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ABSTRACT 
A long-standing challenge for knowledge tracing is how to update 

estimates of multiple subskills that underlie a single observable 

step. We characterize approaches to this problem by how they 

model knowledge tracing, fit its parameters, predict performance, 

and update subskill estimates.  Previous methods allocated blame 

or credit among subskills in various ways based on strong 

assumptions about their relation to observed performance.  LR-

DBN relaxes these assumptions by using logistic regression in a 

Dynamic Bayes Net.  LR-DBN significantly outperforms previous 

methods on data sets from reading and algebra tutors in terms of 

predictive accuracy on unseen data, cutting the error rate by half.  

An ablation experiment shows that using logistic regression to 

predict performance helps, but that using it to jointly estimate 

subskills explains most of this dramatic improvement.  An 

implementation of LR-DBN is now publicly available in the 

BNT-SM student modeling toolkit. 
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1. INTRODUCTION 
Knowledge tracing (KT) [1] is widely used to update an 

intelligent tutor’s estimate of the probability that a student has a 

given skill, based on the student’s observable performance on 

steps that use the skill.  KT does not in itself address the issue of 

how to update multiple subskills used in the same step.  This 

paper compares various approaches to this “multiple subskills 

problem.”  Section 2 frames the space of prior (and new) methods.  

Section 3 describes a recent method named LR-DBN [2].  Section 

4 compares LR-DBN against previous methods on two data sets.  

Section 5 concludes. 

2. COMPARATIVE FRAMEWORK 
As a framework to compare previous and proposed methods for 

tracing multiple subskills, we use four aspects to characterize 

them:  how they represent the KT model, how they fit the model 

parameters to observations of multi-subskill steps, how they use 

the model to predict performance on such steps, and how they 

update estimates of the subskills based on observed performance. 

2.1 Represent model 
Previous solutions represent the student’s knowledge at step n as a 

hidden state  
   

 in a Hidden Markov Model (HMM), shown in 

Figure 1. It has knowledge parameters already know for the 

probability that the student knew the skill to start with, learn for 

the probability of the transition from not knowing the skill to 

knowing it, and forget (usually assumed to be 0) for the 

probability of the transition from knowing the skill to not knowing 

it.  It also has performance parameters guess for the probability 

   
   

        
   

  of performing the step correctly despite lacking 

the skill, and slip for the probability        
   

    
   

  of 

performing the step incorrectly despite knowing the skill.  

 

 

 

Figure 1:  Single-skill knowledge tracing architecture 

2.2 Fit parameters 
One previous solution [3] tries to sidestep the problem by 

modeling each set of subskills as a distinct individual skill, e.g., 

computing the area of a circle embedded in a figure vs. by itself.  

However, modeling different sets of subskills as independent 

skills ignores transfer of learning between them.  

Other previous solutions [4-6] simply treat each subskill used 

in a step as if it were entirely responsible for that step.  They train 

a separate KT model for each subskill on observations of all the 

steps that use it.  Thus the same observed step appears in the 

training data for every subskill that it uses. They simply estimate 

the model parameters for each subskill using the same training 

procedure as for conventional KT. 

2.3 Predict performance 
In standard “single-skill” KT, predicting performance  

    at step 

n involving skill j is simple: 

   
   

      
   

                   
   

          

Equation 1:  Standard KT prediction 

Previous solutions to the multiple-subskills problem predict 

performance on a step by combining in different ways the 

probabilities of correctly performing all the skills it requires.  One 

way, based on an assumption that they are probabilistically 

independent, multiplies them [4, 6]: 



 

   
   

       
   

                   
   

  

 

        

Equation 2:  Independent subskills performance prediction 

The weakest-subskill alternative [5]  takes their minimum: 

   
   

           
   

                   
   

  

        

Equation 3:  Weakest-subskill performance prediction 

2.4 Update estimate 
To update its estimate of a skill j based on the observed success of 

a step n that uses it, standard KT applies Bayes’ rule: 

             
   

      
   

       

 
    

   
           

    
   

                   
   

         

 

Equation 4:  Standard KT skill update for successful step 

Conversely, the standard update rule if the step fails is: 

             
   

      
   

           

 
    

   
       

    
   

               
   

             
 

Equation 5:  Standard KT skill update for failed step 

Either way, it estimates the probability of knowing the skill at the 

next step as either knowing without forgetting, or learning: 

    
     

                
   

             

                 
   

          

Equation 6:  Standard KT next-step update 

When a step involves multiple subskills, previous methods use 

different ways to allocate responsibility among them for the 

observed success or failure of the step.  The “full responsibility” 

approach applies these equations to all the subskills.  The “update 

weakest subskill” approach simply applies the standard update 

equations above to whichever subskill in a step has the lowest 

probability, and leaves the others unchanged.  Its “blame weakest, 

credit rest” variant credits the other subskills as correct even if the 

step failed. 

