

Comparison of methods to trace multiple subskills:

Is LR-DBN best?
Yanbo Xu

Carnegie Mellon University
RI-NSH 4105

5000 Forbes Ave, Pittsburgh, PA 15213

yanbox@cs.cmu.edu

Jack Mostow
Carnegie Mellon University

RI-NSH 4103
5000 Forbes Ave, Pittsburgh, PA 15213

mostow@cs.cmu.edu

ABSTRACT
A long-standing challenge for knowledge tracing is how to update

estimates of multiple subskills that underlie a single observable

step. We characterize approaches to this problem by how they

model knowledge tracing, fit its parameters, predict performance,

and update subskill estimates. Previous methods allocated blame

or credit among subskills in various ways based on strong

assumptions about their relation to observed performance. LR-

DBN relaxes these assumptions by using logistic regression in a

Dynamic Bayes Net. LR-DBN significantly outperforms previous

methods on data sets from reading and algebra tutors in terms of

predictive accuracy on unseen data, cutting the error rate by half.

An ablation experiment shows that using logistic regression to

predict performance helps, but that using it to jointly estimate

subskills explains most of this dramatic improvement. An

implementation of LR-DBN is now publicly available in the

BNT-SM student modeling toolkit.

Keywords

Conjunctive knowledge tracing, Dynamic Bayes Nets, logistic

regression

1. INTRODUCTION
Knowledge tracing (KT) [1] is widely used to update an

intelligent tutor’s estimate of the probability that a student has a

given skill, based on the student’s observable performance on

steps that use the skill. KT does not in itself address the issue of

how to update multiple subskills used in the same step. This

paper compares various approaches to this “multiple subskills

problem.” Section 2 frames the space of prior (and new) methods.

Section 3 describes a recent method named LR-DBN [2]. Section

4 compares LR-DBN against previous methods on two data sets.

Section 5 concludes.

2. COMPARATIVE FRAMEWORK
As a framework to compare previous and proposed methods for

tracing multiple subskills, we use four aspects to characterize

them: how they represent the KT model, how they fit the model

parameters to observations of multi-subskill steps, how they use

the model to predict performance on such steps, and how they

update estimates of the subskills based on observed performance.

2.1 Represent model
Previous solutions represent the student’s knowledge at step n as a

hidden state

 in a Hidden Markov Model (HMM), shown in

Figure 1. It has knowledge parameters already know for the

probability that the student knew the skill to start with, learn for

the probability of the transition from not knowing the skill to

knowing it, and forget (usually assumed to be 0) for the

probability of the transition from knowing the skill to not knowing

it. It also has performance parameters guess for the probability

 of performing the step correctly despite lacking

the skill, and slip for the probability

 of

performing the step incorrectly despite knowing the skill.

Figure 1: Single-skill knowledge tracing architecture

2.2 Fit parameters
One previous solution [3] tries to sidestep the problem by

modeling each set of subskills as a distinct individual skill, e.g.,

computing the area of a circle embedded in a figure vs. by itself.

However, modeling different sets of subskills as independent

skills ignores transfer of learning between them.

Other previous solutions [4-6] simply treat each subskill used

in a step as if it were entirely responsible for that step. They train

a separate KT model for each subskill on observations of all the

steps that use it. Thus the same observed step appears in the

training data for every subskill that it uses. They simply estimate

the model parameters for each subskill using the same training

procedure as for conventional KT.

2.3 Predict performance
In standard “single-skill” KT, predicting performance

 at step

n involving skill j is simple:

Equation 1: Standard KT prediction

Previous solutions to the multiple-subskills problem predict

performance on a step by combining in different ways the

probabilities of correctly performing all the skills it requires. One

way, based on an assumption that they are probabilistically

independent, multiplies them [4, 6]:

Equation 2: Independent subskills performance prediction

The weakest-subskill alternative [5] takes their minimum:

Equation 3: Weakest-subskill performance prediction

2.4 Update estimate
To update its estimate of a skill j based on the observed success of

a step n that uses it, standard KT applies Bayes’ rule:

Equation 4: Standard KT skill update for successful step

Conversely, the standard update rule if the step fails is:

Equation 5: Standard KT skill update for failed step

Either way, it estimates the probability of knowing the skill at the

next step as either knowing without forgetting, or learning:

Equation 6: Standard KT next-step update

When a step involves multiple subskills, previous methods use

different ways to allocate responsibility among them for the

observed success or failure of the step. The “full responsibility”

approach applies these equations to all the subskills. The “update

weakest subskill” approach simply applies the standard update

equations above to whichever subskill in a step has the lowest

probability, and leaves the others unchanged. Its “blame weakest,

credit rest” variant credits the other subskills as correct even if the

step failed.

