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Instituto Superior Técnico, Lisbon, Portugal
{lingwang,lmarujo,cdyer,awb}@cs.cmu.edu

{ramon.astudillo,samir,tmcl,isabel.trancoso}@inesc-id.pt

Abstract

We introduce a model for construct-
ing vector representations of words by
composing characters using bidirectional
LSTMs. Relative to traditional word rep-
resentation models that have independent
vectors for each word type, our model
requires only a single vector per char-
acter type and a fixed set of parame-
ters for the compositional model. De-
spite the compactness of this model and,
more importantly, the arbitrary nature
of the form–function relationship in lan-
guage, our “composed” word representa-
tions yield state-of-the-art results in lan-
guage modeling and part-of-speech tag-
ging. Benefits over traditional baselines
are particularly pronounced in morpholog-
ically rich languages (e.g., Turkish).

1 Introduction

Good representations of words are important for
good generalization in natural language process-
ing applications. Of central importance are vec-
tor space models that capture functional (i.e., se-
mantic and syntactic) similarity in terms of ge-
ometric locality. However, when word vectors
are learned—a practice that is becoming increas-
ingly common—most models assume that each
word type has its own vector representation that
can vary independently of other model compo-
nents. This paper argues that this independence
assumption is inherently problematic, in particular
in morphologically rich languages (e.g., Turkish).
In such languages, a more reasonable assumption
would be that orthographic (formal) similarity is
evidence for functional similarity.

However, it is manifestly clear that similarity in
form is neither a necessary nor sufficient condi-
tion for similarity in function: small orthographic
differences may correspond to large semantic or
syntactic differences (butter vs. batter), and large
orthographic differences may obscure nearly per-
fect functional correspondence (rich vs. affluent).
Thus, any orthographically aware model must be
able to capture non-compositional effects in addi-
tion to more regular effects due to, e.g., morpho-
logical processes. To model the complex form–
function relationship, we turn to long short-term
memories (LSTMs), which are designed to be able
to capture complex non-linear and non-local dy-
namics in sequences (Hochreiter and Schmidhu-
ber, 1997). We use bidirectional LSTMs to “read”
the character sequences that constitute each word
and combine them into a vector representation of
the word. This model assumes that each charac-
ter type is associated with a vector, and the LSTM
parameters encode both idiosyncratic lexical and
regular morphological knowledge.

To evaluate our model, we use a vector-
based model for part-of-speech (POS) tagging
and for language modeling, and we report ex-
periments on these tasks in several languages
comparing to baselines that use more tradi-
tional, orthographically-unaware parameteriza-
tions. These experiments show: (i) our character-
based model is able to generate similar representa-
tions for words that are semantically and syntacti-
cally similar, even for words are orthographically
distant (e.g., October and January); our model
achieves improvements over word lookup tables
using only a fraction of the number of parameters
in two tasks; (iii) our model obtains state-of-the-
art performance on POS tagging (including estab-
lishing a new best performance in English); and



(iv) performance improvements are especially dra-
matic in morphologically rich languages.

The paper is organized as follows: Section 2
presents our character-based model to generate
word embeddings. Experiments on Language
Modeling and POS tagging are described in Sec-
tions 4 and 5. We present related work in Sec-
tion 6; and we conclude in Section 7.

2 Word Vectors and Wordless Word
Vectors

It is commonplace to represent words as vectors.
In contrast to naı̈ve models in which all word types
in a vocabulary V are equally different from each
other, vector space models capture the intuition
that words may be different or similar along a va-
riety of dimensions. Learning vector representa-
tions of words by treating them as optimizable pa-
rameters in various kinds of language models has
been found to be a remarkably effective means
for generating vector representations that perform
well in other tasks (Collobert et al., 2011; Kalch-
brenner and Blunsom, 2013; Liu et al., 2014; Chen
and Manning, 2014). Formally, such models de-
fine a matrix P ∈ Rd×|V |, which contains d pa-
rameters for each word in the vocabulary V . For a
given word type w ∈ V , a column is selected by
right-multiplying P by a one-hot vector of length
|V |, which we write 1w, that is zero in every di-
mension except for the element corresponding to
w. Thus, P is often referred to as word lookup
table and we shall denote by eWw ∈ Rd the embed-
ding obtained from a word lookup table for w as
eWw = P ·1w. This allows tasks with low amounts
of annotated data to be trained jointly with other
tasks with large amounts of data and leverage the
similarities in these tasks. A common practice to
this end is to initialize the word lookup table with
the parameters trained on an unsupervised task.
Some examples of these include the skip-n-gram
and CBOW models of Mikolov et al. (2013).

