic matrix. Then
for two probability distributions A;B, we have kT ðAÞ �
T ðBÞk1 � �T kA�Bk1 where 0 � �T � 1 is a constant
that depends only on T .

�T is called the contraction factor. In what follows we shall
write �t for the contraction factor associated with T t and set
� ¼ maxt�t.

An implicit assumption in what follows is that � < 1. As
pointed out in [3] this is a very reasonable assumption since it
fails for the extreme case where the variables are completely
decoupled and are independent. The case studies we report
in Section 4 also easily satisfy this assumption. When � < 1,
due to the theorem above the maximum error will reduce by
a factor of � at each step as we step through t starting from
t ¼ 0. Hence the cumulative error will stabilize rapidly.

Now following a reasoning similar to [3] we shall show
that �t can be bounded by �0ð

Pt
j¼0 �

jÞ where �0 is the
maximum one step error given by �0 ¼ maxtkBt �
T tðBt�1Þk1. Notice that T tðBt�1Þ was denoted as bBt in
previous sections.

Lemma 4. �t � �0ð
Pt

j¼0 �
jÞ. Further if � < 1, we have

�t � �0
1�� .

Proof. By definition of overall error and the above stated
property of Markov chains,

�t ¼ jBt � P ðXtÞj
� jBt � T tðBt�1Þj þ jT tðBt�1Þ � T tðP ðXt�1ÞÞj
� �0 þ �t�t�1:

Then by recursively computing the second factor, we
obtain,

�t � �0 þ �t�0 þ �t�t�1�0 þ . . .þ ð�t�t�1 � � ��1Þ�0

� �0ð
Xt
j¼0

�jÞ:

Further if � < 1, we have

�t � �0

Xt
j¼0

�j

 !
� �0

X1
j¼0

�j

 !
¼ �0

1� � :

tu

We note that
Pt

j¼0 �
j depends only on the DBN. Hence,

theoretically comparing the error behaviors of FF and HFF
amounts to comparing their single step errors. To do so,
we shall next analyze single step error of FF followed by
that of HFF.

Recall that for FF, Bt ¼ BMbBt . Thus the one-step error

incurred by FF at step t is maxu2V nfj bBtðuÞ �BMbBt ðuÞjg. We

can bound this from above by �0 where �0 ¼ maxfjBðuÞ �
BMB
ðuÞjg with B ranging over the set of all possible belief

states and u ranging over V n. It turns out that �0 can be made

arbitrarily close to 1 as n, the number of variables, tends to1.

To see this, fix 0 < � < 1 and consider the belief state B

defined by BðuÞ ¼ 1� �, Bðu0Þ ¼ � for some u;u0 2 V n such
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that for all i, ui 6¼ uj and BðvÞ ¼ 0 for all v 2 V n n fu;u0g.
Then,MBði;uiÞ ¼ 1� � for all i 2 f1; . . . ; ng and soBMB

ðuÞ ¼
ð1� �Þn. As a result, we have �0 ¼ maxjB�BMB

j � ð1� �Þ �
ð1� �Þn which tends to 1� � as n tends to 1. Now if we

choose � to be close to 0, 1� � is close to 1. Thus �0 can be made

as close to 1 as we want, with n tending to1. We found that

the cumulative errors made by FF can be large in practice too

as shown in the next section.
Notice that for HFF too we have Bt ¼ BMbBt , and its one

step error can be bound by �0. However, the spikes can be
used to bound the single step error of HFF more precisely
as follows:

Claim 1. The one step error made by HFF is bounded by �̂0 with
�̂0 � minfð1� �Þ; �g, where � ¼ mintð�tÞ and � ¼ maxtð�tÞ.

Proof sketch. If � is large, then the value of bBtðuÞ � 1� �
for u 62 St. Also, as BtðuÞ � bBtðuÞ, we have bBtðuÞ �
BtðuÞ � 1� �. Finally, if � is small, then by construction

for all u 62 St, Mtþ1ði; vÞ � � for some i with ui ¼ v, and

hence bBtðuÞ �Mtþ1ði; vÞ � �. Also, bBtðuÞ �BtðuÞ � � �P
v 62St

Q
i C

tþ1
i ðui j vîÞÞ � � for u 2 St. tu

Thus, the worst case error for HFF with at least two
spikes (implying � < 1=2) is smaller than for FF. Taking
more spikes will increase � and decrease �, reducing the
worst case error. Experiments in the next section show that
the practical accuracy is also improved as we increase the
number of spikes.