Conjunctive knowledge tracing (CKT) [6] also predicts the

probability of a step succeeding as a product of its subskill

probabilities using Equation 2, and gives all of them full credit for

success using Equation 4. However, rather than place full blame

on each subskill for failure, CKT apportions blame among them

differently. Instead of using Equation 5 to update each subskill

based just on its own guess and slip probabilities, CKT takes into

account those of the other subskills as well, as follows.

Bayes’ rule says how to update a skill based on performance:

Equation 7: Bayes' rule for skill update

Conditioning on having skill j at step n reduces

 to 1,

simplifying the numerator of Equation 9 to:

Equation 8: CKT subskills update for failed step

CKT computes the denominator by assuming independence:

Equation 9: CKT prediction based on multiple subskills

Next, we introduce a different strategy of using logistic regression

in KT to trace multiple subskills.

3. USING LOGISTIC REGRESSION TO

TRACE MULTIPLE SUBSKILLS
We now describe two newer methods that trace multiple subskills

using logistic regression. Previous KT methods fit their

parameters independently using the same algorithm as for single-

skill KT, thereby implicitly assigning full and equal responsibility

to all the subskills in an observed step, and predict performance

based on the weakest subskill or by multipying subskill estimates.

Section 3.1 describes LR-DBN, which changes both these aspects

by using Expectation Maximization (EM) [7] to fit parameters for

multiple subskills simultaneously, and by using logistic regression

to predict performance. As an ablation experiment to shed light

on the relative impact of these two innovations, Section 3.2

introduces LR-DBN Minus, a hybrid method that fits the standard

KT model just as previous methods do, but uses logistic

regression to do prediction.

3.1 LR-DBN
LR-DBN is a recent but published method [2, 8] to trace multiple

subskills, so we summarize it here only briefly in terms of the four

aspects discussed in Section 2.

Figure 2: Knowledge tracing with logistic regression

Represent model: Like standard KT, LR-DBN represents the

knowledge for step n as a hidden knowledge state

 in a

dynamic Bayes net. However, as Figure 2 illustrates, LR-DBN

adds a layer of observable states

 as indicator variables to

represent whether step n involves subskill j: 1 if so, 0 if not.

LR-DBN uses logistic regression to model the initial hidden

knowledge state at step 0 and the transition probabilities from step

n-1 to n as follows:

Equation 10: Logistic regression to combine subskills

These three conditional probabilities for each subskill replace

the KT knowledge parameters already know, learn, and forget,

but LR-DBN retains KT’s guess and slip parameters at each step.

Fit parameters: LR-DBN uses Expectation Maximization (EM)

[7] to fit parameters for all subskills together.

Predict performance: LR-DBN uses logistic regression in a

Dynamic Bayes Net to combine multiple subskills more flexibly

than using Equation 2 to multiply their probabilities or Equation 3

to take their minimum, but it uses Equation 1 to predict expected

performance based on estimated knowledge, guess, and slip.

Update estimates: LR-DBN uses the same Bayes rule as single-

skill KT to update its estimate of the hidden knowledge state in

Equation 4, Equation 5, and Equation 6.

