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ABSTRACT

Motivation: Biopathways are often modeled as systems of ordinary
differential equations (ODEs). Such systems will usually have many
unknown parameters and hence will be difficult to calibrate.
Since the data available for calibration will have limited precision,
an approximate representation of the ODEs dynamics should
suffice. One must, however, be able to efficiently construct such
approximations for large models and perform model calibration and
subsequent analysis.
Results: We present a graphical processing unit (GPU) based
scheme by which a system of ODEs is approximated as a dynamic
Bayesian network (DBN). We then construct a model checking
procedure for DBNs based on a simple probabilistic linear time
temporal logic. The GPU implementation considerably extends the
reach of our previous PC-cluster-based implementation (Liu et al.,
2011b). Further, the key components of our algorithm can serve as
the GPU kernel for other Monte Carlo simulations-based analysis of
biopathway dynamics. Similarly, our model checking framework is a
generic one and can be applied in other systems biology settings.

We have tested our methods on three ODE models of bio-
pathways: the epidermal growth factor–nerve growth factor pathway,
the segmentation clock network and the MLC-phosphorylation
pathway models. The GPU implementation shows significant gains in
performance and scalability whereas the model checking framework
turns out to be convenient and efficient for specifying and verifying
interesting pathways properties.
Availability: The source code is freely available at http://www.comp.
nus.edu.sg/∼rpsysbio/pada-gpu/
Contact: thiagu@comp.nus.edu.sg
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The modeling and analysis of biopathways dynamics is a core
activity in systems biology. A standard approach is to view a
biopathway as a network of biochemical reactions and to model
the network as a system of ordinary differential equations (ODEs;
Aldridge et al., 2006). Since biopathways often involve a large
number of reactions, the corresponding ODE systems will not admit
closed form solutions and one will have to resort to numerical
simulations. However, the ODE systems will often contain many

∗To whom correspondence should be addressed.

unknown parameters (rate constants and initial concentration levels)
which will first have to be estimated using meager data of limited
precision. Consequently, for large pathways model construction
and analysis are difficult problems. With this as motivation, a
probabilistic approximation method was developed in Liu et al.
(2009) by which an ODE system is reduced to a dynamic Bayesian
network (DBN). Parameter estimation followed by sensitivity
analysis is then carried out on this simpler model using standard
Bayesian inference techniques. This method is promising in terms
of efficiency, accuracy and applicability (Liu et al., 2011a, b). Our
goal here is to extend this scheme in two significant ways. The core
features of these two extensions are of independent interest and can
be deployed in other settings involving biopathways models.

The first extension is a parallel implementation of the DBN
approximation scheme using graphical processing units (GPUs). It
is computationally intensive to construct the DBN from a system
of ODEs. In our experience, a single PC is hopelessly inadequate
while even a PC-cluster quickly runs into scalability issues. On
the other hand, a supercomputing facility may not be available or
affordable. In comparison, GPUs provide an excellent combination
of cost and performance. However, not all algorithms map well onto
a GPU platform due to its memory hierarchy. Specifically, one must
carefully balance parallelism with memory accesses to obtain good
performance.

In our DBN construction—explained in more detail in the next
section—a computationally intensive phase is the generation of
a large number of trajectories using numerical simulations. This
can be done in parallel and hence the GPU platform is a natural
choice. However, each variable can appear in multiple equations.
Hence to generate a trajectory one must, in principle, access all the
equations in each integration step. Further, the threads generating
the trajectories will have to record a good deal of intermediate
information to construct the conditional probability tables (CPTs)
of the DBN. For large ODE systems the intermediate data generated
will be too large to be stored in the fast local memory. One will
instead have to use the slow global memory for this purpose. This
can lead to a severe degradation in performance. To get around this
we create a heterogeneous pool of threads in which each trajectory is
computed in a distributed fashion whereas a second group of threads
manage the data movement. There are other settings in which a set of
trajectories (Li et al., 2010; Lüdtke et al., 2008) is generated which
is then subjected to statistical analysis to derive system properties.
In such applications too, our compilation strategy will likely lead to
high-performance GPU implementations.

The second major contribution of the article is a probabilistic
model checking procedure for DBNs. We use a simple probabilistic
variant of linear time temporal logic (LTL; Pnueli, 1977) in which
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the atomic propositions are of the form (X,v)≤c or (X,v)≥c
where X is a finite-valued random variable corresponding to a
node in the DBN and c is rational number in [0,1]. The assertion
(X,v)≤c says that the probability of the random variable X
currently having the value v is ≤c; similarly for the assertion
(X,v)≥c. The rest of the syntax is standard. Though probability
enters the logic only via atomic propositions it turns out that
one can still express many interesting dynamical properties. A
key component of our model checking procedure is a Bayesian
inferencing algorithm called the factored frontier algorithm (Murphy
and Weiss, 2001) that is used to approximately determine the
truthhood of the atomic propositions. We do this approximately
since exact inference is computationally infeasible for large DBNs.
The accuracy of this inferencing procedure can be improved—at
additional computational cost—by using a parametrized variant of
the FF algorithm that we have recently developed (Palaniappan et al.,
2011; more details can be found in the Supplementary Material.)
Again, this simple and novel version of probabilistic verification
can be applied to other related settings (Langmead et al., 2006).

Figure 1 shows the overall framework in which we have carried
our work.As indicated, our approximation procedure—implemented
on a GPU platform—will often yield an uncalibrated DBN due to
the presence of unknown parameters. We then perform parameter
estimation using Bayesian inferencing to obtain a calibrated model.
One can then carry out—on a PC platform—tasks such as sensitivity
analysis and probabilistic verification. At present these tasks are
performed on a PC platform. In Liu et al. (2011b) we show how
parameter estimation followed by sensitivity analysis is performed
using the Bayesian inferencing. Hence we do not deal with this here
and instead focus on the new analysis method, namely, probabilistic
verification.

