1. Tracing Multiple Subskills in DBNs

Knowledge tracing models the student’s knowledge of a
skill at step n as a hidden state K(n) that is true iff the
student knows the skill. The model’s learning parameters
already know, learn, and forget respectively estimate the
probabilities of knowing the skill at step 0, of a transition
from not knowing the skill at step n-1 to knowing the skill
at step n, and of a transition (typically omitted) from
knowing to not knowing. The model’s performance
parameters guess and slip respectively estimate the
probabilities of performing the step correctly without
knowing the skill, and of getting the step wrong despite
knowing the skill. We can then use these parameters to
infer the probability of knowing the skill at each step from
a student’s observed performance P™ (correct or incorrect)
on a sequence of steps requiring the skill.

To model steps that require multiple subskills, LR-DBN
models each knowledge transition as a logistic regression
over all of the required subskills. Figure 1 shows the
architecture of LR-DBN, where S, is true iff step n
requires subskill j. LR-DBN computes the learning
parameters for knowledge tracing as follows:

already know = B.(K© =T) = 1 — sigmoid(Z BJ-(O)))
"learn" = PT(K(") =T|K® D = F) =1 — sigmoid(X B; s}n))(2)

"forget" = P.(K™ = FIK® D =T) = sigmoid(Z Y s}")) (3)

Here T means true, F means false, and sigmoid is the
sigmoid function in logistic regression:

sigmoid(x) =

1+e™™*

Figure 1. Structure of an example DBN input to LR-DBN

Therefore, besides the parameters guess and slip, LR-DBN
must fit the coefficients ﬁj(o), B;, andy;, for j=12,..., m,
instead of the traditional parameters already know, learn,
and forget.

LR-DBN uses the junction tree algorithm for exact
inference and the Expectation Maximization (EM)
algorithm to estimate parameters. EM can return a local
optimal solution to maximize the likelihood of the model
given the fitting data. It also uses the iteratively reweighted
least squares (IRLS) algorithm to fit a logistic regression in
a DBN.

2. Tracing Multiple Subskills with BNT-SM

We implemented LR-DBN as an extension of BNT-SM.
Using BNT-SM requires just four steps:

Specify the data source in an XML specification.

1. Specify the DBN structure in XML.

2. Specify and initialize parameters in XML.

3. Call RunBnet.m in Matlab.

The main task in using BNT-SM is to configure the
XML specification, which includes sections for input,
output, and structure. The first two sections specify the
input and output files to use. The structure section has a
nodes subsection that specifies the DBN topology, and an
eclasses subsection that describes the parameters.

2.1 Specifying a LR-DBN in XML
The new BNT-SM uses the same XML as before, but adds

an optional directive to use LR-DBN instead of a
traditional DBN:

<multi_subskill> yes </multi_subskill>

As shown in Figure 2, the nodes section specifies the
network topology: node 1 (kc, short for “knowledge
component”) denotes the required multiple subskills, node
2 (knowledge) denotes the student’s overall hidden
knowledge, and the fluent node denotes the student’s
performance.

The type multi identifies node 1 as the multiple-subskills
node; its values field shows how many subskills are
enumerated in the input data; and its prefix_field identifies
which columns of input data to read for node kc. Non-multi
type nodes, such as knowledge and fluent, have type
discrete, values 2 (i.e. true or false), and field to identify
which column to read in the input data. Latent is yes for
knowledge node since it is a hidden state in LR-DBN.

Note that the topology, as well as the parameters, should
repeat as the DBN unrolled further. Thus we only need to
specify them for the first two time slices, i.e. the within
and between transition fields indicating which nodes the
current node has arcs to within the time slice and between
time slices, respectively.

<nodes>

<node>
<id> 1 </id>
<name> k¢ </name>
<type> multi </type>
<values> 6 </values>
<latent> no </latent>
<prefix_field> kc </prefix_field>
<within>

<transition> knowledge </transition>

</within>
<between></between>

</node>

<node>
<id> 2 </id>
<name> knowledge </name>
<type> discrete </type>
<values> 2 </values>
<latent> yes </latent>
<field> knowledge </field>
<within>
<transition> fluent </transition>
</within>
<between>
<transition> knowledge </transition>
</between>
</node>

<node>
<id> 3 </id>
<name> fluent </name>
<type> discrete </type>
<values> 2 </values>
<latent> no </latent>
<field> fluent </field>
<within></within>
<between></between>

</node>

</nodes>

Figure 2. A Specification of the LR-DBN Network Structure

So far we have explained how to specify LR-DBN’s
topology. Now we will show how to specify its
Conditional Probabilities Distributions (CPDs), i.e. its
parameters, under section eclasses in XML. There are four
eclasses: the first three describe the CPDs within the first
time slice; while the last one describes the CPDs
transitioned from the first time slice to the second.

As shown in Figure 3, The first eclass with formula
P1(kc) has a type root. It is because kc has no parents and
all of its values are observed, and no parameters need to be
estimated. Thus we also don’t need to specify any cpds for
this particular node.

The type of formula P2(knowledge) is softmax (we
quote this notation from BNT, indicating the same

meaning of fitting a logistic regression on the current
discrete node over its parents). Equation P2(T) represents
the parameter already know in formula (1), and we gives it
an abbreviated name as LO.