3.2 LR-DBN Minus
LR-DBN Minus is a hybrid of LR-DBN and standard KT. It

combines KT’s single-skill fitting process with LR-DBN’s update

and prediction based on logistic regression. The key is to convert

the probability of knowing a subskill into a coefficient in logistic

regression. LR-DBN uses logistic regression to model the

transition probabilities between knowledge states, as well as the

relation of the knowledge state at each step to the subskills it

involves [2]. Thus, given the set of subskills

 used at step n,

a set of coefficients

 exists such that

Equation 11: Logistic regression for the knowledge state

If we assume step n requires only a single subskill i, then

for all the j’s such that j , and transformations between the

probabilities

 and the coefficients

 are:

Equation 12: Transformation between probabilities and

logistic regression coefficients

To update the estimates, we need to distribute the update at

each step that is calculated either from Equation 4 or Equation 5

to the subskill coefficients. We assume that the coefficient for

each subskill changes by the same amount when updated:

Equation 13: Update coefficients in LR-DBN Minus

Then the update of each subskill becomes:

Equation 14: Update subskills in LR-DBN Minus

Next we still use the standard KT Equation 6 to update

subskills at step n+1. Now we have successfully transformed LR-

DBN to upate on standard KT parameters. Note that we replace

the separate guessj and slipj parameters for each subskill j with

uniform guess and slip for all the steps. The reason is that LR-

DBN combines subskills to estimate the probability of the student

knowing a step and then uses guess and slip to predict

performance. In contrast, previous methods apply guessj and slipj

to each subskill j before combining them to predict performance

on the step.

4. EXPERIMENTAL EVALUATION
To compare LR-DBN and LR-DBN Minus to previous methods

for tracing multiple subskills, we fit seven models to real data,

summarized in Table 1: LR-DBN, LR-DBN Minus, CKT, and

three variants of standard KT distinguished by how they update

estimated skills: “full responsibility,” “blame weakest, credit rest,”

and “update weakest subskill,” with majority class as an

additional baseline. Sections 4.1 and 4.2 describe our data and

results.

Table 1: Summary of models compared

Models Fit Predict Update

LR-DBN

Train subskills

together.

Logistic

regression

assigns

responsibility.

Logistic

regression

on subskill

estimates.

Update subskills

together. Logistic

regression assigns

responsibility.

LR-DBN

Minus

CKT

Train subskills

separately.

Assign each

one full

responsibility.

Multiply

subskill

estimates.

Update subskills

together. Bayes

equations assign

responsibility.

Full

responsibility Update subskills

separately, each with

full responsibility.
Blame

weakest,

credit rest
Minimum of

subskill

estimates. Update

weakest

subskill

Update only the

weakest subskill.

Majority

class

Identify larger

class

Majority

class
No update

4.1 Data sets
We train and test the models on real data from two tutors used at

schools. One data set is from children using Project LISTEN’s

Reading Tutor [9] at primary schools during the 2005-2006 school

year. To model their oral reading fluency, we define performance

 as whether the Reading Tutor scored a text word as read

fluently at step n, i.e., read without help or hesitation and

recognized by the automated speech recognizer. We assume that

whether a student read a word fluently depended on whether the

student knew the requisite subskills, namely the grapheme-to-

phoneme mappings in the word. Due to the large amount of data

(1,792,103 read words from 275 students), we randomly selected

20 children who read a total of 80,268 words (3,972 distinct word

types) with 320 unique grapheme-phoneme mappings. To

counteract the prevalence of high-frequency words like the, we

include at most the first 20 of each student’s encounters of a word

in the training data, leaving 24,145 read words. We do not limit

the test data, so it includes 40,867 words.

The other data set [10] came from 123 high school students

working on a geometry area unit of the Bridge to Algebra

Cognitive Tutor®. The model for each student includes the same

50 subskills, and predicts whether the student will perform a step

correctly. Again we include at most the first 20 of each student’s

encounters of a step in the training data, leaving 11,730 algebra

practice steps, but 22,737 steps of test data.

The data sets from both tutors are unbalanced. The Reading

Tutor scored 68.84% of the words in the training set as fluent, and

74.31% of the words in the test set. The Algebra Tutor rated

74.22% of the steps in the training data as correct, and 84.63% of

the steps in the test data.

