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Grasp Analysis as Linear Matrix Inequality

Problems
Li Han Je� C. Trinkle Zexiang Li

Abstract| Three fundamental problems in the study of
grasping and dextrous manipulation with multi�ngered
robotic hands are: (a) Given a robotic hand and a grasp
characterized by a set of contact points and the associated
contact models, determine if the grasp has force closure; (b)
Given a grasp along with robotic hand kinematic structure
and joint e�ort limit constraints, determine if the �ngers
are able to apply a speci�ed resultant wrench on the object;
and (c) Compute \optimal" contact forces if the answer to
problem (b) is a�rmative.

In this paper, based on an early result by Buss, Hashimoto
and Moore, which transforms the nonlinear friction cone
constraints into positive de�niteness constraints imposed on
certain symmetricmatrices, we further cast the friction cone
constraints into linear matrix inequalities (LMIs) and formulate
all three of the problems stated above as a set of convex op-
timization problems involving LMIs. The latter problems have
been extensively studied in optimization and control com-
munities. Currently highly e�cient algorithms with polyno-
mial time complexity have been developed and made avail-
able. We perform numerical studies to show the simplicity
and e�ciency of the LMI formulation to the three grasp
analysis problems.

Keywords|Convex Programming, Linear Matrix Inequal-
ities, Friction Cones, Force Closure, Force Optimization,
Grasp Analysis.

I. Introduction

It has been recognized for some time that robotic sys-
tems equipped with multi-�ngered hands have great po-
tential for performing useful work in various environments.
This recognition is evidenced by the hundreds of research
papers (see [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]
and references therein for further details) on grasp analy-
sis, synthesis, control, design, and related topics and the
large number of mechanical hands built for both robotic
and prosthetic research. Despite the huge e�ort, many un-
solved theoretical and practical problems remain.
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Of the remaining problems, the three of interest in this
paper are the force closure problem, the force feasibility
problem, and the force optimization problem, which have
mainly been solved (with a handful exception discussed
below) after conservatively linearizing the contact friction
models. Our main objective here is to develop e�cient solu-
tion techniques for these fundamental nonlinear problems
in a uni�ed mathematical framework developed through
the theories of linear matrix inequalities (LMIs) and convex
programming. Informally, these problems can be stated as
follows:
1. Force Closure Problem - Given the locations of the con-
tact points on the object and the hand, the corresponding
friction models, and the kinematic structure of the hand,
determine if every object load in R6 can be balanced. 1

2. Force Feasibility Problem - Given the locations of the
contact points on the object and the hand, the correspond-
ing friction models, the kinematic structure of the hand,
the actuator limits, and known external load on the object
and hand, determine if the load can be balanced.
3. Force Optimization Problem - Given a grasp force prob-
lem that has passed the feasibility test in item 2 above,
determine the \optimal" actuator e�orts and correspond-
ing contact forces.
These three problems will collectively be referred to as

grasp analysis problems. One may note that these prob-
lems also arise in the study of foot-step planning and force
distribution by multilegged robots [14]. Other applications
of these problems can be found in �xturing, cell manipula-
tion by multiple laser probes, and the control of satellites
with multiple unidirectional thrusters. As for grasp synthe-
sis problems which address how to generate grasps of cer-
tain desired properties, several approaches based on grasp
force properties such as force closure and optimal forces
have been proposed. Therefore, the solution techniques to
grasp analysis problems discussed in this paper can also be
applied to grasp synthesis and other relevant applications.

A. Related Previous Work

The major di�culty associated with the three grasp anal-
ysis problems has been the nonlinearity of the commonly
accepted contact friction models: (a) point contact with
friction (PCWF) and (b) soft-�nger contact (SFC). The
quadratic nature of both models has been experimentally
veri�ed [2], [5] for some common materials. For the force
closure problem, there exist theorems [15], [8], [7] for gen-
eral grasps consisted of arbitrary numbers and types of

1There exist other de�nitions of force closure, e.g., the one without
taking the hand structure into account [7], which was adopted in our
earlier publication [13] and handled similarly as the one in this paper.