4 EXPERIMENTAL EVALUATION

We have implemented our algorithm in C++. The experi-
ments reported here were carried out on an Opteron 2.2
Ghz Processor, with 3 GB memory. The algorithms were
evaluated on five DBN models of biochemical networks:
the small enzyme catalytic reaction network shown in
Fig. 1 for initial experimentation, the EGF-NGF pathway
[8] under 1) EGF-stimulation, 2) NGF-stimulation, and
3) costimulation of EGF and NGF, and the Epo mediated
ERK signaling pathway. The ODE model for the EGF-NGF
pathway was obtained from the BioModels database [32]
and the Epo mediated ERK signaling pathway from [9].
For all these models, there were no unknown parameters
and this enabled us to focus on the main issue of
evaluating the performance of HFF. The DBNs were
constructed using the method presented in Section 2 [1].
To improve the quality of the approximations for the large
pathway models, we constructed the DBNs using the
equation-based subinterval sampling method explained in
more detail below. In what follows, we highlight the main
findings of our experiments. More details can be found in
the supplementary materials [28].

4.1 Enzyme Catalytic Kinetics

For initial validation, we started with the enzyme catalytic
reaction network shown in Fig. 1 which has only four
species/equations and three rate constants. The value space
of each variable was divided into five equally wide intervals
(f½0; 1Þ; ½1; 2Þ; . . . ; ½4; 5�g). We assumed the initial distributions
of variables to be uniform over certain intervals. We then
fixed the time horizon of interest to be 10 minutes and divided

this interval evenly into ½0; 1; . . . ; 100� time points. The
conditional probability tables associated with each node of
the DBN were filled by generating 106 trajectories by direct
random sampling over the initial states [1].

This being a small example, we could compute the
marginal distributions for each species exactly. We ran FF
and HFF (�) with various choices of �, the number of spikes.
The resulting estimates were then compared against the
exact marginals. We also ran the fully factored version of
BK (which we call BK in this section), using the implemen-
tation provided in the Bayes Net Toolbox of MATLAB [33].

In what follows we report the errors in terms of the
absolute difference between the marginal probabilities
computed by the exact and approximate methods. Thus, if
we say the error is 0.15 then this means that the actual
marginal probability was p and the marginal probability
computed by the approximate algorithm was p0 with
jp� p0j ¼ 0:15.

Even for this small network, FF and BK deviated from
some of the exact marginals by as much as 0.169. Fig. 2
shows the profile of the marginal distribution of E (the
enzyme) assuming a value in the first interval as computed
by FF, BK, HFF(64), and the exact method. The profiles of
exact and HFF(64) were almost the same while FF and BK
(whose curve practically coincides with that of FF and is
hence not shown) make noticeable errors. The computation
times for all the algorithms were negligible. The maximum
error incurred for the four species taken over all the interval
values and all time points was 0.169 for FF and 0.024 for
HFF(16) and 0.003 for HFF(64). Further, the number of
errors greater than 0.1 taken over all the species, intervals,
and time points reduced from 72 for FF to 0 for HFF(16).

4.2 The Large Pathway Models

As explained in Section 2, during the construction of the
DBN we assume that the initial values are distributed along
certain predefined intervals of a variable’s value space. The
vector of initial states for large systems will hence be high
dimensional. To ensure that the ODE dynamics is well
explored, one needs to draw a large number of representa-
tive trajectories. Naive direct sampling where we randomly
pick values from the initial intervals vector cannot ensure
that all parts of the initial states region are sufficiently
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probed. Hence, we used a more sophisticated sampling
method called equation-based subinterval sampling which is a
variant of the method proposed in [1]. Suppose the ODE
equation for the variable xi involves variables xj and xk. We
then subdivide the initial intervals of the variables xi, xj,
and xk into J finer subintervals. Then for every combination
of subintervals say, ðIi; Ij; IkÞ, we pick H samples each of
which will have its xi-value falling in Ii, xj-value falling in
Ij and its xk-value falling in Ik while the values for the other
variables are picked randomly from within their initial
intervals. This ensures a coverage of at least H samples for
every combination of the subintervals of the variables
governing each equation which in turn ensures that ODE
dynamics is being explored systematically along each
dimension at least. In general, if an equation has R variables
on its right hand side, and there are n equations and H is
the required degree of coverage per equation, we pick n �
H � JRþ1 samples.