We fit each model separately for each student, as opposed to

training a single model on the data for all the students. One

reason is computational expedience: unlike methods that fit a

separate model for each subskill, LR-DBN fits a single model for

all the subskills, which involves processing much more data at a

time. Training this model on all the students’ data at once would

be computationally unwieldy. The other reason is to compare

methods fairly. Except for LR-DBN, it is feasible to train a single

model of a subskill on the data for all the students, and in fact we

tried it, but the resulting model does not perform as well as

training a separate model for each student.

For all the methods, we fit the model for each student to the

first half of the student’s steps, and test it on the second half. We

report average per-student accuracy on the unseen test data,

weighting its mean and variance by per-student sample size to

derive 95% confidence intervals. We use paired T-tests, paired by

student, to rate LR-DBN’s accuracy against each other method.

4.2 Results
Table 2 and Table 3 list all seven methods in decreasing order of

their binary predictive accuracy on the test data. LR-DBN

dramatically outpredicts all the other methods. LR-DBN’s overall

accuracy on the Reading Tutor data is 13% higher than majority

class, vs. only 1% for the next method. For the Algebra Tutor

data, LR-DBN is the only method that beats the majority class, by

7%. That is, on both data sets, LR-DBN has only half the error

rate of the next best method.

For unbalanced data, accuracy on the minority class can be

especially important. The minority class in our tutor data

represents negative student outcomes to remediate by means of

Table 2: Mean per-student accuracy on Reading Tutor data

(95% confidence interval in parentheses) compared to LR-DBN is

significantly (p<.01) worse if underlined, or better if italicized.

Models Accuracy

Accuracy

Within

Positive

Class

Accuracy

Within

Negative

Class

LR-DBN
87.31%)

(±1.90%)

91.17%)

(±2.80%)

75.80%)

(±12.53%)

Update

weakest

subskill

74.53%)

(±4.55%)

95.06%)

(±2.73%)

15.15%)

(±5.29%)

Majority class 74.31%) 100.00%) 0.00%)

LR-DBN

Minus

74.11%)

(±5.05%)

90.71%)

(±7.89%)

26.09%)

(±11.61%)

Blame

weakest,

credit rest

73.90%)

(±4.59%)

92.36%)

(±3.86%)

20.52%)

(±6.43%)

CKT
72.79%)

(±3.99%)

89.47%)

(±3.52%)

24.52%)

(±7.76%)

Full

responsibility

66.20%)

(±5.39%)

72.30%)

(±10.24%)

48.53%)

(±12.87%)

Table 3: Mean per-student accuracy on Algebra Tutor data
is significantly (p<.001) worse than LR-DBN’s where underlined;

italicized values are significantly better.

Models Accuracy

Accuracy

Within

Positive

Class

Accuracy

Within

Negative

Class

LR-DBN
91.99%)

(±2.00%)

96.5%)

(±1.30%)

72.3%)

(±7.80%)

Majority class 84.63%) 100.00%) 0.00%)

CKT
84.38%)

(±1.14%)

99.03%)

(±0.26%)

20.44%)

(±3.11%)

Full

responsibility

84.27%)

(±1.13%)

95.65%)

(±0.88%)

34.55%)

(±4.60%)

LR-DBN

Minus

83.92%)

(±1.17%)

97.23%)

(±0.62%)

25.80%)

(±3.84%)

Blame

weakest,

credit rest

80.38%)

(±1.13%)

90.70%)

(±0.72%)

35.28%))

(±3.14%)

Update

weakest

subskill

79.59%)

(±1.19%)

91.13%)

(±0.69%)

29.20%)

(±2.76%)

practice and instruction. LR-DBN beats every other method on

the minority class by over 20% absolute in both data sets.

What does comparison to LR-DBN Minus reveal about the

relative contributions of the fitting and update procedures? LR-

DBN Minus uses the same fitting procedure as conventional

knowledge tracing, but uses logistic regression to update

estimates. It performs substantially worse than LR-DBN, and

comparably to the other methods. We conclude that LR-DBN’s

accuracy benefits more from its fitting procedure than from using

logistic regression to combine estimates of hidden subskills.

Why does LR-DBN outpredict the other methods? Possible

reasons include the strong assumptions that it avoids, but which

they make implicitly by fitting and updating subskill estimates

separately, multiplying them to predict performance on a step, and

assigning each subskill full responsibility for the step’s outcome.