Conjunctive knowledge tracing (CKT) [6] also predicts the 

probability of a step succeeding as a product of its subskill 

probabilities using Equation 2, and gives all of them full credit for 

success using Equation 4.  However, rather than place full blame 

on each subskill for failure, CKT apportions blame among them 

differently. Instead of using Equation 5 to update each subskill 

based just on its own guess and slip probabilities, CKT takes into 

account those of the other subskills as well, as follows.   

Bayes’ rule says how to update a skill based on performance: 

             
   

              
               

   
       

   
  

           
  

Equation 7:  Bayes' rule for skill update 

Conditioning on having skill j at step n reduces     
   

  to 1, 

simplifying the numerator of Equation 9 to: 

               
   

                   

       
   

                    
   

          

   

 

Equation 8:  CKT subskills update for failed step 

CKT computes the denominator by assuming independence: 

                         

        
   

                   
   

          

 

 

 

Equation 9:  CKT prediction based on multiple subskills 

Next, we introduce a different strategy of using logistic regression 

in KT to trace multiple subskills. 

3. USING LOGISTIC REGRESSION TO 

TRACE MULTIPLE SUBSKILLS 
We now describe two newer methods that trace multiple subskills 

using logistic regression.  Previous KT methods fit their 

parameters independently using the same algorithm as for single-

skill KT, thereby implicitly assigning full and equal responsibility 

to all the subskills in an observed step, and predict performance 

based on the weakest subskill or by multipying subskill estimates.  

Section 3.1 describes LR-DBN, which changes both these aspects 

by using Expectation Maximization (EM) [7] to fit parameters for 

multiple subskills simultaneously, and by using logistic regression 

to predict performance.  As an ablation experiment to shed light 

on the relative impact of these two innovations, Section 3.2 

introduces LR-DBN Minus, a hybrid method that fits the standard 

KT model just as previous methods do, but uses logistic 

regression to do prediction. 

3.1 LR-DBN 
LR-DBN is a recent but published method [2, 8] to trace multiple 

subskills, so we summarize it here only briefly in terms of the four 

aspects discussed in Section 2. 

 

Figure 2: Knowledge tracing with logistic regression 

Represent model:  Like standard KT, LR-DBN represents the 

knowledge for step n as a hidden knowledge state  
   

 in a 

dynamic Bayes net.  However, as Figure 2 illustrates, LR-DBN 



 

adds a layer of observable states   
   

 as indicator variables to 

represent whether step n involves subskill j:  1 if so, 0 if not. 

LR-DBN uses logistic regression to model the initial hidden 

knowledge state at step 0 and the transition probabilities from step 

n-1 to n as follows: 

              
         

   
   

    
    

           

   
  

    
    

 

                           
            

    
    

              
    

    
 

                       
        

 
   

    
    

          
 
   

    
    

 

Equation 10:  Logistic regression to combine subskills 

These three conditional probabilities for each subskill replace 

the KT knowledge parameters already know, learn, and forget, 

but LR-DBN retains KT’s guess and slip parameters at each step. 

Fit parameters:  LR-DBN uses Expectation Maximization (EM) 

[7] to fit parameters for all subskills together. 

Predict performance:  LR-DBN uses logistic regression in a 

Dynamic Bayes Net to combine multiple subskills more flexibly 

than using Equation 2 to multiply their probabilities or Equation 3 

to take their minimum, but it uses Equation 1 to predict expected 

performance based on estimated knowledge, guess, and slip. 

Update estimates:  LR-DBN uses the same Bayes rule as single-

skill KT to update its estimate of the hidden knowledge state in 

Equation 4, Equation 5, and Equation 6. 