We have tested the GPU implementation on ODE models of the
(epidermal growth factor–nerve growth factor) EGF–NGF pathway
(Brown et al., 2004), the segmentation clock network (Goldbeter and
Pourquie, 2008) and the thrombin-dependent MLC phosphorylation
pathway (Maeda et al., 2006). We obtained these models from
the BioModels database (Le Novere et al., 2006). Although the
parameter values for these models are known, in each case we set a
subset of the parameters as unknown to mimic realistic biopathways
models. This considerably increases the computational demands
placed on the DBN construction. For each model, we constructed
a DBN by generating 3 million trajectories. We then compared the
performance of the GPU implementation with that of a 10-CPU
cluster. The EGF–NGF model consists of 32 differential equations
and 48 kinetic parameters from which 20 were set to be unknown.
The GPU implementation ran 26 times faster. The segmentation

Fig. 1. The approximation, calibration and analysis framework.

clock network model consists of 22 differential equations and 75
kinetic parameters out of which 40 were set to be unknown. In
this case the GPU implementation ran 32 times faster. The third
model was that of the thrombin-dependent MLC phosphorylation
pathway consisting of 105 differential equations and 197 kinetic
parameters out of which we set 164 to be unknown. In this case, the
GPU implementation took 38 h whereas the cluster implementation
turned out to be infeasible. Even for 30 000 trajectories it took
37 h and hence for a 3 million trajectories, it would have taken
5 months. Further, the 30 000-trajectories-based DBN that the
PC-cluster produced was of poor quality.

We also tested our model checking procedure on the DBN
approximations of these three pathway models. For each model we
formulated a number of dynamical properties and verified them to
be true or false. It only took <1 s on a PC to verify each property.

Turning to related work, an excellent overview of biopathways
dynamics and formalisms for studying their behaviors can be found
in Klipp et al. (2005). Modeling and analysis of biopathways
using ODEs is well-established domain (Aldridge et al., 2006;
Sreenath et al., 2008). As mentioned earlier, our approximation
was presented in Liu et al. (2011b) and has been applied in a
concrete biological setting (Liu et al., 2011a). As for related GPU
applications, a survey of hardware accelerators for biocomputing
including GPUs is presented in Dematte and Prandi (2010). Of
particular relevance is the Python language-based package called
cuda-sim reported in Zhou et al. (2011). This package enables
accelerated simulations of biochemical network models on GPUs.
Apart from ODEs-based models, the cuda-sim package also
supports models based on stochastic differential equations as well as
Markov Jump processes. We consider this work to be orthogonal to
ours in the sense its main focus is on the simulations of ODEs. In our
setting, generating a large number of trajectories through numerical
integration is just one component of the larger task of constructing
the DBN approximation. At present we do not have a GPU-based
implementation of the parameter estimation, sensitivity analysis
and probabilistic verification procedures. In this connection, the
work on the GPU implementation of the sum-of-product algorithm
(Silberstein et al., 2008) for DBNs is promises to be very relevant.

As for the second component of our work, model checking based
on temporal logics is a well-established domain. It was founded
in Pnueli (1977) through the seminal work of Amir Pnueli where
he proposed LTL as the basis for reasoning about the behavior
of programs. An ideal starting point for delving into this field is
Clarke et al. (1999) which presents the basic family of temporal
logics as well the automated verification procedure called model
checking. This framework was extended to probabilistic systems—
based on discrete time Markov chains—using the probabilistic
temporal logic called PCTL in Hansson and Jonsson (1994). It is
worth noting that our specification logic PBL is simple fragment of
PCTL. Overviews of this active area of research can be found for
instance in Kwiatkowska et al. (2010) and Legay et al. (2010).

A number of modeling formalisms (Ciocchetta and Hillston,
2009; Danos et al., 2007; Henzinger et al., 2010; Kwiatkowska
et al., 2008) for biochemical networks are based on continuous time
Markov chains (CTMCs). Model checking the properties of these
stochastic models using PCTLs such as PCTL and its variants is
being actively pursued by a number of researchers (Clarke et al.,
2008; Gong et al., 2010; Kwiatkowska et al., 2008; Li et al., 2010).
Of particular interest in our context is Donaldson and Gilbert (2008)

1509

 at N
ational U

niversity of Singapore on M
ay 28, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[16:42 14/5/2012 Bioinformatics-bts166.tex] Page: 1510 1508–1516

B.Liu et al.

which defines the probabilistic LTL with numerical constraints
(PLTLc) and verifies properties of ODE models through Monte Carlo
integration. Here instead we carry out Monte Carlo simulations once
to construct a DBN approximation. One can then repeatedly perform
probabilistic verification of properties expressed in PBL using
Bayesian inferencing. In Clarke et al. (2008), a technique called
statistical model checking is used to verify properties of a CTMC
model expressed in a logic called bounded LTL (BTL) which is
basically LTL interpreted over finite sequences. They stochastically
simulate a CTMC model for a finite number of runs and use BTL
to check each simulation run. They then perform statistical tests to
verify that this property meets a required probability bound. Our
logic PBL is also interpreted over finite sequences. However it is a
probabilistic logic in that the atomic propositions make probabilistic
assertions. Further, the logic is interpreted over the single sequence
of marginal distributions generated by the DBN (as explained in
Section 4). Finally, the work reported in Langmead et al. (2006) also
carries out DBN-based model checking. However, the DBN is first
converted to a data structure called a multi-terminal binary decision
diagram (MTBDD) and then existing probabilistic model checking
algorithms based on PCTL are applied. Additional background
information on these topics can be found in the Supplementary
Material.