Inspection of Table 1 reveals that this last assumption is the only

one they all have in common, implicating it as the likeliest culprit.

Predictive accuracy is just one way to evaluate student models.

A more sensitive metric is model fit as measured by data

likelihood, penalized by model complexity. Table 4 and Table 5

list the complexity-penalized model fits of the methods on the two

data sets in increasing order, as scored by the Akaike information

criterion (AIC) [11] and Bayesian information criterion (BIC)

[12], defined respectively as:

Equation 15: Formulas for calculating AIC and BIC

Table 4: Complexity-adjusted Reading Tutor training data fit

Models AIC BIC k

LR-DBN 75,054.52 231,226.89 19,300

LR-DBN Minus 120,259.60 239,606.70 12,840

CKT

145,779.60 383,730.20 25,600
Full responsibility

Blame weakest, credit rest

Update weakest subskill

Table 5: Complexity-adjusted Algebra Tutor training data fit

Models AIC BIC k

LR-DBN 60,545.20 201,052.44 19,065

LR-DBN Minus 43,195.94 143,962.30 12,546

CKT

67,303.94 264,885.00 24,600
Full responsibility

Blame weakest, credit rest

Update weakest subskill

Both AIC and BIC measure model fit as log-likelihood of the

training data, ln(L), penalized by model complexity (number of

parameters, k). BIC also penalizes the number of observations, n.

We calculate the number of parameters per student as follows:

LR-DBN fits the 3 groups of coefficients for each of the

subskills and one intercept in Equation 10, plus two shared

parameters, guess and slip. For the Reading Tutor data set, this

number totals 3 × (320 + 1) + 2 = 965, multiplied by the 20

children in the data sample. For the Algebra Tutor data set, it

totals 3 × (50 + 1) + 2 = 155, multiplied by 123 students.

LR-DBN Minus fits 2 parameters (already know and learn) per

subskill, plus 2 shared parameters (guess and slip). This number

of parameters per student totals (2 × 320) + 2 = 642 for the

Reading Tutor and (2 × 50) + 2 = 102 for the Algebra Tutor.

The other methods fit 4 parameters (already know, learn, guess

and slip) per subskill for each student, totaling 4 × 320 = 1280 for

the Reading Tutor, and 4 × 50 = 200 for the Algebra Tutor.

Thus compared to previous methods, LR-DBN has about 1 less

parameter per subskill, and LR-DBN Minus about 2 less.

What about the number n of observations? LR-DBN uses one

observation per step to fit all the subskill parameters. In contrast,

the other methods fit each subskill separately, assigning it full

responsibility for every step that uses it, as if observing it

separately for each subskill. Counting such duplicate

observations as separate, they use three times as many Reading

Tutor observations as LR-DBN, and twice as many Algebra Tutor

observations.

Table 6 and Table 7 show the average log-likelihood of steps

in the training and test data. All the methods except LR-DBN

share the same likelihood on the training data because they fit

parameters in the same way (as shown in Table 1).

Table 6: Average log-likelihood for the Reading Tutor data

Models
On training

data

On unseen test

data

LR-DBN -0.7549 -0.3555

CKT

-1.9586

-1.1330

Full responsibility -1.2230

Blame weakest, credit rest -1.4944

LR-DBN Minus -1.5690

Update weakest subskill -1.6665

Table 7: Average log-likelihood for the Algebra Tutor data

Models
On training

data

On unseen

test data

LR-DBN -0.9555 -0.1503

CKT

-0.7717

-0.2082

Full responsibility -0.2065

Blame weakest, credit rest -0.2529

LR-DBN Minus -0.2364

Update weakest subskill -0.2816

Normally one might expect log-likelihood to be lower for test

data than training data, by an amount reflecting the degree of

overfitting. However, the models assign higher likelihood to

correct steps because, as Section 4.1 mentioned, they are more

common than incorrect steps in the training data, and this

difference is more pronounced in the test data. Its likelihood is

therefore higher, and hence is not a direct gauge of overfitting.