3.2 LR-DBN Minus 
LR-DBN Minus is a hybrid of LR-DBN and standard KT.  It 

combines KT’s single-skill fitting process with LR-DBN’s update 

and prediction based on logistic regression.  The key is to convert 

the probability of knowing a subskill into a coefficient in logistic 

regression. LR-DBN uses logistic regression to model the 

transition probabilities between knowledge states, as well as the 

relation of the knowledge state at each step to the subskills it 

involves [2].  Thus, given the set of subskills    
   

  used at step n, 

a set of coefficients    
   

  exists such that 

                      
   

  
   

 

   

  

Equation 11:  Logistic regression for the knowledge state 

If we assume step n requires only a single subskill i, then   
   

   

for all the j’s such that j  , and transformations between the 

probabilities     
   

  and the coefficients   
   

 are: 

    
   

              
   

  

  
   

             
   

   

Equation 12:  Transformation between probabilities and 

logistic regression coefficients 

To update the estimates, we need to distribute the update at 

each step that is calculated either from Equation 4 or Equation 5 

to the subskill coefficients. We assume that the coefficient for 

each subskill changes by the same amount    when updated: 

            
   

                  
   

       
   

 

   

  

Equation 13:  Update coefficients in LR-DBN Minus 

Then the update of each subskill becomes: 

             
   

                
   

       
   

  

Equation 14:  Update subskills in LR-DBN Minus 

Next we still use the standard KT Equation 6 to update 

subskills at step n+1. Now we have successfully transformed LR-

DBN to upate on standard KT parameters. Note that we replace 

the separate guessj and slipj parameters for each subskill j with 

uniform guess and slip for all the steps. The reason is that LR-

DBN combines subskills to estimate the probability of the student 

knowing a step and then uses guess and slip to predict 

performance.  In contrast, previous methods apply guessj and slipj 

to each subskill j before combining them to predict performance 

on the step. 

4. EXPERIMENTAL EVALUATION 
To compare LR-DBN and LR-DBN Minus to previous methods 

for tracing multiple subskills, we fit seven models to real data, 

summarized in Table 1: LR-DBN, LR-DBN Minus, CKT, and 

three variants of standard KT distinguished by how they update 

estimated skills: “full responsibility,” “blame weakest, credit rest,” 

and “update weakest subskill,” with majority class as an 

additional baseline.  Sections 4.1 and 4.2 describe our data and 

results. 

Table 1:  Summary of models compared 

Models Fit Predict  Update 

LR-DBN 

Train subskills 

together.  

Logistic 

regression 

assigns 

responsibility. 

Logistic 

regression 

on subskill 

estimates. 

Update subskills 

together.  Logistic 

regression assigns 

responsibility. 

LR-DBN 

Minus 
 

CKT 

Train subskills 

separately.  

Assign each 

one full 

responsibility. 

Multiply 

subskill 

estimates. 

Update subskills 

together.  Bayes 

equations assign 

responsibility. 

Full 

responsibility Update subskills 

separately, each with 

full responsibility. 
Blame 

weakest, 

credit rest 
Minimum of 

subskill 

estimates. Update 

weakest 

subskill 

Update only the 

weakest subskill.  

Majority 

class 

Identify larger 

class 

Majority 

class 
No update 

 



 

4.1 Data sets 
We train and test the models on real data from two tutors used at 

schools.  One data set is from children using Project LISTEN’s 

Reading Tutor [9] at primary schools during the 2005-2006 school 

year. To model their oral reading fluency, we define performance 

      as whether the Reading Tutor scored a text word as read 

fluently at step n, i.e., read without help or hesitation and 

recognized by the automated speech recognizer. We assume that 

whether a student read a word fluently depended on whether the 

student knew the requisite subskills, namely the grapheme-to-

phoneme mappings in the word.  Due to the large amount of data 

(1,792,103 read words from 275 students), we randomly selected 

20 children who read a total of 80,268 words (3,972 distinct word 

types) with 320 unique grapheme-phoneme mappings.  To 

counteract the prevalence of high-frequency words like the, we 

include at most the first 20 of each student’s encounters of a word 

in the training data, leaving 24,145 read words.  We do not limit 

the test data, so it includes 40,867 words. 

The other data set [10] came from 123 high school students 

working on a geometry area unit of the Bridge to Algebra 

Cognitive Tutor®.  The model for each student includes the same 

50 subskills, and predicts whether the student will perform a step 

correctly.  Again we include at most the first 20 of each student’s 

encounters of a step in the training data, leaving 11,730 algebra 

practice steps, but 22,737 steps of test data. 