In the next section, we explain how a DBN is constructed from
a system of ODEs. In Section 3, we present the main features of
our GPU implementation. In the subsequent section, we introduce
our probabilistic variant of LTL and the associated model checking
procedure. In Section 5, we present our experimental results. The
final section summarizes and discusses possible extensions of the
work presented here.

2 THE DBN APPROXIMATION
The dynamics of a biopathway is often modeled as a system of ODEs
with one equation of the form dx/dt = f (x,p) for each molecular
species x in the pathway. Here f describes the kinetics of the
reactions that produce and consume x and x are the molecular
species taking part in these reactions whereas p are the rate constants
governing these reactions. For large pathways, this ODE system
which will typically have many unknown parameters will be difficult
to calibrate and analyze. To get around this an approximation scheme
was developed in (Liu et al., 2009) through which a system of ODEs
can be reduced to a DBN. Our goal here is to briefly explain this
method. The technical details can be found in Liu et al. (2011b).

First, we assume the states of the system are observed only at a
finite number of time points, {0,1,...,T}. Next, the range of each
variable xi (rate constant rj) is partitioned into a set of intervals
Ii (Ij). Both these discretizations are motivated by the fact that
experimental data will be available only for a finite set of time points
and this data will be of limited precision.

Next, the initial values of the variables as well as the rate constants
are assumed to be distributions (usually uniform) over certain of
these intervals. We then sample the initial states of the system
according to this distribution sufficiently many times, and generate
a trajectory by numerical integration for each sampled initial state.
The resulting set of trajectories is then treated as an approximation
of the dynamics of ODE system.

To handle unknown rate constants we assume that the minimum
and maximum values of these constants are known. We then partition

these ranges of values also into a finite numbers of intervals, and
fix a uniform distribution over all the intervals. After building the
DBN, we use a Bayesian inference-based technique to perform
parameter estimation to complete the construction of the model.
However, unlike the variables, once the initial value of an unknown
rate constant has been sampled, this value will not change during the
generation of a trajectory. Naturally different trajectories can have
different initial values for an unknown rate constant.

A key idea is to compactly store the generated set of sequences as
a DBN. This is achieved by means of a simple counting procedure
that exploits the network structure. In order to keep the focus on the
approximation procedure we give only an informal description of
DBNs here and defer a precise presentation to Section 4.

A DBN consists of a directed acyclic graph where the nodes
are grouped into layers with each layer representing a time point
(Murphy, 2002). The nodes in layer t−1 will be connected to the
nodes in the layer t in the same way as t ranges from 1 to T . Each
node will have a random variable associated with it. In our setting,
there will be one random variable xt

i (rt
j ) corresponding to each

variable xi (unknown rate constant rj) to capture in which interval
the value of xi (rj) falls at time t. Further, for each unknown rate
constant k, we add the equation dk/dt =0 to capture the fact that
once the value of k has been sampled, this value will not change
during the numerical integration of a trajectory.

Pa(xt
i ), the set of parent nodes of xt

i is determined as follows. The

node xt−1
k (rt−1

j ) will be in Pa(xt
i ) iff xk(rj) appears in the equation

for xi or xk =xi. On the other hand, rt−1
j will be the only parent

of the node rt
j in case rj is an unknown rate constant. In Figure 2,

we show a simple enzymatic reaction network, its ODE model and
the structure of its DBN approximation. In this example, we have
assumed that k3 is the only unknown parameter.

As indicated in Figure 2c, each node will also have a CPT
associated with it to specify the local probabilistic dynamics. A
typical entry in the CPT of xt

i will be of the form Pr(xt
i = I |zt−1

1 =
I1,zt−1

2 = I2,...,zt−1
l = Il)=p with Pa(xt

i )={zt−1
1 ,zt−1

2 ,...,zt−1
l }.

Such an entry means that p is the probability that the value of xi
falls in the interval I at time t, given that the value of zu was
in Iu at time t−1 for each zt−1

u in Pa(xt
i ). The probability p is

(a)

(b) (c)

Fig. 2. (a) The enzyme catalytic reaction network. (b) The ODE model.
(c) The DBN approximation.
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calculated through simple counting. Suppose N is the number of
generated trajectories. We record the number of the trajectories from
this collection for which their value of zu fell in the interval Iu for
each zu in {z1,z2,...,zl} at time t−1. Suppose this number is J . We
then determine for how many of these J trajectories, the value of
xi fell in the interval I at time t. If this number is J ′, then p is set
to be J ′/J .

If k is unknown, in the CPT of kt we will have Pr(kt = I |
kt−1 = I ′)=1 if I = I ′ and Pr(kt = I |kt−1 = I ′)=0 otherwise. This
is because the sampled initial value of k does not change during
numerical integration. Suppose k appears on the right-hand side of
the equation for x and Pa(xt

i )={zt−1
1 ,zt−1

2 ,...,zt−1
�

} with zt−1
�

=
kt−1. Then for each choice of interval values for nodes other than
k in Pa(xt

i ) and for each choice of interval value Î for k there will

be an entry in the CPT of xt of the form Pr(xt
i = I |zt−1

1 = I1,zt−1
2 =

I2,...,k = Î)=p. This is so since we will sample for all possible
initial interval values for k and k0 =kt−1. In this sense, the CPTs
record the approximated dynamics for all possible combinations of
interval values for the unknown rate constants. These features are
illustrated in Figure 2c for the unknown rate constant k3.