Table 6 and Table 7 reveal that LR-DBN’s log-likelihood is by

far the highest on unseen test data from both tutors, consistent

with how dramatically it outpredicts the other methods, even

though they have higher log-likelihood on the training data from

the Algebra Tutor. This reversal from training to test data

suggests that the other methods might overfit that training data.

In summary, LR-DBN has a smaller number k of parameters

than the other methods (except for LR-DBN Minus), a smaller

number n of observations (counting duplicate observations as

distinct), and higher likelihood on Reading Tutor training data,

where it achieves the lowest AIC and BIC scores. Most

important, LR-DBN far surpasses all the other methods in

accuracy and log-likelihood on unseen test data from both tutors.

5. IMPLEMENTATION
To make LR-DBN publicly available

1
, we added it to the Bayes

Net Toolkit for Student Modeling (BNT-SM) [13]. BNT-SM

inputs a data set and a DBN student model (not only the simple

one used in standard knowledge tracing), specified in XML. It

generates and executes BNT code to train and test the model, and

outputs Excel files containing the parameter estimates and

inference results. BNT is an open-source Matlab package
2
 that

supports many learning and inference algorithms for both static

and dynamic Bayes models. BNT-SM hides most of the BNT

coding details, freeing users to focus on constructing the student

models rather than on programming them.

Using BNT-SM consists of four phases [13]:

1. Specify the data source in an XML specification.

2. Specify the DBN structure in XML.

3. Specify and initialize parameters in XML.

4. Call RunBnet.m in Matlab.

To fit LR-DBN on the Reading Tutor data with 320 subskills,

we specify the structure shown in Figure 2 to BNT-SM in XML,

as shown in the APPENDIX.

6. CONCLUSIONS
This paper makes multiple contributions to knowledge tracing:

First, we present a framework to characterize previous and new

methods for tracing multiple subskills by how they (1) model

knowledge tracing, (2) fit its parameters, (3) predict performance,

and (4) update subskill estimates.

Second, we use data sets from reading and algebra tutors to

compare LR-DBN against previous methods in terms of AIC, BIC,

and predictive accuracy on unseen data, and show that LR-DBN

performs significantly better on both data sets on all three metrics,

cutting the best previous prediction error rate in half.

Third, we introduce the hybrid LR-DBN Minus method, which

fits the same standard KT model as previous methods, but uses

logistic regression to predict student performance.

Fourth, by comparing LR-DBN Minus to LR-DBN, we show

that using logistic regression to predict performance suffices to

beat previous methods, but that using logistic regression EM to

jointly estimate subskills accounts for most of LR-DBN’s superior

performance.

Finally, in order to amplify the impact of this work, we have

made LR-DBN publicly available and easy to extend to other

student modeling with dynamic Bayes nets, by incorporating it

into the latest version of the BNT-SM student modeling toolkit

[13] used in previous studies of knowledge tracing [e.g., 14].

This work has several limitations for future work to address.

First, LR-DBN has so far been applied just to simple

knowledge tracing of multiple subskills, but it can apply to any

DBN. Future work could use LR-DBN to improve other DBN

student models, for example to measure more accurately the

scaffolding and learning effects of tutor help [14].

Second, LR-DBN needs 5.5 hours on average per student to fit

and update; the other methods take less than 1 hour to fit a single

set of parameters for all the students and subskills, and 2-5

1 At http://www.cs.cmu.edu/~listen/BNT-SM

2 At http://code.google.com/p/bnt

minutes to update. Future work may train LR-DBN faster or

develop other methods that are faster to train. Such work might

adapt two previous types of cognitive diagnosis models that

operate on static data and have statistical learning algorithms, both

EM and MCMC [15]. NIDA (Noisy Inputs, Deterministic “And”

gate) models [16] resemble CKT because it applies guess and slip

to individual subskills before combining them conjunctively.

DINA (Deterministic Inputs, Noisy “And” gate) models [17]

resemble LR-DBN because it combines subskills (with logistic

regression) before applying guess and slip to the resulting

knowledge state. Extending either type of model to apply to

knowledge tracing may improve LR-DBN itself.

Finally, although LR-DBN traces multiple subskills better than

previous methods, it (like them) must be told which steps use

which subskills. Future work may infer this information

automatically [18].