2.1 Problem: Independent Parameters

There are two practical problems with word
lookup tables. Firstly, while they can be pre-
trained with large amounts of data to learn se-
mantic and syntactic similarities between words,
each vector is independent. That is, even though
models based on word lookup tables are often ob-
served to learn that cats, kings and queens exist in
roughly the same linear correspondences to each

other as cat, king and queen do, the model does
not represent the fact that adding an s at the end
of the word is evidence for this transformation.
This means that word lookup tables cannot gen-
erate representations for previously unseen words,
such as Frenchification, even if the components,
French and -ification, are observed in other con-
texts.

Second, even if copious data is available, it is
impractical to actually store vectors for all word
types. As each word type gets a set of parameters
d, the total number of parameters is d×|V |, where
|V | is the size of the vocabulary. Even in rela-
tively morphological poor English, the number of
word types tends to scale to the order of hundreds
of thousands, and in noisier domains, such as on-
line data, the number of word types raises con-
siderably. For instance, in the English wikipedia
dump with 60 million sentences, there are approx-
imately 20 million different lowercased and tok-
enized word types, each of which would need its
own vector. Intuitively, it is not sensible to use the
same number of parameters for each word type.

Finally, it is important to remark that it is
uncontroversial among cognitive scientists that
our lexicon is structured into related forms—i.e.,
their parameters are not independent. The well-
known “past tense debate” between connection-
ists and proponents of symbolic accounts con-
cerns disagreements about how humans represent
knowledge of inflectional processes (e.g., the for-
mation of the English past tense), not whether
such knowledge exists (Marslen-Wilson and Tyler,
1998).

2.2 Solution: Compositional Models

Our solution to these problems is to construct
a vector representation of a word by composing
smaller pieces into a representation of the larger
form. This idea has been explored in prior work
by composing morphemes into representations of
words (Luong et al., 2013; Botha and Blunsom,
2014; Soricut and Och, 2015). Morphemes are an
ideal primitive for such a model since they are—
by definition—the minimal meaning-bearing (or
syntax-bearing) units of language. The drawback
to such approaches is they depend on a morpho-
logical analyzer.

In contrast, we would like to compose repre-
sentations of characters into representations of
words. However, the relationship between words



forms and their meanings is non-trivial (de Saus-
sure, 1916). While some compositional relation-
ships exist, e.g., morphological processes such as
adding -ing or -ly to a stem have relatively reg-
ular effects, many words with lexical similarities
convey different meanings, such as, the word pairs
lesson⇐⇒ lessen and coarse⇐⇒ course.

3 C2W Model

Our compositional character to word (C2W)
model is based on bidirectional LSTMs (Graves
and Schmidhuber, 2005), which are able to
learn complex non-local dependencies in sequence
models. An illustration is shown in Figure 1. The
input of the C2W model (illustrated on bottom) is
a single word type w, and we wish to obtain is
a d-dimensional vector used to represent w. This
model shares the same input and output of a word
lookup table (illustrated on top), allowing it to eas-
ily replace then in any network.

As input, we define an alphabet of characters
C. For English, this vocabulary would contain an
entry for each uppercase and lowercase letter as
well as numbers and punctuation. The input word
w is decomposed into a sequence of characters
c1, . . . , cm, where m is the length of w. Each ci
is defined as a one hot vector 1ci , with one on the
index of ci in vocabulary M . We define a projec-
tion layer PC ∈ RdC×|C|, where dC is the number
of parameters for each character in the character
set C. This of course just a character lookup table,
and is used to capture similarities between charac-
ters in a language (e.g., vowels vs. consonants).
Thus, we write the projection of each input char-
acter ci as eci = PC · 1ci .