By performing parameter estimation on the resulting uncalibrated
DBN one can obtain a calibrated DBN in which each parameter will
have a specific interval value assigned to it.

3 MAPPING TO A GPU ARCHITECTURE
We now describe how our approximation algorithm is mapped onto
the NVIDIA’s Fermi platform. In this platform each GPU unit
consists of 16 streaming multiprocessors (SMs for short). Each
SM has 32 arithmetic cores divided into 2 groups of 16 each for
scheduling purposes (Glaskowsky, 2009). Threads are grouped into
warps of size 32 each. In the current generation of CUDAprocessors,
half of a warp, i.e. 16 threads, will execute in one of the 2 sets of cores
in a SM in a SIMD (single instruction multiple data) manner. Thus
in any cycle—subject to some mild constraints—two half-warps can
be executing in a SM. However, the threads belonging to a half warp
must execute the same instruction. If not, they must be serialized.
Pipelining offers an additional dimension of parallelism. Loosely
speaking, it takes ∼22 cycles to execute each instruction. Through
pipelining, when the i+1-th processing cycle of the instructions
belonging to a warp starts executing, the system can schedule the
execution of the i-th processing cycle of the instructions belonging
to a different wrap. As for the memory hierarchy, each SM has
32 K registers of 32 bits length and each thread in an SM can be
allocated upto 64 of these registers. Each SM has 48 KB of shared
fast memory which the threads belonging to the SM can use to store
data and synchronize with each other. Additional data must be stored
in the slow off-chip global memory of size 2 GB. This is also the
only medium through which threads belonging to different SMs can
synchronize. In addition, there is a small L1 cache of size 16 KB
belonging to each SM and an L2 cache of size 768 KB that is shared
by all the SMs. Each SM computes a set of trajectories and records
the number of times these trajectories hit the intervals of values
of the variables at different time points. This binning information
is stored in a specific area of the global memory which will be
summed up to produce the CPTs of the DBN. We now describe how
the computation within a single SM is orchestrated according to the
scheme shown in Figure 3.

Fig. 3. Concurrent execution of trajectories inside an SM.

Starting from an initial state at t =0, for each time interval �t,
the new value of a variable x is determined by applying numerical
integration using the current values of the variables and the values of
the rate constants appearing in the ODE for x as well as the current
value of x. Due to the coupling between the variables, the entire
front of the new values of all the variables must be computed at
each time step per trajectory. If we naively allocate as many threads
as possible to each SM with each thread computing a trajectory then
their memory requirements will exceed the size of the (fast) local
memory of the SM.

To get around this we partition the set of equations into blocks
and allocate each block to a thread. Thus a single trajectory will
be computed by a set of threads C. Each member of C will handle
a different block of equations and compute the new values of the
variables appearing on the left-hand sides of these equations. Each
thread will read from the local memory of the SM the current
values of the variables (v) and the rate constants (p) appearing
in the equations allotted to it. The �v changes during a time step
are computed in parallel and are stored back to the local memory.
The vector of variables v is then updated. This process is applied
iteratively for each time step.

We must also perform the binning steps to record the number of
times the threads hit the various intervals of values of the variables
(and unknown rate constants). This is required for constructing the
CPTs of the DBN. Accordingly, the vector v is replicated as v̄.
The binning process executes in parallel, during the subsequent �t
iteration, using the memory access threads (M), which will store
the results in a large table located in global memory. This will ensure
that the numerical integration continues during the binning process.

Many copies of the C and M groups of threads will be assigned
to an SM. How they are scheduled is guided by the hardware
organization of the SM explained above. In particular, we allot
the C threads belonging to each trajectory to the warps so that
threads executed together in the same warp process the same block
of equations corresponding to different trajectories. This implies
that threads computing different blocks corresponding to the same
trajectory are assigned to different warps.

We next turn to the issue of partitioning the set of equations into
blocks with each block handled by a thread in C. The compiler
converts each equation into a set of memory loads and stores and
a set of arithmetic operations. To achieve good balance, we have
created a simple timing model that assigns a weight to each operation
that appears in each equation. We then distribute the equations so
that the corresponding weight of the operators appearing among the
C threads is balanced.
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Our compilation strategy leads to a better utilization of the fast
local memory in comparison to the naïve implementation in which
each thread computes a trajectory and the CUDA compiler decides
how many parallel threads should be launched. Our experiments
using an initial implementation showed that for one of the case
studies reported in Section 5 (the EGF–NGF model) it achieves
approximately a 40% improvement over the naïve solution. We
have not, however, carried out a systematic and detailed comparison
so far.

It is also worth pointing out that there will be ODE systems on
which our implementation will not do much better than the naïve
implementation. This is so since structure of the DBN is determined
by the couplings between the variables in the ODE system. Hence
our solution will not do much better for networks in which the graph
denoting the couplings between the variables is not sparse but instead
has many nodes that have a large number of parent nodes. This
situation will arise when the biochemical network under study has
many species each of which takes part in many reactions as a reactant
and/or product. However all the networks we have encountered so
far have been relatively sparse. When there are a few ‘fat’ nodes
that have many parent nodes, one can break them up into leaner
nodes—at an additional computational cost—as explained in Liu
et al. (2011b).

To generate the initial states, we used a Mersenne twister
algorithm based on the MT19937 random number generator
(Matsumoto and Nishimura, 1998), running in each of the C
threads. We used a fourth-order Runge-Kutta algorithm for the
numerical integration process (Hindmarsh, 1983). We have extended
the implementation described above to multiple GPUs running
in parallel. Each GPU computes independently its portion of the
trajectories and records the results in a table in its own global
memory. Once the computation has finished, these tables are
transferred over the network to the master host that combines them
to form the CPTs. More details regarding our GPU implementation
can be found in the Supplementary Material.