ACKNOWLEDGMENTS
This work was supported by the Institute of Education Sciences,

U.S. Department of Education, through Grant R305A080628 to

Carnegie Mellon University. The opinions expressed are those of

the authors and do not necessarily represent the views of the

Institute or U.S. Department of Education. We thank Ken

Koedinger for his CKT implementation and algebra tutor data,

and children, schools, and LISTENers for our Reading Tutor data.

http://www.cs.cmu.edu/~listen/BNT-SM
http://code.google.com/p/bnt

APPENDIX
To use LR-DBN in BNT-SM, we first specify its data source:

<multi_subskill>yes</multi_subskill>

<input>

 <evidence_train>evidence.train.xls</evidence_train>

 <evidence_test>evidence.test.xls</evidence_test>

</input>

<output>

 <param_table>param_table.xls</param_table>

 <inference_result>inference_result.xls</inference_result>

 <inference_result_header>inference_result.xls</inference_re

sult_header>

 <log>log.txt</log>

</output>

To add logistic regression to standard knowledge tracing, we

represent the 320 subskills as a single multi node kc, which

transits to the latent node knowledge within a step. The hidden

state of knowledge transits both to the output fluent within the

current step and to the knowledge state at the next step:

<nodes>

 <node>

 <id>1</id>

 <name>kc</name>

 <type>multi</type>

 <values>320</values>

 <latent>no</latent>

 <prefix_field>kc</prefix_field>

 <within>

 <transition>knowledge</transition>

 </within>

 <between></between>

</node>

 <node>

 <id>2</id>

 <name>knowledge</name>

 <type>discrete</type>

 <values>2</values>

 <latent>yes</latent>

 <field> knowledge</field>

 <within>

 <transition>fluent</transition>

 </within>

 <between>

 <transition>knowledge</transition>

 </between>

 </node>

 <node>

 <id>3</id>

 <name>fluent</name>

 <type>discrete</type>

 <values>2</values>

 <latent>no</latent>

 <field>fluent</field>

 <within></within>

 <between></between>

 </node>

</nodes>

Then we define and set initial values of the LR-DBN

parameters. We specify the input node kc as root to have no

parents and no parameters, the latent node knowledge as softmax

to have a multinomial logit function, and the output node fluent to

have a simple discrete conditional probability table, with random

initial parameter values in LR-DBN’s EM fitting algorithm:

<eclasses>

 <eclass>

 <id>1</id>

 <formula>P1(kc)</formula>

 <type>root</type>

 </eclass>

 <eclass>

 <id>2</id>

 <formula>P2(knowledge </formula>

 <type>softmax</type>

 <cpd>

 <eq>P2(T)</eq>

 <init>rand</init>

 <param>L0</param>

 <eq>P2(F)</eq>

 <init>1-P1(T)</init>

 <param>null</param>

 </cpd>

 </eclass>

 <eclass>

 <id>3</id>

 <formula>P3(fluent| knowledge </formula>

 <type>discrete</type>

 <cpd>

 <eq>P3(T|F</eq>

 <init>rand</init>

 <param>guess</param>

 <eq>P3(F|T)</eq>

 <init>rand</init>

 <param>slip</param>

 <eq>P3(F|F)</eq>

 <init>1-P3(T|F)</init>

 <param>null</param>

 <eq>P3(T|T)</eq>

 <init>1-P3(F|T)</init>

 <param>null</param>

 </cpd>

 </eclass>

 <eclass>

 <id>4</id>

 <formula>P4(knowledge| knowledge)</formula>

 <type>softmax</type>

 <cpd>

 <eq>P4(T|F </eq>

 <init>rand</init>

 <param>learn</param>

 <eq>P4(F|T)</eq>

 <init>rand</init>

 <param>forget</param>

 <eq>P4(F|F </eq>

 <init>1-P4(T|F)</init>

 <param>null</param>

 <eq>P4(T|T)</eq>

 <init>1-P4(F|T)</init>

 <param>null</param>

 </cpd>

 </eclass>

</eclasses>

REFERENCES
[1] Corbett, A. and J. Anderson, Knowledge tracing: Modeling

the acquisition of procedural knowledge. User modeling and

user-adapted interaction, 1995. 4: p. 253-278.