Given the input vectors x1, . . . ,xm, a LSTM
computes the state sequence h1, . . . ,hm+1 by it-
eratively applying the following updates:

it = σ(Wixxt +Wihht−1 +Wicct−1 + bi)

ft = σ(Wfxxt +Wfhht−1 +Wfcct−1 + bf )

ct = ft � ct−1+

it � tanh(Wcxxt +Wchht−1 + bc)

ot = σ(Woxxt +Wohht−1 +Wocct + bo)

ht = ot � tanh(ct),

where σ is the component-wise logistic sig-
moid function, and � is the component-wise
(Hadamard) product. LSTMs define an extra cell
memory ct, which is combined linearly at each
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Figure 1: Illustration of the word lookup tables
(top) and the lexical Composition Model (bottom).
Square boxes represent vectors of neuron activa-
tions. Shaded boxes indicate that a non-linearity.

timestamp t. The information that is propagated
from ct−1 to ct is controlled by the three gates it,
ft, and ot, which determine the what to include
from the input xt, the what to forget from ct−1 and
what is relevant to the current state ht. We write
W to refer to all parameters the LSTM (Wix,
Wfx, bf , . . . ). Thus, given a sequence of charac-
ter representations eCc1 , . . . , e

C
cm as input, the for-

ward LSTM, yields the state sequence sf0 , . . . , s
f
m,

while the backward LSTM receives as input the re-
verse sequence, and yields states sbm, . . . , s

b
0. Both

LSTMs use a different set of parameters Wf and
Wb. The representation of the word w is obtained
by combining the forward and backward states:

eCw = Dfsfm +Dbsb0 + bd,

where Df , Db and bd are parameters that deter-



mine how the states are combined.

Caching for Efficiency. Relative to eWw , com-
puting eCw is computational expensive, as it re-
quires two LSTMs traversals of length m. How-
ever, eCw only depends on the character sequence
of that word, which means that unless the parame-
ters are updated, it is possible to cache the value of
eCw for each different w’s that will be used repeat-
edly. Thus, the model can keep a list of the most
frequently occurring word types in memory and
run the compositional model only for rare words.
Obviously, caching all words would yield the same
performance as using a word lookup table eWw , but
also using the same amount of memory. Conse-
quently, the number of word types used in cache
can be adjusted to satisfy memory vs. perfor-
mance requirements of a particular application.

At training time, when parameters are changing,
repeated words within the same batch only need to
be computed once, and the gradient at the output
can be accumulated within the batch so that only
one update needs to be done per word type. For
this reason, it is preferable to define larger batches.

4 Experiments: Language Modeling

Our proposed model is similar to models used to
compute composed representations of sentences
from words (Cho et al., 2014; Li et al., 2015).
However, the relationship between the meanings
of individual words and the composite meaning
of a phrase or sentence is arguably more regular
than the relationship of representations of charac-
ters and the meaning of a word. Is our model capa-
ble of learning such an irregular relationship? We
now explore this question empirically.

Language modeling is a task with many appli-
cations in NLP. An effective LM requires syntactic
aspects of language to be modeled, such as word
orderings (e.g., “John is smart” vs. “John smart
is”), but also semantic aspects (e.g., “John ate fish”
vs. “fish ate John”). Thus, if our C2W model
only captures regular aspects of words, such as,
prefixes and suffixes, the model will yield worse
results compared to word lookup tables.

4.1 Language Model
Language modeling amounts to learning a func-
tion that computes the log probability, log p(w),
of a sentence w = (w1, . . . , wn). This quantity
can be decomposed according to the chain rule
into the sum of the conditional log probabilities

∑n
i=1 log p(wi | w1, . . . , wi−1). Our language

model computes log p(wi | w1, . . . , wi−1) by
composing representations of words w1, . . . , wi−1
using an recurrent LSTM model (Mikolov et al.,
2010; Sundermeyer et al., 2012).