4 PROBABILISTIC MODEL CHECKING
Once the DBN approximation has been constructed many analysis
tasks can be carried out efficiently, such as parameter estimation
and sensitivity analysis via Bayesian inferencing (Liu et al., 2011b).
Here we formulate a new analysis method based on probabilistic
model checking. As mentioned earlier, the FF algorithm (FF for
short) will play a key role in our model checking procedure. Hence
we start with DBNs and then describe FF.

4.1 The FF algorithm
We fix an ordered set of n random variables {X1,...,Xn} and let
i, j range over {1,2,...,n}. We denote by X the tuple (X1,...,Xn).
The random variables are assumed to take values from the finite
set V of cardinality K . We let xi, ui and vi to denote a value taken
by Xi. In our application the random variables will correspond to
the variables (and unknown rate constants) appearing in the ODE
model. Our DBNs will be time-variant but with a regular structure.
They will be unrolled over a finite number of time points. Further,
there will be no hidden variables (Murphy and Weiss, 2001).

Formally, a DBN is a structure D= (X ,T ,Pa, {Ct
i }) where,

• T is a positive integer with t ranging over the set of time points
{0,1,...,T}.

• X ={Xt
i |1≤ i≤n,0≤ t ≤T} is the set of random variables. As

usual, these variables will be identified with the nodes of the
DBN. Xt

i is the instance of Xi at time slice t.

• Pa assigns a set of parents to each node and satisfies:
(i) Pa(X0

i =∅). (ii) If Xt′
j ∈Pa(Xt

i ) then t′ = t−1. (iii) If

Xt−1
j ∈Pa(Xt

i ) for some t then Xt′−1
j ∈Pa(Xt′

i ) for every t′ ∈
{1,2,...,T}. Thus the way nodes at the (t−1)-th time slice are
connected to nodes at the t-th time slice remains invariant as
t ranges over {1,2,...,T}.

• Ct
i is the CPT associated with node Xt

i specifying
the probabilities Pr(Xt

i |Pa(Xt
i )). Suppose Pa(Xt

i )=
{Xt−1

j1
,Xt−1

j2
,...,Xt−1

jm
} and (xj1

,xj2
,...,xjm

)∈Vm. Then

as usual we require,
∑

xi∈V Ct
i (xi |xj1

,xj2
,...,xjm

)=1. Since
our DBNs are time-variant, in general Ct

i will be different

from Ct′
i if t 	= t′.

A (global) state of the DBN at t will be a member of Vn,
say x= (x1,x2,...,xn) specifying that Xt

i =xi for 1≤ i≤n. This
in turn stands for Xi =xi for 1≤ i≤n at t. Suppose Pa(Xt

i )=
{Xt−1

j1
,Xt−1

j2
,...,Xt−1

jm
}. Then a CPT entry of the form Ct

i (xi |
xj1

,xj2
,...,xjm

)=p says that if the system is in a state at t−1 in
which Xj� =xj� for 1≤�≤m, then the probability of Xi =xi being
the case at t is p. In this sense the CPTs specify the probabilistic
dynamics locally.

The regular structure of our DBNs induces the function PA given
by: Xj ∈PA(Xi) iff Xt−1

j ∈Pa(Xt
i ). We define î={j |Xj ∈PA(Xi)} to

capture Pa in terms of the corresponding indices.
The probability distribution Pr(Xt

1,Xt
2,...,Xt

n) describes the
possible states of the system at time t. In other words, Pr(Xt =x) is
the probability that the system will reach the state x at t. Starting
from Pr(X0) at time 0, given by Pr(X0 =x)=∏

i C
0
i (xi), one would

like to compute Pr(Xt
1,...,Xt

n) for a given t.
We can use the CPTs to inductively compute this:

Pr(Xt =x)=
∑

u

(∏
i

Ct
i (xi |uî)

)
Pr(Xt−1 =u) (1)

with u ranging over Vn.
Since |V |=K , the number of possible states at t is Kn and hence

explicitly computing and maintaining the probability distributions
is feasible only for special cases. One must instead use approximate
methods. Here we shall focus on a simple and efficient approximate
algorithm called the FF algorithm (Murphy and Weiss, 2001). The

Fig. 4. The FF algorithm.
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key idea of FF is to maintain and propagate joint probability
distributions Pr(Xt

1,Xt
2,...,Xt

n) in terms of marginal distributions
{Mt

i }.
The marginal distribution Mt

i is map Mt
i :V →[0,1] satisfying∑

v∈V Mt
i (v)=1. Intuitively, Mt

i (v) is the probability of Xi assuming
the value v at time t. It is given by: Mt

i (v)=∑
x,x(i)=v Pr(Xt

j =x(j) |
1≤ j≤n).

To describe FF compactly we will assume the following notations.
xJ will denote a vector of values over the index set J ⊆{1,2,...,n}.
It will be viewed as a map xJ :J →V . We will often denote xJ (i) as
xi if J is clear from the context. Further, we denote by Xt the vector
of random variables (Xt

1,...,Xt
n).

We assume that we are given M0
i for each i. In our application

this will correspond to the initial distribution over the intervals of
values of the variables in our discretization procedure.

Consequently, if Xj corresponds to an unknown rate constant

then M0
j (I)=1/m in case the values this rate constant can assume

has been partitioned into m uniform sized intervals. To highlight
the approximate nature of FF we use Bt

i to denote the marginal
probabilities computed by FF and reserve Mt

i for the actual marginal.

Using the family {M0
i }, FF inductively and approximately computes

the marginal probabilities Bt
i using the CPTs as follows.