HAN, TRINKLE AND LI: GRASP ANALYSIS AS LINEAR MATRIX INEQUALITY PROBLEMS 101

contact points. Due to the di�culty of handling the non-
linear models, the force closure theorems [8], [11], have
been specialized for the grasps characterized by the num-
ber of contact points and the associated contact models
and expressed in geometric terms such as antipodal posi-
tions. Even with these specialized theorems, the analysis
and synthesis of frictional force closure grasps has mainly
been studied by linearizing the friction cone constraints
and then applying linear programming techniques. Similar
approaches [14], [3], [4] have also prevailed in the study of
grasp force feasibility and optimization problems.

While simplifying the three grasp analysis problems, the
linearized model and linear programming approach have
the following disadvantages: (1) the friction cone must
be approximated conservatively, to avoid the possibility of
�nding solutions that satisfy the linearized model, but vi-
olate the nonlinear model (false positive). Unfortunately,
a conservative linearization, may cause the linear analysis
to yield false negative results, (e.g., the linear model im-
plies no force closure, when it exists). (2) the orientations
of the tangent plane directions in the contact frame a�ect
the results of grasp analysis, which violates the usual as-
sumption of isotropic Coulomb friction. (3) Small pertur-
bations in the parameters describing the grasp (geometry,
physics, and kinematics) can produce large variations in
the solutions of the linear programs. The nonsmoothness
of solutions of linear programmingmethods [16] poses di�-
culty for optimization-based grasp synthesis and real-time
control applications. (4) Increasing the number of facets
in the linearized friction models will increase the running
time unacceptably for real-time applications.

The problems just discussed, can be alleviated to a large
extent by retaining the nonlinear nature of the friction
models. Despite the discouraging fact that our current
computing resources only allow o�-line computation for
most nonlinear analyses, this approach has been pursued
persistently inside and outside the robotics community. To
name a few here, Nakamura et al. [17] developed a non-
linear formulation of the grasp force optimization problem.
Bicchi [1] formulated the force closure test as a nonlinear
di�erential equation. Lobo et al. [18] brie
y discussed
the grasp force feasibility and optimization problems as
an engineering application of second order cone program-
ming. Haidacher et al. included a two-stage quadratically-
constrained quadratic programming formulation for force
closure in [19].

One major progress in the study of grasp force opti-
mization was made by Buss, Hashimoto and Moore (BHM)
[20]. They made the important observation that the non-
linear friction cone constraints are equivalent to the pos-
itive de�niteness of certain symmetric matrices. This ob-
servation enabled them to formulate the grasp force opti-
mization problem on the Riemannian manifold of linearly
constrained symmetric positive de�nite matrices and to de-
velop e�cient projected gradient 
ow algorithms[20], [21],
[22], [23] fast enough for real-time applications. However,
to start their optimization algorithms, a valid initial grasp
force, which satis�ed the friction cone constraints and gen-

erated the speci�ed object wrench, was needed, and there
was no discussion on how to compute valid initial forces
for general grasps. Therefore, the force feasibility and force
closure problems remain open.

B. Our Results

In this paper, based on the BHM observation and a de-
tailed analysis of the structure of the symmetric positive
de�nite matrices arising from the friction cone constraints,
we cast the friction cone constraints into linear matrix in-
equalities (LMIs) and formulate the basic grasp analysis
problems as a set of convex optimization problems involving
LMIs [24]. The latter problems have been extensively stud-
ied in optimization and control communities. Recently the
e�cient algorithms with polynomial time complexity [25],
[24] have been developed and made available. We used
these algorithms to perform numerical studies that showed
the simplicity and e�ciency of the LMI formulation to the
three grasp analysis problems.

II. Problem Review

Consider an object grasped by a multi-�ngered robotic
hand with k contacts between the object and the links of
the �ngers and the palm. The grasp map, G 2 R6�m,
transforms applied �nger forces expressed in local contact
frames to resultant object wrenches

F = Gx; (1)

where x = [xT1 : : :x
T
i : : :x

T
k ]

T 2 Rm is the contact wrench
of the grasp, and xi 2 Rmi is the independent wrench
intensity vector of �nger i. 2 In order for the grasp to
be maintained, the resultant generalized contact force F
must balance the external (possibly dynamic) load go ex-
perienced by the object. Thus we have:

F = Gx = �go: (2)

Since the contacts are unilateral, the wrench vector must
adhere to a generalized contact friction constraint