The data sets from both tutors are unbalanced.  The Reading 

Tutor scored 68.84% of the words in the training set as fluent, and 

74.31% of the words in the test set.  The Algebra Tutor rated 

74.22% of the steps in the training data as correct, and 84.63% of 

the steps in the test data. 

We fit each model separately for each student, as opposed to 

training a single model on the data for all the students.  One 

reason is computational expedience:  unlike methods that fit a 

separate model for each subskill, LR-DBN fits a single model for 

all the subskills, which involves processing much more data at a 

time.  Training this model on all the students’ data at once would 

be computationally unwieldy.  The other reason is to compare 

methods fairly.  Except for LR-DBN, it is feasible to train a single 

model of a subskill on the data for all the students, and in fact we 

tried it, but the resulting model does not perform as well as 

training a separate model for each student. 

For all the methods, we fit the model for each student to the 

first half of the student’s steps, and test it on the second half.  We 

report average per-student accuracy on the unseen test data, 

weighting its mean and variance by per-student sample size to 

derive 95% confidence intervals.  We use paired T-tests, paired by 

student, to rate LR-DBN’s accuracy against each other method. 

4.2 Results 
Table 2 and Table 3 list all seven methods in decreasing order of 

their binary predictive accuracy on the test data.  LR-DBN 

dramatically outpredicts all the other methods. LR-DBN’s overall 

accuracy on the Reading Tutor data is 13% higher than majority 

class, vs. only 1% for the next method.  For the Algebra Tutor 

data, LR-DBN is the only method that beats the majority class, by 

7%.  That is, on both data sets, LR-DBN has only half the error 

rate of the next best method. 

For unbalanced data, accuracy on the minority class can be 

especially important.  The minority class in our tutor data 

represents negative student outcomes to remediate by means of  

Table 2:  Mean per-student accuracy on Reading Tutor data 

(95% confidence interval in parentheses) compared to LR-DBN is 

significantly (p<.01) worse if underlined, or better if italicized. 

Models Accuracy  

Accuracy 

Within 

Positive 

Class  

Accuracy 

Within 

Negative 

Class  

LR-DBN 
87.31%) 

(±1.90%) 

91.17%) 

(±2.80%) 

75.80%) 

(±12.53%) 

Update 

weakest 

subskill 

74.53%) 

(±4.55%) 

95.06%) 

(±2.73%) 

15.15%) 

(±5.29%) 

Majority class 74.31%) 100.00%) 0.00%) 

LR-DBN 

Minus 

74.11%) 

(±5.05%) 

90.71%) 

(±7.89%) 

26.09%) 

(±11.61%) 

Blame 

weakest, 

credit rest 

73.90%) 

(±4.59%) 

92.36%) 

(±3.86%) 

20.52%) 

(±6.43%) 

CKT 
72.79%) 

(±3.99%) 

89.47%) 

(±3.52%) 

24.52%) 

(±7.76%) 

Full 

responsibility 

66.20%) 

(±5.39%) 

72.30%) 

(±10.24%) 

48.53%) 

(±12.87%) 

Table 3:  Mean per-student accuracy on Algebra Tutor data  
is significantly (p<.001) worse than LR-DBN’s where underlined; 

italicized values are significantly better. 

Models Accuracy  

Accuracy 

Within 

Positive 

Class  

Accuracy 

Within 

Negative 

Class  

LR-DBN 
91.99%) 

(±2.00%) 

96.5%) 

(±1.30%) 

72.3%) 

(±7.80%) 

Majority class 84.63%) 100.00%) 0.00%) 

CKT 
84.38%) 

(±1.14%) 

99.03%) 

(±0.26%) 

20.44%) 

(±3.11%) 

Full 

responsibility 

84.27%) 

(±1.13%) 

95.65%) 

(±0.88%) 

34.55%) 

(±4.60%) 

LR-DBN 

Minus 

83.92%) 

(±1.17%) 

97.23%) 

(±0.62%) 

25.80%) 

(±3.84%) 

Blame 

weakest, 

credit rest 

80.38%) 

(±1.13%) 

90.70%) 

(±0.72%) 

35.28%)) 

(±3.14%) 

Update 

weakest 

subskill 

79.59%) 

(±1.19%) 

91.13%) 

(±0.69%) 

29.20%) 

(±2.76%) 

practice and instruction.  LR-DBN beats every other method on 

the minority class by over 20% absolute in both data sets. 