• B0
i =M0

i

• Bt
i (u)=

∑
v∈Vî

(
Ct

i (u |v)
∏
j∈î

Bt−1
j (vj)

)
.

Thus FF generates in one sweep the sequence of (approximate)
marginal distribution vectors (B0

1,B0
2,...,B0

n) (B1
1,B1

2,...,B1
n) ...

(BT
1 ,BT

2 ,...,BT
n ) as illustrated in Figure 4 (for convenience we

have assumed that all the rate constants are known). It is an
approximation of the sequence of (exact) marginal distribution
vectors (M0

1 ,M0
2 ,...,M0

n ) (M1
1 ,M1

2 ,...,M1
n ) ... (MT

1 ,MT
2 , ...,MT

n )
which in turn will be used to interpret our temporal logic formulas
later.

The time complexity of FF is O(T ·n ·Kd+1) where |V | = K and
d is the maximum over the number of parents that a node can have.
Usually d will be much smaller than n and in this sense FF is efficient
since its time complexity is linear in n.

4.2 Probabilistic BTL
In our temporal logic, the atomic formulas (i.e. propositions) will
be of the form (i,v)#r with #∈{≤,≥} and r ∈[0,1]. The proposition
(i,v)≥r, if asserted at time point t, says that Mt

i (v)≥r; similarly for
(i,v)≤r.

The formulas of our logic termed PBL (probabilistic BTL) is then
given by: (i) Every proposition is a formula. (ii) If ϕ and ϕ′ are
formulas then so are ∼ϕ and ϕ∨ϕ′. (iii) If ϕ and ϕ′ are formulas
then so are O(ϕ) and ϕUϕ′.

The derived propositional connectives such as ∧,⊃,≡ etc.
are defined in the standard fashion. The temporal connectives F
(“sometime from now”) and G (“always from now”) are defined in
the usual way via: F(ϕ)= trueUϕ and G(ϕ)=∼F(∼ϕ).

The formulas are interpreted over the sequence of marginal
probability distribution vectors σ =s0s1 ...sT generated by the
DBN D. In other words, for 0≤ t ≤T , st = (Mt

1,Mt
2,...,Mt

n).
Consequently st(i)=Mt

i for 1≤ i≤n. We also let σ (t)=st for 0≤

(a) (b)

Fig. 5. (a) The model (sequence of states) defined by the DBN. (b) The
model checking procedure.

t ≤T . We now define the notion of σ (t) |=ϕ (ϕ holds at t in D)
inductively:

• σ (t) |= (i,v)≥r iff Mt
i (v)≥r. Similarly

σ (t) |= (i,v)≤r iff Mt
i (v)≤r.

• The propositional connectives ∼ and ∨ are interpreted in the
usual way.

• σ (t) |= O(ϕ) iff σ (t+1) |=ϕ.

• σ (t) |=ϕUϕ′ iff there exists t ≤ t′ ≤T such that σ (t′) |=ϕ′ and
for every t′′ with t ≤ t′′ < t′, σ (t′′) |=ϕ.

We say that the DBN D meets the specification ϕ and this is
denoted as D |=ϕ iff σ (0) |=ϕ. The model checking problem is,
given D and ϕ, to determine whether or not D |=ϕ.

We begin by letting SF(ϕ) denote the set of sub-formulas of ϕ and
define it as follows. Since ϕ will remain fixed we will write below
SF instead of SF(ϕ).

SF is the least set of formulas containing ϕ such that (i) ∼ϕ′ ∈
SF implies ϕ′ ∈ SF (ii) ϕ′∨ϕ′′ ∈ SF implies ϕ′,ϕ′′ ∈ SF (iii) Oϕ′ ∈
SF implies ϕ′ ∈ SF (iv) ϕ′Uϕ′′ ∈ SF implies ϕ′,ϕ′′ ∈ SF.

The main step is to construct a labeling function st which assigns
to each formula ϕ′ ∈ SF a subset of {s0,s1,...,sT } denoted st(ϕ′).
After the labeling process is complete, we declare D |=ϕ just in
case s0 ∈st(ϕ). Starting with the atomic propositions, the labeling
algorithm goes through members of SF in ascending order in terms
of their structural complexity. Thus ϕ′ will be treated before ∼ϕ′ is
treated and both ϕ′ and ϕ′′ will be treated before ϕ′Uϕ′′ is treated
and so on.

Let ϕ′ ∈ SF(ϕ). Then:

• If ϕ′ = A then st ∈st(A) iff σ (t) |=A. We run FF to determine
this. In other words, st ∈st(A) iff Bt

i (v)≥r where A= (i,v)≥r
and Bt

i is the marginal distribution of Xt
i computed by FF.

Similarly st ∈st(A) iff Bt
i (v)≤r in case A= (i,v)≤r.

• If ϕ′ = ∼ ϕ′′ then st ∈st(ϕ′) iff st 	∈st(ϕ′′).

• If ϕ′ = ϕ1 ∨ϕ2 then st ∈st(ϕ′) iff st ∈st(ϕ1) or st ∈st(ϕ2).

• Suppose ϕ′ = O(ϕ′′). Then sT 	∈st(ϕ′). Further, for 0≤ t <T ,
st ∈st(ϕ′) iff st+1 ∈st(ϕ′′).

• Suppose ϕ′ = ϕ1U ϕ2. Then we decide whether or not
st ∈st(ϕ′) by starting with t =T and then treating decreasing
values of t. Firstly sT ∈st(ϕ′) iff sT ∈st(ϕ2). Next suppose
t <T and we have already decided whether or not st′ ∈st(ϕ′)
for t < t′ ≤T . Then st ∈st(ϕ′) iff st ∈st(ϕ2) or st ∈st(ϕ1) and
st+1 ∈st(ϕ′).
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Fig. 6. The reaction network diagram of the EGF-NGF pathway (Brown
et al., 2004).