FC = fx 2 Rm j xi 2 FCi; i = 1; :::; kg (3)

where FCi de�nes the set of contact wrenches under the
contact model and friction law applicable at contact i. For
our purposes, this set will be assumed to take the following
general form:

FCi = fxi 2 Rmi j xin � 0; jjxitjjw � xing 3 (4)

where xin, which will also be denoted as xi3 in this pa-
per, is the normal component of the contact force at con-
tact i and jjxitjjw denotes a weighted quadratic norm of

2The numbermi is respectively, one, three, and four for frictionless
point contacts, frictional point contacts, and for soft �nger contacts
which can transmit a component of moment about the contact nor-
mal.
3The condition xin � 0 is included to explicitly show the unilateral

property of friction cones, even though it is implied by the condition
jjxitjjw � xin.
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the frictional components at contact i. For the four com-
mon contact types, frictionless point contact (FPC), point
contact with friction (PCWF), soft �nger contact with el-
liptic approximation (SFCE), and soft �nger contact with
linearized elliptic approximation (SFCL) [2], the weighted
norms are de�ned respectively as follows:

FPC : jjxitjjw := 0 (5)

PCWF : jjxitjjw :=
1

�i

q
(x2i1 + x2i2) (6)

SFCE : jjxitjjw :=

s
1

�2i
(x2i1 + x2i2) +

1

�2it
x2i4 (7)

SFCL : jjxitjjw :=
1

�i

q
(x2i1 + x2i2) +

1

�0it
jxi4j (8)

where xi1 and xi2 are friction force components in two or-
thogonal directions in the contact tangent plane, xi4 is the
friction moment component in the contact normal direc-
tion, �i is the usual coe�cient of Coulomb friction, and �it
and �0it are (di�erent) torsion friction limits.
A relationship analogous to equation (2) must be satis-

�ed by the hand subsystem. The external load �ext 2 Rn

on the robot joints must be balanced by the contact wrench
x and the actuator e�orts �h:

JTh x� �h = ��ext; (9)

where JTh is the transpose of the hand Jacobian. Note that
the term �ext may include Coriolis, centripetal, and inertial
loads.
The null space of the Jacobian transpose, Null(JTh ),

when it exists, corresponds to the structurally dependent
forces [7], which cannot be generated by robot actua-
tors and cannot be determined for certain types of grasps
without more information about the elastic properties of
the mechanism [26]. In general, the admissible grasp
forces [27], [1] have to be in the range space of Jh, or
Range(KJh) + Range(KGT ) when the de
ection and the
grasp sti�ness, denoted by matrix K, are taken into ac-
count. For simplicity, let J be a matrix whose columns
form a basis for the space of admissible grasp forces, and
thus, the latter can be described as:

C = fx 2 Rmjx 2 Range(J)g: (10)

The analog to the friction constraints (3) are joint ef-
fort constraints. Assume that the joint e�ort vector �h is
limited by upper and lower bound vectors �U and �L:

�L � �h � �U : (11)

The corresponding constraints T on the contact wrench
vector are written as:

T = fx 2 Rmj�L � JTh x+ �ext � �Ug: (12)

Equations (2, 3, 9, 10, 11) comprise the system model
for our subsequent analysis of the grasp problems discussed
above. Their simultaneous satisfaction implies that a grasp
is valid (i.e., will be maintained).

With the model completed, the three fundamental grasp
analysis problems can be formalized as follows.

Problem 1: Force Closure Problem
Given a grasp (G;FC) and admissible contact force con-
straints C, determine if force closure exists, i.e., G(FC \
C) = R6.
Problem 2: Force Feasibility Problem

Given a grasp (G;FC), admissible contact force constraints
C, joint e�ort constraints T , joint external loads �ext, and
a generalized resultant wrench F on the object, determine
if there exists a contact wrench vector x satisfying equa-
tions (2, 3,10, 12).
Problem 3: Force Optimization Problem

Given a grasp (G;FC), admissible contact force constraints
C, joint e�ort constraints T , joint external loads �ext, and
a generalized resultant wrench F on the object, �nd an
optimal contact wrench vector x satisfying equations (2, 3,
10, 12).