To assess the quality of the constructed DBNs in terms of
the original ODE dynamics, we used Monte Carlo integra-
tion to generate random trajectories from the prior (initial
states distribution) using the ODE. We then computed the
average values of each variable at the time points 0 � t � T .
We term the resulting time series for each variable as a
nominal profile. We then used marginal probability values
derived from the DBN approximation to compute expected
values as follows EðMtði; uÞÞ ¼

P
u¼ujðM

tði; ujÞ � LÞ, where
L is the mid-point of the interval uj. For each variable, the
resulting time series of expected values was compared with
its nominal profile. For all the models studied below the
quality of the DBN approximation measured this way was
high. Due to space limitations, the comparison plots will be
shown in what follows here only for a few chosen species in
the case of the NGF stimulated EGF-NGF pathway and the
Epo mediated ERK pathway. The detailed comparison plots
for other DBNs can be found in [28].

Finally, for the DBNs arising from EGF-NGF pathway
and Epo mediated ERK pathway, exact inference is
infeasible due to the large sizes of the corresponding DBNs.
To get around this, we used simulation-based inferencing of
the DBN to obtain an estimate of the exact marginal
distribution. We generated around 200 million trajectories
from the underlying DBN to obtain the various marginal
probabilities. This took around 2 days for each DBN. These
marginals were used—in place of exact marginals—as
benchmarks to compare the performance of the various
algorithms. Here again we compared HFF(�) for various
choices of � with FF and BK. We discuss toward the end of
this section the performance of the clustered version of BK.
In what follows, we write HFF(cK) to mean the HFF(�) with
� ¼ c � 1;000.

4.2.1 The EGF-NGF Pathway

The EGF-NGF pathway describes the behavior of PC12 cells
under multiple stimulations. In response to EGF stimulation
they proliferate but differentiate into sympathetic neurons
in response to NGF stimulation. This phenomenon has been
intensively studied [34] and the network structure of this
pathway is as shown in Fig. 3. The ODE model of this
pathway [32] consists of 32 differential equations and

48 associated rate constants (estimated from multiple sets
of experimental data as reported in [32]).

To construct the three DBNs arising out of EGF, NGF,
and costimulation, we divided as before the value domains
of the variables into five equally wide intervals and
assumed the initial distributions to be uniformly distributed
over some of these intervals. The time horizon of each
model was set at 10 minutes which was evenly divided into
100 time points. To fill up the conditional probability tables,
we used the equation-based subinterval sampling. We
subdivided each of the initial states into four subintervals.
2.1 million trajectories were generated to get a coverage of
500 per combination of the subinterval. As shown in Fig. 5a,
the quality of the approximations relative to the original
ODE dynamics was high. Once we had the DBNs, we ran
FF, BK, and HFF(�) for various choices of �.

For the DBN obtained for the pathway under NGF-
stimulation, for 6 of the 32 species there were significant
differences between FF and BK on one hand and HFF on the
other, including some biologically important proteins such
as Sos and Erk. In Fig. 6, we show for Erk, the marginal
probability of the concentration falling in the interval ½1; 2Þ at
various time points as computed by FF, BK, HFFð3KÞ, and
HFFð32KÞ as well as the pseudoexact marginals obtained via
massive Monte Carlo simulations. We observe that HFF
tends to the exact values as the number of spikes increases.

To measure the overall error behavior, noting that HFF
always did better than FF, we fixed the error incurred by FF
as the base (100 percent) and normalized all other errors
relative to this base. Under this regime, the relationship
between computation time and normalized mean error for
Erk’s value to fall in ½1; 2Þ is shown in Fig. 7. We observe that
the mean error reduces to 22 percent for HFFð32KÞ at the
cost of approximately 104 seconds increase in running time.
For HFF(�Þ the errors did not decrease linearly as the
number of spikes were increased. This is to be expected
since the probability mass captured by the additional spikes
will be less than what is captured by the initial spikes.