ϕ′ =F(ϕ′′) and ϕ′ =G(ϕ′′) can be handled directly. As in the case
of U, we start with t =T and consider decreasing values of t:

• Suppose ϕ′ =F(ϕ′′). Then sT ∈st(ϕ′) iff sT ∈st(ϕ′′). For
t <T , st ∈st(ϕ′) iff st ∈st(ϕ′′) or st+1 ∈st(ϕ′).

• Suppose ϕ′ =G(ϕ′′). Then sT ∈st(ϕ′) iff sT ∈st(ϕ′′). For
t <T , st ∈st(ϕ′) iff st ∈st(ϕ′′) and st+1 ∈st(ϕ′).

Due to the fact the model checking procedure just needs to treat
one finite sequence as a model, it is particularly simple. Its time
complexity is linear in the size of the formula ϕ whereas in traditional
settings it will be exponential in the size of ϕ.

Figure 5 summarizes our model checking procedure. Properties of
pathway dynamics are formulated as PBL formulas. They are then
verified using the above labeling algorithm which will call the FF
algorithm when dealing the atomic propositions.

5 RESULTS
Here, we present our results concerning the GPU implementation
and the probabilistic model checking method.

5.1 Performance of the GPU implementation
We have implemented the DBN approximation algorithm on the
NVIDIA Tesla 2.0 (Fermi) platform consisting of 4 GPUs of 2 GB
global memory each. The 4 units are attached in pairs to 2 Xeon
E5405 @ 2 GHz hosts with 16 GB of memory each and the hosts
can communicate with each other. We compared the performance of
our GPU algorithm with that of a MPI-based C implementation on
a cluster of 10 Xeon E5430 @ 2.66 GHz CPUs each with 40 GB
of memory. We did so by constructing the DBN approximations for
three biopathways models described below. Although the parameter
values for these models are known, in each case we set a subset of
the parameters as ‘unknown’ to mimic realistic biopathways models.
This considerably increases the computational demands placed on
the approximation algorithm. In what follows we briefly describe
each of the pathways. The reaction schemes and the corresponding
ODE systems can be obtained via the links to the Biomodels database
(Le Novere et al., 2006) provided in the Supplementary Material.

5.1.1 The EGF–NGF signaling pathway PC12 cells proliferate
in response to EGF stimulation but differentiate into sympathetic

neurons in response to NGF. Brown et al. (2004) developed an ODE
model of this pathway. The corresponding reaction network is shown
in Figure 6. The model consists of 32 differential equations and 48
kinetic parameters. In total, 20 of the 48 parameters were singled out
to be unknown. The ranges of each variable and unknown parameter
were discretized into five intervals of equal size. The time step �t
was fixed to be 6 s and 3×106 trajectories were generated up to
600 s to fill up the CPTs associated with the DBN approximation.

5.1.2 The segmentation clock network During the development
of vertebrate embryos, the somites are rhythmically produced to
establish the segmental pattern of the spines. The periodic formation
of somites is driven by the oscillatory expression of a large number of
genes. The expression of these genes is controlled by an underlying
signaling network called the segmentation clock network (Goldbeter
and Pourquie, 2008). The corresponding ODE model consists of 22
differential equations and 75 kinetic parameters. A total of 40 of the
75 parameters were singled out to be unknown. The ranges of each
variable and unknown parameter were discretized into five equal-
size intervals. The time step �t was fixed to be 5 min while 3×106

trajectories were generated up to 500 mins to fill up the CPTs.

5.1.3 The thrombin-dependent MLC phosphorylation pathway
The endothelial cells form a dynamic barrier between blood and
tissues, which plays an important role in various physiological and
pathological processes. The barrier function is determined by the
contraction of endothelial cells, which is triggered by the MLC
phosphorylation and thrombin is an agonist that can induce the MLC
phosphorylation through two different signaling cascades (Maeda
et al., 2006). This rather large model consists of 105 differential
equations, 110 reactions and 197 kinetic parameters. In constructing
the DBN approximation, we singled out 164 of the 197 parameters
to be unknown. We discretized the ranges of each variable and
unknown parameter into five equal-size intervals and fixed the
time step �t to be 2 s. To fill up the CPTs, we generated 3×106

trajectories up to 200 s.
More details concerning their DBN approximations can be found

in the Supplementary Material.

5.2 Performance
The overall runtime are summarized in Table 1. It shows our
implementation achieves significant speedup compared with a 10-
CPU cluster implementation for the first two case studies. The third
case study illustrates the scalability of the GPU implementation.
It took 38 h to compute a high-quality DBN approximation using
3×106 trajectories whereas the cluster implementation took 37 h
for just 30 000 trajectories. Further, this DBN was of poor quality in
that for some biologically significant species it differed significantly
from the ODE model (the details can be found in the Supplementary
Material). For a 3 million trajectories-based DBN approximation,
the PC-cluster it would have taken ∼5 months! In this sense the
GPU implementation can handle much larger models than the PC-
cluster. Further, the compilation strategy we have developed can be
applied to other Monte Carlo simulations-based analysis methods
for biopathways models (Donaldson and Gilbert, 2008; Li et al.,
2010).
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Table 1. Comparative performance of CPUs cluster and GPUs cluster

Runtime (s)

Pathway model 10-CPU cluster 4-GPU cluster Speedup

EGF–NGF 4985 191.4 26×
Segmentation clock 17 881 543.6 32.9×
Thrombin-MLC − 135 660.9 −

5.3 Verification results
For the three case studies, we formulated some properties and
verified whether they were true or not. For convenience we fixed
the values of rate constants and the initial concentrations according
to the models taken from the BioModels database. This in turn fixed
the truth values of the propositions at time 0.