The model is illustrated in Figure 2, where we
observe on the first level that each word wi is pro-
jected into their word representations. This can be
done by using word lookup tables eWwi

, in which
case, we will have a regular recurrent language
model. To use our C2W model, we can sim-
ply replace the word lookup table with the model
f(wi) = eCwi

. Each LSTM block si, is used to
predict word wi+1. This is performed by project-
ing the si into a vector of size of the vocabulary V
and performing a softmax.
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Figure 2: Illustration of our neural network for
Language Modeling.

The softmax is still simply a d × V table,
which encodes the likelihood of every word type
in a given context, which is a closed-vocabulary
model. Thus, at test time out-of-vocabulary
(OOV) words cannot be addressed. A strategy
that is generally applied is to prune the vocabu-
lary V by replacing word types with lower fre-
quencies as an OOV token. At test time, the prob-
ability of words not in vocabulary is estimated as
the OOV token. Thus, depending on the number
of word types that are pruned, the global perplexi-
ties may decrease, since there are fewer outcomes
in the softmax, which makes the absolute value of
perplexity not informative when comparing mod-
els of different vocabulary sizes. Yet, the rela-
tive perplexity between different models indicates
which models can better predict words based on
their contexts.



To address OOV words in the baseline setup,
these are replaced by an unknown token, and also
associated with a set of embeddings. During train-
ing, word types that occur once are replaced with
the unknown token stochastically with 0.5 proba-
bility. The same process is applied at the character
level for the C2W model.

4.2 Experiments

Datasets We look at the language model perfor-
mance on English, Portuguese, Catalan, German
and Turkish, which have a broad range of morpho-
logical typologies. While all these languages con-
tain inflections, in agglutinative languages affixes
tend to be unchanged, while in fusional languages
they are not. For each language, Wikipedia articles
were randomly extracted until 1 million words are
obtained and these were used for training. For de-
velopment and testing, we extracted an additional
set of 20,000 words.

Setup We define the size of the word represen-
tation d to 50. In the C2W model requires set-
ting the dimensionality of characters dC and cur-
rent states dCS . We set dC = 50 and dCS = 150.
Each LSTM state used in the language model se-
quence si is set to 150 for both states and cell
memories. Training is performed with mini-batch
gradient descent with 100 sentences. The learn-
ing rate and momentum were set to 0.2 and 0.95.
The softmax over words is always performed on
lowercased words. We restrict the output vocabu-
lary to the most frequent 5000 words. Remaining
word types will be replaced by an unknown token,
which must also be predicted. The word represen-
tation layer is still performed over all word types
(i.e., completely open vocabulary). When using
word lookup tables, the input words are also low-
ercased, as this setup produces the best results. In
the C2W, case information is preserved.

Evaluation is performed by computing the per-
plexities over the test data, and the parameters that
yield the highest perplexity over the development
data are used.

Perplexities Perplexities over the testset are re-
ported on Table 4. From these results, we can see
that in general, it is clear that C2W always outper-
forms word lookup tables (row “Word”), and that
improvements are especially pronounced in Turk-
ish, which is a highly morphological language,
where word meanings differ radically depending

Fusional Agglutinative
Perplexity EN PT CA DE TR
5-gram KN 70.72 58.73 39.83 59.07 52.87
Word 59.38 46.17 35.34 43.02 44.01
C2W 57.39 40.92 34.92 41.94 32.88
#Parameters
Word 4.3M 4.2M 4.3M 6.3M 5.7M
C2W 180K 178K 182K 183K 174K

Table 1: Language Modeling Results

on the suffixes used (evde→ in the house vs. ev-
den→ from the house).