What does comparison to LR-DBN Minus reveal about the 

relative contributions of the fitting and update procedures?  LR-

DBN Minus uses the same fitting procedure as conventional 

knowledge tracing, but uses logistic regression to update 

estimates.  It performs substantially worse than LR-DBN, and 

comparably to the other methods.  We conclude that LR-DBN’s 

accuracy benefits more from its fitting procedure than from using 

logistic regression to combine estimates of hidden subskills. 



 

Why does LR-DBN outpredict the other methods?  Possible 

reasons include the strong assumptions that it avoids, but which 

they make implicitly by fitting and updating subskill estimates 

separately, multiplying them to predict performance on a step, and 

assigning each subskill full responsibility for the step’s outcome.  

Inspection of Table 1 reveals that this last assumption is the only 

one they all have in common, implicating it as the likeliest culprit. 

Predictive accuracy is just one way to evaluate student models.  

A more sensitive metric is model fit as measured by data 

likelihood, penalized by model complexity.  Table 4 and Table 5 

list the complexity-penalized model fits of the methods on the two 

data sets in increasing order, as scored by the Akaike information 

criterion (AIC) [11] and Bayesian information criterion (BIC) 

[12], defined respectively as: 

               

                      

Equation 15:  Formulas for calculating AIC and BIC 

Table 4:  Complexity-adjusted Reading Tutor training data fit 

Models AIC BIC k 

LR-DBN 75,054.52 231,226.89 19,300 

LR-DBN Minus 120,259.60 239,606.70 12,840 

CKT 

145,779.60 383,730.20 25,600 
Full responsibility 

Blame weakest, credit rest 

Update weakest subskill 

Table 5:  Complexity-adjusted Algebra Tutor training data fit 

Models AIC BIC k 

LR-DBN 60,545.20 201,052.44 19,065 

LR-DBN Minus 43,195.94 143,962.30 12,546 

CKT 

67,303.94 264,885.00 24,600 
Full responsibility 

Blame weakest, credit rest 

Update weakest subskill 

Both AIC and BIC measure model fit as log-likelihood of the 

training data, ln(L), penalized by model complexity (number of 

parameters, k).  BIC also penalizes the number of observations, n.  

We calculate the number of parameters per student as follows: 

LR-DBN fits the 3 groups of coefficients for each of the 

subskills and one intercept in Equation 10, plus two shared 

parameters, guess and slip.   For the Reading Tutor data set, this 

number totals 3 × (320 + 1) + 2 = 965, multiplied by the 20 

children in the data sample.  For the Algebra Tutor data set, it 

totals 3 × (50 + 1) + 2 = 155, multiplied by 123 students. 

LR-DBN Minus fits 2 parameters (already know and learn) per 

subskill, plus 2 shared parameters (guess and slip).  This number 

of parameters per student totals (2 × 320) + 2 = 642 for the 

Reading Tutor and (2 × 50) + 2 = 102 for the Algebra Tutor. 

The other methods fit 4 parameters (already know, learn, guess 

and slip) per subskill for each student, totaling 4 × 320 = 1280 for 

the Reading Tutor, and 4 × 50 = 200 for the Algebra Tutor. 

Thus compared to previous methods, LR-DBN has about 1 less 

parameter per subskill, and LR-DBN Minus about 2 less. 

What about the number n of observations?  LR-DBN uses one 

observation per step to fit all the subskill parameters.  In contrast, 

the other methods fit each subskill separately, assigning it full 

responsibility for every step that uses it, as if observing it 

separately for each subskill.  Counting such duplicate 

observations as separate, they use three times as many Reading 

Tutor observations as LR-DBN, and twice as many Algebra Tutor 

observations. 

Table 6 and Table 7 show the average log-likelihood of steps 

in the training and test data.  All the methods except LR-DBN 

share the same likelihood on the training data because they fit 

parameters in the same way (as shown in Table 1). 

Table 6:  Average log-likelihood for the Reading Tutor data 

Models 
On training 

data  

On unseen test 

data  

LR-DBN -0.7549 -0.3555 

CKT 

-1.9586 

-1.1330 

Full responsibility -1.2230 

Blame weakest, credit rest -1.4944 

LR-DBN Minus -1.5690 

Update weakest subskill -1.6665 

Table 7:  Average log-likelihood for the Algebra Tutor data 

Models 
On training 

data  

On unseen 

test data  

LR-DBN -0.9555 -0.1503 

CKT 

-0.7717 

-0.2082 

Full responsibility -0.2065 

Blame weakest, credit rest -0.2529 

LR-DBN Minus -0.2364 

Update weakest subskill -0.2816 

Normally one might expect log-likelihood to be lower for test 

data than training data, by an amount reflecting the degree of 

overfitting.  However, the models assign higher likelihood to 

correct steps because, as Section 4.1 mentioned, they are more 

common than incorrect steps in the training data, and this 

difference is more pronounced in the test data.  Its likelihood is 

therefore higher, and hence is not a direct gauge of overfitting. 