5.3.1 The EGF–NGF signaling pathway

• It is known that the concentration of EGF and NGF remains
constantly high. We formulated this property as the formula:

G((EGF,I4)>0.9)∧G((NGF,I4)>0.9)

The property was verified to be true.

• The profile of activated extracellular-signal-regulated kinase
(ERK) is expected to reach a peak after which the
concentration begins to fall. The corresponding formula was:

(((ERK∗,I0)>0.6)∧F(((ERK∗,I3)>0.6)∧
F(G((ERK∗,I2)>0.6)))

The above query was verified to be true.

• We next checked whether the concentration of activated
C3G reaches a steady state as experimentally observed. The
corresponding formula is:

((C3G∗,I0)>0.8)∧F(G((C3G∗,I4)>0.8))

It was verified to be true.

5.3.2 The segmentation clock network We checked the oscillatory
behavior of various species. Following Donaldson and Gilbert
(2008), we formulated the property for the oscillatory behavior of
Axin as:

F(((Axin,I0)>0.6)∧F(((Axin,I2)>0.6)∧F(((Axin,I0)>

0.6)∧F(((Axin,I2)>0.6)∧F((Axin,I0)>0.6)))))

The property specifies the number of peaks and troughs to be
expected in an oscillation cycle within the given time bound of the
system. Specifically, it says that initially (with a high probability)
the system is at the discretized interval 0 followed by a state some
time in future where (with a high probability) the system moves to
a higher discretized interval and then falls back to initial levels and
so on. This query was verified to be true.

5.3.3 The thrombin-dependent MLC phosphorylation pathway
The following are some of the formulas considered for this model:

• The profile of activated Rho starts at a very low level, reaches
a high value after which the concentration drops back to the
initial level. The corresponding formula was:

((Rho∗,I0)>0.8)∧F(((Rho∗,I4)>0.8)∧
F((Rho∗,I0)>0.8)))

It was verified to be true.

• Rho gets activated and reaches its peak earlier than MLC:

((MLC∗,I4)<0.1)U(((Rho∗,I4)>0.8)∧
O(F((MLC∗,I4)>0.7)))

This was also verified to be true.

• Experimental observations suggest that the concentration of
phosphorylated MLC starts at a low level, reaches a high-
steady-state value. The PBL formula used to capture this
property was:

((MLC∗,I0)>0.7)∧F(G((MLC∗,I4)>0.7))

It was verified to be false.

• We then formulated a PBL formula to describe the behavior
where the concentration starts with a low value, reaches a high
value (peak) after which it drops back to the initial level.

((MLC∗,I0)>0.7)∧F(((MLC∗,I4)>0.7)∧
F((MLC∗,I0)>0.7))

This formula evaluated to be true. This means the current ODE
model is unable to explain the experimental data available
for this pathway. Further investigation to identify the missing
links of the pathway may be required.

6 CONCLUSION
Approximating the ODE-based biopathway dynamics as a DBN
allows model analysis tasks such as parameter estimation, sensitivity
analysis and probabilistic verification to be efficiently carried out.
In this article, we have presented a GPU-based implementation for
constructing the DBN approximations.

The significant read-sharing in the algorithm will prevent a naïve
implementation from scaling upto large biopathways models. To
overcome this, we have proposed a compilation strategy in which
heterogeneous threads consisting of trajectory-computing threads
and global memory access threads are suitably folded into warps.
Further, load balancing was achieved using a simple timing model.

In our experiments, we were able to achieve significant speedup
compared with a 10-CPU cluster implementation. Furthermore, our
method scales well whereas the cluster-based implementation begins
to consume infeasible amounts of resources for large models.

We have also formulated a simple PCTL and constructed
an approximate but efficient model checking procedure. Though
probability enters the picture solely via atomic propositions, one
can still formulate many interesting dynamic properties of pathway
models. Further, due the fact that there is a single finite run, the
model checking procedure is particularly simple. Admittedly it is an
approximate procedure. However, one can begin with our method
to get a preliminary feel for the dynamics and in case a biologically
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crucial and testable property shows up, one can compute its truth
value more precisely by using the hybrid factored frontier (HFF)
algorithm (Palaniappan et al., 2011; the Supplementary Material
contains more details on this).

Both contributions of this article have wider applicability. In our
GPU implementation, we show how data sharing and many accesses
to global memory can be tackled. In Monte Carlo-based analysis,
one must stochastically generate trajectories and check whether they
pass a statistical test. This will, however, entail storing a good deal
of information generated by the individual trajectories and multiple
passes through this information in cases where the statistical test is
based on a temporal property (Donaldson and Gilbert, 2008; Fages
and Rizk, 2007). In these settings our mapping techniques will lead
to powerful GPU implementations. We plan to demonstrate this in
our future work.

The model checking procedure we propose can be applied in
other setting where DBNs arise as dynamic models (Sun and Hong,
2007). Further, the generic idea of restricting probabilities to just
propositions is promising. This will enable classical model checking
procedures to be combined with algorithms such as FF and HFF.

An interesting challenge will be to develop GPU-based imple-
mentation for tasks such as parameter estimation and sensitivity
analysis that are computationally demanding but appear to offer
opportunities for a parallel implementation. In this context, the sum-
of-product algorithm implementation presented in Silberstein et al.
(2008) promises to offer helpful pointers.
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