<eclasses>
<eclass>
<id> 1 </id>
<formula> P1(kc) </formula>
<type> root </type>
</eclass>

<eclass>
<id> 2 </id>
<formula> P2(knowledge) </formula>
<type> softmax </type>
<cpd>
<eq> P2(T) </eq>
<init> rand </init><param> L0 </param>
<eq> P2(F) </eq>
<init> 1-P1(T) </init><param> null </param>
</cpd>
</eclass>

<eclass>
<id> 3 </id>
<formula> P3(fluent| knowledge) </formula>
<type> discrete </type>
<cpd>
<eq> P3(T|F) </eq>
<init> rand </init><param> guess </param>
<eq> P3(F|T) </eq>
<init> rand </init><param> slip </param>
<eq> P3(F|F) </eg>
<init> 1-P3(T|F) </init><param> null </param>
<eq> P3(T|T) </eg>
<init> 1-P3(F|T) </init><param> null </param>
</cpd>
</eclass>

<eclass>
<id> 4 </id>
<formula> P4(knowledge| knowledge) </formula>
<type> softmax </type>
<cpd>
<eq> P4(T|F) </eq>
<init> rand </init><param> learn </param>
<eq> P4(F|T) </eq>
<init> rand </init><param> forget </param>
<eq> PA(F|F) </eg>
<init> 1-P4(T|F) </init><param> null </param>
<eq> P4(T|T) </eg>
<init> 1-P4(F|T) </init><param> null </param>
</cpd>
</eclass>
</eclasses>

Figure 3. A Specification of the LR-DBN Parameters

Since LR-DBN uses EM algorithm to learn parameters.
So empirically we can set an initial value as a starting point
for EM, or we can set init as rand to randomly choose a
starting point. Due to the complementary property of
probabilities, we have to initialize P2(F) as 1-P2(T). We
also give a null name to P2(F) to avoid outputting
redundant parameters since it can be easily calculated as
the complement of LO.

Formula P3(fluent] knowledge) has a 2-by-2 discrete
CPD table. Equations P3(T|F) and P3(F|T) respectively
represent the parameters guess and slip. The last formula
P4(knowledge| knowledge) is type of softmax as well,
since P4(T|F) and P4(F|T) represent the logistic
regressions in formulas (2) and (3) respectively. Note that
we do not initialize “forget” with zero as we usually do in
traditional knowledge tracing because of the different
meaning of “forget” in LR-DBN.

2.2 Input/Output Data Format

LR-DBN uses BNT-SM’s existing input and output data
formats, adding columns for the multiple subskills. The
input data sources, such as evidence.train.xls and
evidence.test.xls for our example in Figure 4, are tabulated
files with Tab separated columns.

<input>
<evidence_train> evidence.train.xls </evidence_train>
<evidence_test> evidence.test.xl s</evidence_test>
</input>

<output>
<param_table> param_table.xls </param_table>
<inference_result> inference_result.xls </inference_result>
<inference_result_header> inference_result.xls </inference
_result_header>
<log> log.txt </log>
</output>

Figure 4. Specification of LR-DBN input and output in BNT-SM

Each file has a header line with the (prefixed) names that
were specified in the XML. A row represents one step of a
user’s attempt on a skill. Table 1 shows a partial input data
of children’s oral reading fluency.

Table 1. An Example of Input Data Sources for LR-DBN

user |skill | kc_c|kc_a|kc_t|kc_h|knowledge | fluent

mTS1|CAT| 2 2 2 1 NULL 2
mTS1|HAT 2 2 1 NULL 1
mTS1|HAT| 1 2 2 2 NULL 2

The multiple subskills headers start with a prefix “ke_”
as specified in Figure 2, and their values are observed as 1
for not required in current step or 2 for required. Values of
fluent are observed as 1 for false and 2 for true. This
follows the tradition that a Matlab cell’s indices starts from
1. Values for knowledge are set as NULL since they are
not observed in the input evidences. Although we omit the
time stamp in input data, it should be sorted by the latest
attempting time for each user in advance.

There are three output files as specified in Figure 4. The
param_table.xls outputs each user’s estimated parameters
that were specified by a non-null name in the XML. Table
2 gives an example, where the #cases denotes how many
cases have been read for each user in the input training
data, and the Il denotes the maximized likelihood value by
the EM algorithm.

Table 2. An Example of Output Parameter Table for LR-DBN

user |#cases| Il |LO c|learn_c|forget c| ... |guess|slip
mTS1| 430 |-7.38|3.66| 4.32 0.32 ... | 0.20 [0.04
mTS2 | 1348 |-5.75|-2.98| 4.46 0.03 ... 10.21 {0.08
mTU1| 1100 |-9.91|1.22 | -0.24 1.23 ... 1 0.30 [0.05

The other two files are related to output the inference
results. If we set the value of inference_result_header as
the same as of the inference_result (as in Figure 4), it will
generate a copy of the input test file but replace NULL
knowledge with its inferred probability, as Table 3 shows.

Table 3. An Example of Output Inference Result for LR-DBN

user |skill | kc_c | kc_a|kc_t|kc_h|knowledge | fluent
mTS1|CAT 2 1 0.563 1
mTS1|CAT 2 2 1 0.994 1
mTS1|HAT 2 2 2 0.996 2

Finally, a Matlab command invokes LR-DBN:
[property evidence hash_bnet] = RunBnet(‘property.xml’);

Here property.xml is the XML specification file. BNT-
SM’s RunBnet.m function then trains and tests the DBN.