Number of Parameters As for the number of
parameters (illustrated for block “#Parameters”),
the number of parameters in word lookup tables is
V ×d. If a language contains 80,000 word types (a
conservative estimate in morphologically rich lan-
guages), 4 million parameters would be necessary.
On the other hand, the compositional model con-
sists of 8 matrices of dimensions dCS×dC+2dCS .
Additionally, there is also the matrix that com-
bines the forward and backward states of size
d × 2dCS . Thus, the number of parameters is
roughly 150,000 parameters—substantially fewer.
This model also needs a character lookup table
with dC parameters for each entry. For English,
there are 618 characters, for an additional 30,900
parameters. So the total number of parameters for
English is roughly 180,000 parameters (2 to 3 pa-
rameters per word type), which is an order of mag-
nitude lower than word lookup tables.

Performance As for efficiency, both representa-
tions can label sentences at a rate of approximately
300 words per second during training. While this
is surprising, due to the fact that the C2W model
requires a composition over characters, the main
bottleneck of the system is the softmax over the
vocabulary. Furthermore, caching is used to avoid
composing the same word type twice in the same
batch. This shows that the C2W model, is rela-
tively fast compared operations such as a softmax.

Representations of (nonce) words While is is
promising that the model is not simply learning
lexical features, what is most interesting is that the
model can propose embeddings for nonce words,
in stark contrast to the situation observed with
lookup table models. We show the 5-most-similar
in-vocabulary words (measured with cosine simi-
larity) as computed by our character model on two



increased John Noahshire phding
reduced Richard Nottinghamshire mixing

improved George Bucharest modelling
expected James Saxony styling
decreased Robert Johannesburg blaming
targeted Edward Gloucestershire christening

Table 2: Most-similar in-vocabular words under
the C2W model; the two query words on the left
are in the training vocabulary, those on the right
are nonce (invented) words.

in-vocabulary words and two nonce words1.This
makes our model generalize significantly better
than lookup tables that generally use unknown to-
kens for OOV words. Furthermore, this ability to
generalize is much more similar to that of human
beings, who are able to infer meanings for new
words based on its form.

5 Experiments: Part-of-speech Tagging

As a second illustration of the utility of our model,
we turn to POS tagging. As morphology is a
strong indicator for syntax in many languages,
a much effort has been spent engineering fea-
tures (Nakagawa et al., 2001; Mueller et al., 2013).
We now show that some of these features can be
learnt automatically using our model.

5.1 Bi-LSTM Tagging Model

Our tagging model is likewise novel, but very
straightforward. It builds a Bi-LSTM over words
as illustrated in Figure 3. The input of the model
is a sequence of features f(w1), . . . , f(wn). Once
again, word vectors can either be generated us-
ing the C2W model f(wi) = eCwi

, or word
lookup tables f(wi) = eWwi

. We also test the us-
age of hand-engineered features, in which case
f1(wi), . . . , fn(wi). Then, the sequential fea-
tures f(w1), . . . , f(wn) are fed into a bidirec-
tional LSTM model, obtaining the forward states
sf0 , . . . , s

f
n and the backward states sbN+1, . . . , s

b
0.

Thus, state sfi contains the information of all
words from 0 to i and sbi from n to i. The for-
ward and backward states are combined, for each
index from 1 to n, as follows:

li = tanh(Lfsfi + Lbsbi + bl),

where Lf , Lb and bl are parameters defining how
the forward and backward states are combined.

1software submitted as supplementary material

The size of the forward sf and backward states
sb and the combined state l are hyperparameters
of the model, denoted as dfWS , dbWS and dWS , re-
spectively. Finally, the output labels for index i
are obtained as a softmax over the POS tagset, by
projecting the combined state li.
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Figure 3: Illustration of our neural network for
POS tagging.

5.2 Experiments

Datasets For English, we conduct experiments
on the Wall Street Journal of the Penn Treebank
dataset (Marcus et al., 1993), using the standard
splits (sections 1–18 for train, 19–21 for tuning
and 22–24 for testing). We also perform tests on
4 other languages, which we obtained from the
CoNLL shared tasks (Martı́ et al., 2007; Brants
et al., 2002; Afonso et al., 2002; Atalay et al.,
2003). While the PTB dataset provides standard
train, tuning and test splits, there are no tuning sets
in the datasets in other languages, so we withdraw
the last 100 sentences from the training dataset and
use them for tuning.