III. Formulating Grasp Force Constraints as

LMIs

According to Buss, Hashimoto and Moore [20], the fric-
tion cone constraints (3) imposed by the set of k contacts
can be written as a positive semi-de�nite constraint on a
block diagonal matrix P :

FC = fx 2 Rm jP (x) = Blockdiag(P1; � � � ; Pi; � � � ; Pk) � 0g
(13)

where � denotes positive semi-de�niteness.
The submatrix Pi for contact i takes one of the following

forms dictated by its contact type:

FPC : Pi := [xi3] (14)

PCWF : Pi :=

2
4 �ixi3 0 xi1

0 �ixi3 xi2
xi1 xi2 �ixi3

3
5 (15)

SFCE : Pi :=

2
664

xi3 0 0 �ixi1
0 xi3 0 �ixi2
0 0 xi3 �ixi4

�ixi1 �ixi2 �ixi4 xi3

3
775 (16)

SFCL : Pi :=

2
666666664

xi3 0 0 0
0 �i 0 xi1
0 0 �i xi2 0
0 xi1 xi2 �i

�i 0 xi1
0 0 �i xi2

xi1 xi2 �i

3
777777775
:(17)

where �i =
1
�i
; �i =

1
�it

, �i = �i(xi3 +
1
�0
it

xi4), and �i =

�i(xi3 �
1
�0
it

xi4).

The correctness of this observation can be proved by the
positive semi-de�niteness of the symmetric matrices P 0

is

[20] and the following proposition which will also be used
in this paper.
Proposition 1: A block diagonal matrix P =

Blockdiag(P1; � � � ; Pi; � � � ; Pk) is symmetric (semi-)positive
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de�nite if and only if each block Pi; i = 1; : : : ; k; is sym-
metric (semi-)positive de�nite.
Notice that for all the friction models, the Pi matrices are

linear and symmetric in the unknown components of the
contact wrench. This fact allows us to write the friction
constraints as nonstrict Linear Matrix Inequalities (LMIs)
which have the following general form:

Pi = Si0 +

miX
j=1

xijSij = Si0 + xi1Si1 + � � �+ ximi
Simi

� 0

(18)
where the real symmetric matrices Sij ; j = 0; � � �mi serve
as the coe�cients of the LMI, with Si0 being zero for the
friction cone LMIs.
Denoting by Ea

bc = (Ea
cb)

T , the symmetric matrix of di-
mension a with element (b; c) equal to 1 and all other el-
ements zero, the coe�cient matrices Sij of the matrix Pi
can be written conveniently. For example, if contact i is of
type SFCE, then the Sij matrices are given as follows:

Si1 = �i(E
4
14 +E4

41)

Si2 = �i(E
4
24 +E4

42)

Si3 = E4
11 + E4

22 +E4
33 + E4

44

Si4 = �i(E
4
34 +E4

43): (19)

The coe�cient matrices for other friction models have sim-
ilarly simple forms.
Since P is block diagonal with the P 0

is on the main di-
agonal, it can be written as an LMI:

P (x) =
Pm

l=1 xlSl � 0 (20)

where the double-indexed xij is simpli�ed to xl, l(i; j) =Pi�1
b=1mb+j and Sl = Blockdiag(0; � � � ; 0; Sij; 0; � � � ; 0), l =

1; � � � ;m, with the S0ls being symmetric. Replacing � in
equation (20) by � would yield a strict LMI and would
restrict the contact forces to lie in the interiors of their
respective friction cones, denoted by int(FC).
One key property of LMIs is that both nonstrict LMIs

and strict LMIs are convex constraints on x as indicated in
the following proposition.
Proposition 2: Given Q(x) = S0 +

Pm

l=1 xlSl, where
Sl = STl ; l = 0; � � � ;m. The sets An = fx 2 Rm j Q(x) �
0g and As = fx 2 Rm j Q(x) � 0g are convex.
In general, LMIs can be viewed as an extension of linear

inequality constraints where the componentwise inequali-
ties between vectors are replaced by matrix inequalities. It
is shown in [24] that LMIs can represent a wide class of
convex constrains on x such as linear inequalities, (con-
vex) quadratic inequalities or matrix norm inequalities.
Consider, for instance, a second-order cone constraint [18]
(which is also called a quadratic, ice-cream, or Lorenz cone
constraint):

kAx+ bk � cTx+ d (21)

where the constraint variable is the vector x 2 Rm, the
problem parameters are A 2 Rn�m; b 2 Rn; c 2 Rm, and
d 2 R. The vector norm appearing in the constraint is the

standard Euclidean norm, i.e., kuk = (uTu)
1

2 . It is shown
[18] that a second-order cone constraint can be cast into a
linear matrix inequality:

kAx+ bk � cTx+ d()