Overall, the maximum error over all the marginals
(32� 5� 100 ¼ 16;000 data points) reduced from 0.42 for FF
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to 0.3 for HFFð3KÞ and to 0.12 for HFFð32KÞ. The normalized
mean error over all marginals went down to 60 percent for
HFFð3KÞ and 30 percent for HFFð32KÞ as shown in Fig. 8a
which also displays the corresponding computation times.
Further, when we computed the number of marginals with
errors greater than 0.1, we found that this number reduced to
about half for HFFð3KÞ and by more than a factor of 10 for
HFFð32KÞ compared to FF as shown in Fig. 8b.

For the DBN obtained for the pathway under EGF-
stimulation, we found similar results. Overall, the max-
imum error over all the marginals reduced from 0.35 for FF
to 0.14 for HFFð3KÞ and to 0.07 for HFFð32KÞ. The
normalized mean error over all marginals went down to
40 percent for HFFð3KÞ spikes and 20 percent for HFFð32KÞ
spikes as shown in Fig. 9a which also displays the
corresponding computation times. Further, when we
computed the number of marginals with errors greater
than 0.1, we found that this number reduced by more than a
factor of 4 for HFFð3KÞ and to 0 for HFFð32KÞ as shown in
Fig. 9b. Similar results were obtained for the DBN
describing the dynamics of the EGF-NGF pathway under
co-stimulation of both NGF and EGF.

4.2.2 The Epo Mediated ERK Pathway

Next we considered the DBN model of Epo mediated ERK
Signaling pathway as shown in Fig. 4. Erk and its related
kinase isoforms play a crucial role in cell proliferation,
differentiation, and survival. This pathway describes the

effect of these isoforms on the Epo (cytokine) induced ERK
cascade. The ODE model of this pathway [9] consists of

32 differential equations and 24 associated rate constants. To

construct the DBN, we divided the value domain of

variables into five intervals. Here the interval sizes for
variables were not all kept equal. For 23 species that have

very low basal concentration level, we set the first interval of

the corresponding variables to be smaller (	20%) compared

to the other four intervals (equal sized) (see online
supplementary materials [28]). The rest nine variables all

have equal sized intervals as before. Time horizon was fixed

at 60 minutes which was then divided into 100 time points.

We constructed the DBN using equation-based subinterval
sampling. As Fig. 5b indicates, the quality of the approx-

imation relative to the original ODE dynamics was again

high (more comparison plots can be found in [28]). We then

ran FF, BK, and HFF(�) for various choices of �.
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Fig. 6. MtðErk 2 ½1; 2ÞÞ under NGF-stimulation.

Fig. 7. Normalized mean error for MtðErk 2 ½1; 2ÞÞ under NGF-
stimulation.

Fig. 5. Comparison of ODE dynamics with DBN approximation. Solid black line represents nominal ODE profiles and dashed red lines represent the
DBN simulation profiles for (a) NGF stimulated EGF-NGF Pathway. (b) Epo mediated ERK pathway.



FF and BK were quite accurate for many of the species.
However, for some species such as JAK2, phosphorylated
EpoR; SHP1, mSHP1, etc. which are biologically relevant,
FF and BK incurred a max error of 0.49. On the other hand,
HFFð3KÞ incurred a max error of 0.45 while HFFð32KÞ
incurred a max error of 0.31. The normalized mean error
over all marginals went down to 	70% for HFFð3KÞ and
	60% for HFFð32KÞ as shown in Fig. 10a. Further, when we
computed the number of marginals with errors greater than
0.1, we found that this number reduced by around half for
HFFð32KÞ compared to FF as shown in Fig. 10b.

It is worth noting that our current implementation is
quite crude and sequential. We believe significant perfor-
mance gains can be expected from an optimized version.