Table 6 and Table 7 reveal that LR-DBN’s log-likelihood is by 

far the highest on unseen test data from both tutors, consistent 

with how dramatically it outpredicts the other methods, even 

though they have higher log-likelihood on the training data from 

the Algebra Tutor.  This reversal from training to test data 

suggests that the other methods might overfit that training data. 

In summary, LR-DBN has a smaller number k of parameters 

than the other methods (except for LR-DBN Minus), a smaller 

number n of observations (counting duplicate observations as 

distinct), and higher likelihood on Reading Tutor training data, 

where it achieves the lowest AIC and BIC scores.  Most 

important, LR-DBN far surpasses all the other methods in 

accuracy and log-likelihood on unseen test data from both tutors. 



 

5. IMPLEMENTATION 
To make LR-DBN publicly available

1
, we added it to the Bayes 

Net Toolkit for Student Modeling (BNT-SM) [13].  BNT-SM 

inputs a data set and a DBN student model (not only the simple 

one used in standard knowledge tracing), specified in XML.  It 

generates and executes BNT code to train and test the model, and 

outputs Excel files containing the parameter estimates and 

inference results.  BNT is an open-source Matlab package
2
 that 

supports many learning and inference algorithms for both static 

and dynamic Bayes models. BNT-SM hides most of the BNT 

coding details, freeing users to focus on constructing the student 

models rather than on programming them. 

Using BNT-SM consists of four phases [13]: 

1. Specify the data source in an XML specification. 

2. Specify the DBN structure in XML. 

3. Specify and initialize parameters in XML. 

4. Call RunBnet.m in Matlab. 

To fit LR-DBN on the Reading Tutor data with 320 subskills, 

we specify the structure shown in Figure 2 to BNT-SM in XML, 

as shown in the APPENDIX.  

6. CONCLUSIONS 
This paper makes multiple contributions to knowledge tracing: 

First, we present a framework to characterize previous and new 

methods for tracing multiple subskills by how they (1) model 

knowledge tracing, (2) fit its parameters, (3) predict performance, 

and (4) update subskill estimates.   

Second, we use data sets from reading and algebra tutors to 

compare LR-DBN against previous methods in terms of AIC, BIC, 

and predictive accuracy on unseen data, and show that LR-DBN 

performs significantly better on both data sets on all three metrics, 

cutting the best previous prediction error rate in half. 

Third, we introduce the hybrid LR-DBN Minus method, which 

fits the same standard KT model as previous methods, but uses 

logistic regression to predict student performance. 

Fourth, by comparing LR-DBN Minus to LR-DBN, we show 

that using logistic regression to predict performance suffices to 

beat previous methods, but that using logistic regression EM to 

jointly estimate subskills accounts for most of LR-DBN’s superior 

performance. 

Finally, in order to amplify the impact of this work, we have 

made LR-DBN publicly available and easy to extend to other 

student modeling with dynamic Bayes nets, by incorporating it 

into the latest version of the BNT-SM student modeling toolkit 

[13] used in previous studies of knowledge tracing [e.g., 14]. 

This work has several limitations for future work to address.  

First, LR-DBN has so far been applied just to simple 

knowledge tracing of multiple subskills, but it can apply to any 

DBN. Future work could use LR-DBN to improve other DBN 

student models, for example to measure more accurately the 

scaffolding and learning effects of tutor help [14]. 

Second, LR-DBN needs 5.5 hours on average per student to fit 

and update; the other methods take less than 1 hour to fit a single 

set of parameters for all the students and subskills, and 2-5 

                                                                 
1 At http://www.cs.cmu.edu/~listen/BNT-SM 

2 At http://code.google.com/p/bnt 

minutes to update.  Future work may train LR-DBN faster or 

develop other methods that are faster to train. Such work might 

adapt two previous types of cognitive diagnosis models that 

operate on static data and have statistical learning algorithms, both 

EM and MCMC [15].  NIDA (Noisy Inputs, Deterministic “And” 

gate) models [16] resemble CKT because it applies guess and slip 

to individual subskills before combining them conjunctively.  