�
(cTx+ d)I Ax+ b

(Ax+ b)T cTx+ d

�
� 0

(22)
where I is the identity matrix with dimension n. Note that
the friction cone constraints (6, 7, 8) can all be transformed
into second order cone constraints whose BHM observation
(15, 16, 17) can be derived from transformation (22).
Next take as another example a linear inequality con-

straint:
Ax + b � 0 (23)

where A = [a1 � � �am] 2 Rn�m and b 2 Rn. Since a
vector y � 0 (componentwise) if and only if the matrix
diag(y) (the diagonal matrix with the components of y on
its diagonal) is positive semi-de�nite, the linear inequal-
ity constraint(23) can be cast into a nonstrict LMI with
Q(x) = diag(Ax + b), i.e.,

S0 = diag(b); Si = diag(ai); i = 1; � � � ;m: (24)

As a direct application of this example, partition the
joint e�ort constraints T de�ned in (12) into two linear
inequality constraints:

JTh x+ �ext � �L � 0; �JTh x� �ext + �U � 0 (25)

and formulate the corresponding LMIs:

TL(x) = diag(JTh x+ �ext � �L) = TL
0 +

mX
l=1

TL
l xl � 0

TU (x) = diag(�JTh x� �ext + �U ) = TU
0 +

mX
l=1

TU
l xl � 0

Therefore, the joint e�ort constraints(12) can also be cast
into one LMI constraint:

T (x) = Blockdiag(TL(x); TU (x)) = T0 +
Pm

l=1 Tlxl � 0

(26)
where Tl = Blockdiag(TL

l ; T
U
l ); l = 0; : : : ;m.

Utilizing proposition 1, we obtain the following LMI
which incorporates both friction cone and joint e�ort limit
constraints:

D(x) = Blockdiag(P (x); T (x)) = D0 +
Pm

l=1Dlxl � 0

(27)
where Dl = Blockdiag(Sl; Tl); l = 0; : : : ;m.
In closing this section, we �rst note that our model for

grasp analysis using LMIs is de�ned by equations (20)
and (26). Second, we stress that the representational
breadth of LMI's is greater than what was required by our
formulation. So the LMI approach is not restricted to the
friction models used in this paper. As long as the friction
cone models and other system constraints can be cast into
LMIs, the grasp analysis problems can be formulated in the
same vein as those discussed in the next section, and thus,
can be readily solved by the e�cient LMI algorithms.
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IV. Grasp Force Analysis Problems

Based on the LMI formulation of grasp force constraints,
we now restate the grasp analysis problems as follows:
Problem 1: Force Closure Problem

Given a grasp (G;FC) and admissible contact force con-
straints C, determine if for every F 2 R6, 9 x 2 C, such
that P (x) � 0 and Gx = F .
Problem 2: Force Feasibility Problem

Given a grasp (G;FC), admissible contact force constraints
C, joint e�ort constraints T , joint external loads �ext, and
an object wrench F 2 R6, determine if 9 x 2 C, such that
D(x) � 0 and Gx = F .
Problem 3: Force Optimization Problem

Given a grasp (G;FC), admissible contact force constraints
C, joint e�ort constraints T , joint external loads �ext, and
an object wrench F 2 R6, �nd an \optimal" grasp force
x 2 C satisfying D(x) � 0 and Gx = F .
In this section, we will analyze these problems and trans-

form them into standard convex optimization problems in-
volving LMIs, which can be e�ciently solved in polynomial
time using recently developed interior-point methods [25],
[24].

A. Force Closure Problem

It was shown that a grasp has force closure if and only
if the grasp map G has full row rank and there exists an
admissible strictly-internal grasp force[7]. In other words,
the following two conditions are simultaneously satis�ed:

1. rank(G) = 6; and
2. 9xint 2 C, s.t. P (xint) � 0 and Gxint = 0.