Setup The POS model requires two sets of hy-
perparameters. Firstly, words must be converted
into continuous representations and the same hy-
perparametrization as in language modeling (Sec-
tion 4) is used. Additionally, we also compare to
the convolutional model of Santos and Zadrozny
(2014), which also requires the dimensionality
for characters and the word representation size,
which are set to 50 and 150, respectively. Sec-
ondly, words representations are combined to en-



code context. Our POS tagger has three hyperpa-
rameters dfWS , dbWS and dWS , which correspond
to the sizes of LSTM states, and are all set to 50.
As for the learning algorithm, use the same setup
(learning rate, momentum and mini-batch sizes) as
used in language modeling.

Once again, we replace OOV words with an un-
known token, in the setup that uses word lookup
tables, and the same with OOV characters in the
C2W model. In setups using pre-trained word em-
beddings, we consider a word an OOV if it was not
seen in the labelled training data as well as in the
unlabeled data used for pre-training.

Compositional Model Comparison A compar-
ison of different recurrent neural networks for the
C2W model is presented in Table 3. We used our
proposed tagger tagger in all experiments and re-
sults are reported for the English Penn Treebank.
Results on label accuracy test set is shown in the
column “acc”. The number of parameters in the
word composition model is shown in the column
“parameters”. Finally, the number of words pro-
cessed at test time per second are shown in column
“words/sec”.

We observe that approaches using RNN yield
worse results than their LSTM counterparts with
a difference of approximately 2%. This suggests
that while regular RNNs can learn shorter char-
acter sequence dependencies, they are not ideal
to learn longer dependencies. LSTMs, on the
other hand, seem to effectively obtain relatively
higher results, on par with using word look up ta-
bles (row “Word Lookup”), even when using for-
ward (row “Forward LSTM”) and backward (row
“Backward LSTM”) LSTMs individually. The
best results are obtained using the bidirectional
LSTM (row “Bi-LSTM”), which achieves an ac-
curacy of 97.29% on the test set, surpassing the
word lookup table. The convolution model (San-
tos and Zadrozny, 2014) obtained slightly lower
results (row “Convolutional (S&Z)”), we think
this is because the convolutional model uses a
max-pooling layer over series of window convolu-
tions. As order is only perserved within windows,
longer distance dependences are unobserved.

There are approximately 40k lowercased word
types in the training data in the PTB dataset. Thus,
a word lookup table with 50 dimensions per type
contains approximately 2 million parameters. In
the C2W models, the number of characters types
(including uppercase and lowercase) is approxi-

acc parameters words/sec
Word Lookup 96.97 2000k 6K

Convolutional (S&Z) 96.80 42.5k 4K
Forward RNN 95.66 17.5k 4K

Backward RNN 95.52 17.5k 4K
Bi-RNN 95.93 40k 3K

Forward LSTM 97.12 80k 3K
Backward LSTM 97.08 80k 3K

Bi-LSTM dCS = 50 97.22 70k 3K
Bi-LSTM 97.36 150k 2K

Table 3: POS accuracy results for the English PTB
using word representation models.

mately 80. Thus, the character look up table con-
sists of only 4k parameters, which is negligible
compared to the number of parameters in the com-
positional model, which is once again 150k pa-
rameters. One could argue that results in the Bi-
LSTM model are higher than those achieved by
other models as it contains more parameters, so
we set the state size dCS = 50 (row “Bi-LSTM
dCS = 50”) and obtained similar results.

In terms of computational speed, we can ob-
serve that there is a more significant slowdown
when applying the C2W models compared to lan-
guage modeling. This is because there is no longer
a softmax over the whole word vocabulary as the
main bottleneck of the network. However, we can
observe that while the Bi-LSTM system is 3 times
slower, it is does not significantly hurt the perfor-
mance of the system.