DINA (Deterministic Inputs, Noisy “And” gate) models [17] 

resemble LR-DBN because it combines subskills (with logistic 

regression) before applying guess and slip to the resulting 

knowledge state.  Extending either type of model to apply to 

knowledge tracing may improve LR-DBN itself. 

Finally, although LR-DBN traces multiple subskills better than 

previous methods, it (like them) must be told which steps use 

which subskills.  Future work may infer this information 

automatically [18]. 
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APPENDIX 
To use LR-DBN in BNT-SM, we first specify its data source: 

<multi_subskill>yes</multi_subskill> 

<input> 

 <evidence_train>evidence.train.xls</evidence_train> 

 <evidence_test>evidence.test.xls</evidence_test> 

</input> 

<output> 

 <param_table>param_table.xls</param_table> 

 <inference_result>inference_result.xls</inference_result> 

 <inference_result_header>inference_result.xls</inference_re

sult_header> 

 <log>log.txt</log> 

</output> 

To add logistic regression to standard knowledge tracing, we 

represent the 320 subskills as a single multi node kc, which 

transits to the latent node knowledge within a step. The hidden 

state of knowledge transits both to the output fluent within the 

current step and to the knowledge state at the next step:  

<nodes> 

 <node> 

  <id>1</id> 

  <name>kc</name> 

  <type>multi</type> 

  <values>320</values> 

  <latent>no</latent> 

  <prefix_field>kc</prefix_field> 

  <within> 

   <transition>knowledge</transition> 

  </within> 

  <between></between> 

</node> 

 <node> 

  <id>2</id> 

  <name>knowledge</name> 

  <type>discrete</type> 

  <values>2</values> 

  <latent>yes</latent> 

  <field> knowledge</field> 

  <within> 

  <transition>fluent</transition> 

  </within> 

  <between> 

  <transition>knowledge</transition> 

  </between> 

 </node>  

 <node> 

  <id>3</id> 

  <name>fluent</name> 

  <type>discrete</type> 

  <values>2</values> 

  <latent>no</latent> 

  <field>fluent</field> 

  <within></within> 

  <between></between> 

 </node> 

</nodes> 

Then we define and set initial values of the LR-DBN 

parameters.  We specify the input node kc as root to have no 

parents and no parameters, the latent node knowledge as softmax 

to have a multinomial logit function, and the output node fluent to 

have a simple discrete conditional probability table, with random 

initial parameter values in LR-DBN’s EM fitting algorithm: 

<eclasses> 

 <eclass> 

  <id>1</id> 

  <formula>P1(kc)</formula> 

  <type>root</type> 

 </eclass> 

 <eclass> 

  <id>2</id> 

  <formula>P2(knowledge </formula> 

  <type>softmax</type> 

  <cpd> 

   <eq>P2(T)</eq> 

   <init>rand</init> 

   <param>L0</param> 

   <eq>P2(F)</eq> 

     <init>1-P1(T)</init> 

   <param>null</param> 

  </cpd> 

 </eclass> 

 <eclass> 

  <id>3</id> 

  <formula>P3(fluent| knowledge </formula> 

  <type>discrete</type> 

  <cpd> 

   <eq>P3(T|F</eq> 

     <init>rand</init> 

   <param>guess</param> 

   <eq>P3(F|T)</eq> 

     <init>rand</init> 

   <param>slip</param> 

   <eq>P3(F|F)</eq> 

     <init>1-P3(T|F)</init> 

   <param>null</param> 

   <eq>P3(T|T)</eq> 

     <init>1-P3(F|T)</init> 

   <param>null</param> 

  </cpd> 

 </eclass> 

 <eclass> 

  <id>4</id> 

  <formula>P4(knowledge| knowledge)</formula> 

  <type>softmax</type> 

  <cpd> 

   <eq>P4(T|F </eq> 

   <init>rand</init> 

   <param>learn</param> 

   <eq>P4(F|T)</eq> 

   <init>rand</init> 

   <param>forget</param> 

   <eq>P4(F|F </eq> 

   <init>1-P4(T|F)</init> 

   <param>null</param> 

   <eq>P4(T|T)</eq> 

   <init>1-P4(F|T)</init> 

   <param>null</param> 

  </cpd> 

 </eclass> 

</eclasses>  
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