While veri�cation of the �rst condition is straightfor-
ward, the second condition is di�cult due to the nonlinear
friction constraints. To resolve this problem, note that xint
needs to lie in the intersection of the null space of G and
the range space of J . If such an intersection is empty,
then the answer to the force closure problem is negative.
Otherwise, concatenate a set of the basis vectors of the ad-
missible subspace of the null space as column vectors to
form a matrix ~V 2 Rm� ~m, where ~m is the dimension of
the admissible subspace. Then an admissible internal force
can be written as

xint = ~V z (28)

where z 2 R ~m is the free variable.
Substituting equation (28) into the LMI P (xint) � 0,

we obtain an equivalent LMI in terms of z for admissible
strictly-internal forces:

~P (z) := P ( ~V z) =
P ~m

l=1 zl
~Sl � 0. (29)

~P (z) is indeed an LMI since LMI structure is preserved
under a�ne transformations as indicated in the following
proposition.
Proposition 3: Given Q(x) = S0 +

Pm

l=1 xlSl, where
Sl = STl ; l = 0; � � � ;m. Let x = Az + b, where A 2
Rm�n, b 2 Rm, and z 2 Rn is the new variable. Then

~Q(z) := Q(Az + b) has the LMI structure, i.e., ~Q(z) =
~S0 +

Pn

l=1 zl
~Sl , and ~Sl = ~STl ; l = 0; � � � ; n.

In summary, the force closure problem is solved by �rst
checking the rank of G and, if it is onto, then determining
if there exists a z 2 R ~m such that (29) holds. The latter
problem is a standard LMI feasibility problem [24].
Remark 1: If the conventional quadratic representa-

tion of the friction cones (5) (6) (7) (8) is used instead
of their LMI formulations (14) (15) (16) (17), the internal
force existence problem can be cast into a second-order cone
feasibility problem utilizing same process described in this
subsection.

B. Force Feasibility Problem

The grasp force feasibility problem is very similar to the
internal force existence problem and can be solved using a
similar approach: First, determine if there exists a solution
x0 2 Rm for the linear equation

Gx0 = F (30)

Here, x0 2 Rm need not satisfy the grasp force constraints.
Thus, a simple choice is the least-square solution:

x0 = G#F (31)

where G# is the generalized inverse of G. The solution x0
is exact if F 2 Range(G). Otherwise, the answer to the
grasp force feasibility problem is negative. For the case
that F 2 Range(G), the general admissible force satisfying
equation(30), if exists, has the form

x = ~x0 + ~V z = G#F + �x0 + ~V z 2 C (32)

where �x0 2 Null(G) helps to bring ~x0 = G#F + �x0 to be
an admissible force satisfying equation (30), since x0 alone
might not lie in C. The columns of ~V 2 Rm� ~m form a basis
of the admissible subspace of the null space of G.
Thus, the answer to the grasp force feasibility problem is

a�rmative if and only if F 2 Range(G), there exist �x 2 Rm

satisfying equation (32) and z 2 R ~m holding the LMI:

~D(z) := D(~x0 + ~V z) = ~D0 +
P ~m

l=1 zl
~Dl � 0 (33)

Again, the last problem is an LMI feasibility problem and
can also be cast as a second-order cone feasibility problem
as noted in remark 1.
One important property on the force feasibility problem

that can be derived from the convexity of the problem is:
Proposition 4: If every object wrench in a set F =

fF1; � � � ; Fjg is feasible, then every object wrench in the
convex hull of the set F is feasible.
A similar result for frictionless contacts was proved in

paper[28].

C. Force Optimization Problem

Given a grasp (G;FC), admissible contact force con-
straints C, joint e�ort constraints T , joint external loads
�ext, and an object wrench F , the grasp force optimization
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problem amounts to �nding an optimal grasp force x in the
feasible set

Ax = fx 2 CjD(x) � 0; Gx = Fg: (34)

Here, we only consider the nontrivial case when the feasible
set Ax is nonempty. This is true if and only if the answer
to the corresponding force feasibility problem is a�rmative.
In this case, there exists a non-empty feasible set for z:

Az = fz 2 R ~mj ~D(z) � 0g (35)

where ~D(z) is de�ned in (33).
Noting that both Ax and Az are convex, we would like to

de�ne a convex objective function 	(x) to take advantage
of the properties of convex optimization 4 and formulate
the force optimization problem as

argminx2Ax
	(x): (36)