Results on Multiple Languages Results on 5
languages are shown in Table 4. In general, we
can observe that the model using word lookup
tables (row “Word”) performs consistently worse
than the C2W model (row “C2W”). We also com-
pare our results with Stanford’s POS tagger, with
the default set of features, found in Table 4. Re-
sults using these tagger are comparable or bet-
ter than state-of-the-art systems. We can observe
that in most cases we can slightly outperform
the scores obtained using their tagger. This is a
promising result, considering that we use the same
training data and do not handcraft any features.
Furthermore, we can observe that for Turkish, our
results are significantly higher (>4%).

Comparison with Benchmarks Most state-of-
the-art POS tagging systems are obtained by ei-
ther learning or handcrafting good lexical fea-
tures (Manning, 2011; Sun, 2014) or using ad-



System Fusional Agglutinative
EN PT CA DE TR

Word 96.97 95.67 98.09 97.51 83.43
C2W 97.36 97.47 98.92 98.08 91.59
Stanford 97.32 97.54 98.76 97.92 87.31

Table 4: POS accuracies on different languages

ditional raw data to learn features in an unsuper-
vised fashion. Generally, optimal results are ob-
tained by performing both. Table 5 shows the
current Benchmarks in this task for the English
PTB. Accuracies on the test set is reported on col-
umn “acc”. Columns “+feat” and “+data” de-
fine whether hand-crafted features are used and
whether additional data was used. We can see that
even without feature engineering or unsupervised
pretraining, our C2W model (row “C2W”) is on
par with the current state-of-the-art system (row
“structReg”). However, if we add hand-crafted
features, we can obtain further improvements on
this dataset (row “C2W + features”).

However, there are many words that do not con-
tain morphological cues to their part-of-speech.
For instance, the word snake does not contain any
morphological cues that determine its tag. In these
cases, if they are not found labelled in the training
data, the model would be dependent on context to
determine their tags, which could lead to errors in
ambiguous contexts. Unsupervised training meth-
ods such as the Skip-n-gram model (Mikolov et
al., 2013) can be used to pretrain the word rep-
resentations on unannotated corpora. If such pre-
training places cat, dog and snake near each other
in vector space, and the supervised POS data con-
tains evidence that cat and dog are nouns, our
model will be likely to label snake with the same
tag.

We train embeddings using English wikipedia
with the dataset used in (Ling et al., 2015), and
the Structured Skip-n-gram model. Results using
pre-trained word lookup tables and the C2W with
the pre-trained word lookup tables as additional
parameters are shown in rows “word(sskip)” and
“C2W + word(sskip)”. We can observe that both
systems can obtain improvements over their ran-
dom initializations (rows “word” and (C2W)).

Finally, we also found that when using the C2W
model in conjunction pre-trained word embed-
dings, that adding a non-linearity to the repre-
sentations extracted from the C2W model eCw im-
proves the results over using a simple linear trans-

+feat +data acc
word no no 96.70
C2W no no 97.36
word+features yes no 97.34
C2W+features yes no 97.57
Stanford 2.0 (Manning, 2011) yes no 97.32
structReg (Sun, 2014) yes no 97.36
word (sskip) no yes 97.42
C2W+word (sskip) no yes 97.54
C2W(tanh)+word (sskip) no yes 97.78
Morče (Spoustová et al., 2009) yes yes 97.44
SCCN (Søgaard, 2011) yes yes 97.50

Table 5: POS accuracy result comparison with
state-of-the-art systems for the English PTB.

formation (row “C2W(tanh)+word (sskip)”). This
setup, obtains 0.28 points over the current state-of-
the-art system(row “SCCN”).

5.3 Discussion
It is important to refer here that these results do
not imply that our model always outperforms ex-
isting benchmarks, in fact in most experiments,
results are typically fairly similar to existing sys-
tems. Even in Turkish, using morphological anal-
ysers in order to extract additional features could
also accomplish similar results. The goal of our
work is not to overcome existing benchmarks, but
show that much of the feature engineering done in
the benchmarks can be learnt automatically from
the task specific data. More importantly, we wish
to show large dimensionality word look tables can
be compacted into a lookup table using characters
and a compositional model allowing the model
scale better with the size of the training data. This
is a desirable property of the model as data be-
comes more abundant in many NLP tasks.