[2] Xu, Y. and J. Mostow. Using Logistic Regression to Trace

Multiple Subskills in a Dynamic Bayes Net. in Proceedings of

the 4th International Conference on Educational Data

Mining 2011. Eindhoven, Netherlands.

[3] Cen, H., K. Koedinger, and B. Junker. Learning Factors

Analysis – A General Method for Cognitive Model

Evaluation and Improvement. in Proceedings of the 8th

International Conference on Intelligent Tutoring Systems.

2006. Jhongli, Taiwan.

[4] Cen, H., K.R. Koedinger, and B. Junker. Comparing Two

IRT Models for Conjunctive Skills. in Ninth International

Conference on Intelligent Tutoring Systems. 2008. Montreal.

[5] Gong, Y., J. Beck, and N.T. Heffernan. Comparing

Knowledge Tracing and Performance Factor Analysis by

Using Multiple Model Fitting Procedures. in Proceedings of

the 10th International Conference on Intelligent Tutoring

Systems. 2010. Pittsburgh, PA: Springer Berlin / Heidelberg.

[6] Koedinger, K.R., et al., Avoiding Problem Selection

Thrashing with Conjunctive Knowledge Tracing, in

Proceedings of the 4th International Conference on

Educational Data Mining. 2011: Eindhoven, NL. p. 91-100.

[7] Dempster, A., N. Laird, and D. Rubin, Maximum Likelihood

from Incomplete Data via the EM Algorithm. Journal of the

Royal Statistical Society Series B (Methodological), 1977.

39(1): p. 1-38.

[8] Xu, Y. and J. Mostow. Logistic Regression in a Dynamic

Bayes Net Models Multiple Subskills Better! [Best Poster

Nominee]. in Proceedings of the 4th International

Conference on Educational Data Mining 2011. Eindhoven,

Netherlands.

[9] Mostow, J. and G. Aist, Evaluating tutors that listen: An

overview of Project LISTEN, in Smart Machines in

Education, K. Forbus and P. Feltovich, Editors. 2001,

MIT/AAAI Press: Menlo Park, CA. p. 169-234.

[10] Koedinger, K.R., et al., A Data Repository for the EDM

community: The PSLC DataShop, in Handbook of

Educational Data Mining, C. Romero, et al., Editors. 2010,

CRC Press: Boca Raton, FL. p. 43-55.

[11] Akaike, H., A new look at the statistical model identification.

IEEE Transactions on Automatic Control, 1974. 19(6): p.

716–723.

[12] McQuarrie, A.D.R. and C.-L. Tsai, Regression and Time

Series Model Selection. 1998: World Scientific.

[13] Chang, K.-m., et al., A Bayes Net Toolkit for Student

Modeling in Intelligent Tutoring Systems, in Proceedings of

the 8th International Conference on Intelligent Tutoring

Systems, K. Ashley and M. Ikeda, Editors. 2006: Jhongli,

Taiwan. p. 104-113.

[14] Beck, J.E., et al. Does help help? Introducing the Bayesian

Evaluation and Assessment methodology. in 9th

International Conference on Intelligent Tutoring Systems.

2008. Montreal.

[15] de la Torre, J., DINA Model and Parameter Estimation: A

Didactic. Journal of Educational and Behavioral Statistics,

2009. 34(1): p. 115-130.

[16] Hartz, S., A Bayesian framework for the unified model for

assessing cognitive abilities: Blending theory with

practicality. 2002, University of Illinois at Urbana-

Champaign: Unpublished doctoral dissertation.

[17] Torre, J.d.l. and J. Douglas, Higher-order latent trait models

for cognitive diagnosis. Psychometrika, 2004. 69: p. 333-

353.

[18] González-Brenes, J.P. and J. Mostow. Dynamic Cognitive

Tracing: Towards Unified Discovery of Student and

Cognitive Models. in Proceedings of the Fifth International

Conference on Educational Data Mining. 2012, in press.

Chania, Crete, Greece.