4.3 Comparison with Clustered BK

An important component of the BK algorithm is the group-
ing of the variables into clusters. The idea is to choose the
clusters in such a way that there is not much interaction
between variables belonging to two different clusters. When
this is done well, BK can also perform well. However,
choosing the right clusters seems to be a difficult task. The
easy option, namely, the fully factored BK in which each

cluster is a singleton performs in our case studies as badly (or
well) as FF. The idea is to choose the clusters in such a way
that there is not much interaction between variables
belonging to two different clusters. When this is done well,
BK can also perform well. However, choosing the right
clusters seems to be a difficult task. The easy option, namely,
the fully factored BK in which each cluster is a singleton
performs in our case studies as badly (or well) as FF.

We tried to gain a better understanding of BK augmen-

ted with nontrivial clusters by using the structure of the

pathway to come up with good clusters. A natural way to

form 2-clusters seemed to be to pair together the activated

(phosphorylated) and inactivated (dephosphorylated)

counterparts of a species in the pathway. For the EGF-

NGF pathway, this clustering indeed reduced overall errors

compared to FF and HFF(3K). However, we found that

HFF(�Þ with � > 5;000 outperformed this version of BK. We

did not consider bigger clusters for two reasons: first, when

we tried to increase the sizes and the number of clusters in

different ways, BK ran out of the 3 GB memory. Second,

there seemed to be no biological criterion using which one

could improve the error performance of BK.
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Fig. 10. (a) Normalized mean errors over all marginals. (b) Number of marginals with error greater than 0.1: Epo stimulated ERK pathway.

Fig. 8. (a) Normalized mean errors over all marginals. (b) Number of marginals with error greater than 0.1: NGF-stimulation.



For the Epo mediated ERK pathway too we tried similar
clustering. Here the natural clusters were of size 3. Unfortu-
nately, the results were as bad as for fully factored BK. HFF,
even with 1K spikes (� ¼ 1;000) was able to perform better
than this clustered version of BK. This suggests that the
clusters we chose were not the right ones. Hence in our
setting, a clustered version of BK that performs well in terms
of the computational resources required and the errors
incurred appears to be difficult to realize.

5 DISCUSSION

DBNs are a widely used class of probabilistic graphical
models and can often be a succinct and more natural
representation of the underlying Markov chains. Comput-
ing the marginal probabilities of the random variables
assuming specific values in a DBN is a basic analysis task.
This can be done only approximately for high dimensional
systems. FF and BK are two attractive approximate
algorithms that have been proposed in this context.
However they can incur significant errors. To cope with
this, we have developed here the Hybrid Factored Frontier
(HFF) algorithm. In HFF, in addition to maintaining and
propagating belief states in a factored form, we also
maintain a small number of full dimensional state vectors
called spikes and their probabilities at each time slice. By
tuning the number of spikes, one can gain accuracy at the
cost of increased but polynomial (quadratic) computational
cost. We have provided an error analysis for HFF as well as
FF which shows that HFF is more accurate. Our experi-
mental results confirm that HFF outperforms both FF and
fully factored BK in realistic biological settings.

As pointed out earlier, HFF is parametrized algorithm. In
particular, as the number of spikes approaches V n, the error
will tend to 0. This does not mean however that the rate of
reduction in error is uniform in the number of spikes or that
it is independent of the nature of the spikes. In fact our error
analysis suggests that the errors will be high when there are
high spikes of which there cannot be too many. Hence, if we
reduce the errors for such spikes—which HFF will do—we
will substantially improve accuracy.

One may consider BK also to be a parametrized algorithm
with the number of clusters and their sizes constituting the
parameters. However identifying the clusters is a difficult
problem and our experimental results suggest that as the
sizes of the clusters increase the errors may reduce but the
memory consumption could rise rapidly. In contrast, HFF’s
parameter can be computed in an efficient, approximate, and
automated fashion. In our case studies, we have found that by
using HFF, the accuracy of results can be improved with an
increase in computational times. Further, for tasks such as
parameter estimation that require repeated executions, one
can first deploy FF to get an initial estimate and then run HFF
with a suitable number of spikes just once to achieve a
sufficiently accurate estimate.

In our future work, an important goal will be to deploy
HFF to perform tasks such as parameter estimation and
sensitivity analysis. An equally important goal will be to
develop approximate probabilistic verification methods for
DBN models of biochemical networks and evaluate them
with respect to approaches developed in related settings [23],
[21], [24], [25].
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