6 Related Work

Our work, which learns representations without
relying on word lookup tables has not been ex-
plored to our knowledge. In essence, our model
attempts to learn lexical features automatically
while compacting the model by reducing the re-
dundancy found in word lookup tables. Individ-
ually, these problems have been the focus of re-
search in many areas.

Lexical information has been used to augment
word lookup tables. Word representation learn-
ing can be thought of as a process that takes a
string as input representing a word and outputs
a set of values that represent a word in vector



space. Using word lookup tables is one possi-
ble approach to accomplish this. Many meth-
ods have been used to augment this model to
learn lexical features with an additional model
that is jointly maximized with the word lookup
table. This is generally accomplished by either
performing a component-wise addition of the em-
beddings produced by word lookup tables (Chen
et al., 2015), and that generated by the additional
lexical model, or simply concatenating both rep-
resentations (Santos and Zadrozny, 2014). Many
models have been proposed, the work in (Col-
lobert et al., 2011) refers that additional features
sets Fi can be added to the one-hot representa-
tion and multiple lookup tables IFi can be learnt
to project each of the feature sets to the same
low-dimensional vector eWw . For instance, the
work in (Botha and Blunsom, 2014) shows that us-
ing morphological analyzers to generate morpho-
logical features, such as stems, prefixes and suf-
fixes can be used to learn better representations
for words. A problem with this approach is the
fact that the model can only learn from what has
been defined as feature sets. The models proposed
in (Santos and Zadrozny, 2014; Chen et al., 2015)
allow the model to arbitrary extract meaningful
lexical features from words by defining composi-
tional models over characters. The work in (Chen
et al., 2015) defines a simple compositional model
by summing over all characters in a given word,
while the work in (Santos and Zadrozny, 2014)
defines a convolutional network, which combines
windows of characters and a max-pooling layer to
find important morphological features. The main
drawback of these methods is that character or-
der is often neglected, that is, when summing over
all character embeddings, words such as dog and
god would have the same representation accord-
ing to the lexical model. Convolutional model are
less susceptible to these problems as they com-
bine windows of characters at each convolution,
where the order within the window is preserved.
However, the order between extracted windows is
not, so the problem still persists for longer words,
such as those found in agglutinative languages.
Yet, these approaches work in conjunction with a
word lookup table, as they compensate for this in-
ability. Aside from neural approaches, character-
based models have been applied to address mul-
tiple lexically oriented tasks, such as translitera-
tion (Kang and Choi, 2000) and twitter normaliza-

tion (Xu et al., 2013; Ling et al., 2013).
Compacting models has been a focus of re-

search in tasks, such as language modeling and
machine translation, as extremely large models
can be built with the large amounts of training
data that are available in these tasks. In language
modeling, it is frequent to prune higher order n-
grams that do not encode any additional infor-
mation (Seymore and Rosenfeld, 1996; Stolcke,
1998; Moore and Quirk, 2009). The same be ap-
plied in machine translation (Ling et al., 2012;
Zens et al., 2012) by removing longer translation
pairs that can be replicated using smaller ones. In
essence our model learns regularities at the sub-
word level that can be leveraged for building more
compact word representations.

Finally, our work has been applied to depen-
dency parsing and found similar improvements
over word models in morphologically rich lan-
guages (Ballesteros et al., 2015).

7 Conclusion

We propose a C2W model that builds word em-
beddings for words without an explicit word
lookup table. Thus, it benefits from being sen-
sitive to lexical aspects within words, as it takes
characters as atomic units to derive the embed-
dings for the word. On POS tagging, our mod-
els using characters alone can still achieve com-
parable or better results than state-of-the-art sys-
tems, without the need to manually engineer such
lexical features. Although both language model-
ing and POS tagging both benefit strongly from
morphological cues, the success of our models in
languages with impoverished morphological cues
shows that it is able to learn non-compositional as-
pects of how letters fit together.

The code for the C2W model and our language
model and POS tagger implementations is avail-
able from https://github.com/wlin12/
JNN.
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