Substituting equation (32) into the objective function 	(x)
yields

~	(z) := 	(~x0 + ~V z):

Then the problem 36 can be transformed into a problem of

argminz2Az

~	(z): (37)

The latter problem is also a convex optimization problem
since the convexity of a function is preserved under a�ne
transformation [30].
Recall that an a�ne function is convex. Therefore, we

can de�ne

	(x) = wTx (38)

where the vector w = [wT
1 � � �w

T
i � � �w

T
k ]

T 2 Rm is used to
weight the normal components of the grasp force x, for a
frictionless contact wi = [di], for a PCWF contact wi=[0 0
di]T and for a SFC contact wi=[0 0 di 0]T , di � 0. In other
words, this objective function minimizes the summation of
the normal force components. The smaller the objective
value, the lighter the overall squeezing force on the object.
With the linear objective function (38), the grasp force op-
timization problem can be cast with respect to z as follows.
Optimization Problem 1: Minimizing the summa-

tion of normal force components (SDP)

minimize ~	(z) = ~wT z + ~	0 (39)

subject to ~D(z) � 0
where ~wT = wT ~V , ~	0 = wT ~x0 is a constant and can be
omitted from the objective function. Optimization prob-
lem 1 is in the standard form of semi-de�nite programming
(SDP) [31], [13]. If we use the conventional nonlinear ex-
pression of the friction cones (5)(6)(7)(8) instead of their
LMI formulations (14) (15) (16) (17), then the grasp force
optimization problem as de�ned below becomes a second-
order cone programming (SOCP) problem [18], [13].

4A convex function reaches its global minimumat its local minimum
points. [29]

Optimization Problem 2: Minimizing the summa-
tion of normal force components (SOCP)

minimize 	(x) = wTx (40)

subject to equations(2; 3; 10; 12)
Both semide�nite programming and second-order cone

programming problems can be solved e�ciently [25], [31],
[18]. However, one potential problem with these formula-
tions is that the linear objective function (38), while mini-
mizing the total normal pressure on the object, may push
the contact forces toward their friction cone boundaries.
Grasping with such contact forces is not robust to the un-
certainty of friction coe�cients and may cause the slip-
page between the object and the �ngers. One strategy to
overcome this drawback is to add a term that will con-
�ne contact forces to the interior of their friction cones. In
particular, let 	(x) be de�ned as

	(x) = wTx+ log detP�1(x) (41)

where the vector w is the same as in function (38) and is
used to weight the normal components of the contact forces
x. The second term, log detP�1(x), tends to in�nity as any
contact force approaches the boundary of its friction cone
and thus yields optimal grasp forces interior to their friction
cones. It can be proven that the function log detP�1(x) is
convex and self-concordant [25], two properties essential for
the design of polynomial time algorithms and making it a
self-concordant barrier for the set of the symmetric positive
de�nite matrices.
Proposition 5: The function logdetP�1, where P =

PT � 0, is convex and self-concordant on the set of sym-
metric positive de�nite matrices.
Proof. See appendix A.
Proposition 6: The function 	(x) = wTx+logdetP�1(x)

is strictly convex on the set Ax.
Proof. See appendix A.
This objective function (41) is very similar to the self-

concordant one proposed in [23]. The weight vector w bal-
ances the minimal normal (squeezing) forces (linear term)
and friction cone boundary (slippage avoidance) conditions
(logarithmic term). Larger w will generally lead to smaller
squeezing forces while smallerw will push the contact forces
away from their friction cone boundaries. The grasp force
optimization problem under the self-concordant objective
function as given below is in the form of a determinant
maximization (maxdet) problem with LMI constraints[32].
Optimization Problem 3: Force Optimization as a

MaxDet Problem (maxdet1)

minimize ~	(z) = ~wT z + logdet ~P�1(z) (42)

subject to ~P (z) � 0
~T (z) � 0

While the above maxdet problem can generate grasp
forces robust to friction cone constraints, it doesn't pro-
hibit grasp forces frommoving to upper or lower joint e�ort
limits, especially for small weights. Small weights put more
emphasis on the friction cone barrier term logdetP�1(x),
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which may result in forces that are far away from friction
cone boundaries but close to the joint e�ort limits. One
way to generate optimal forces that are robust to both
friction cone and joint e�ort constraints is to use the ma-
trix D(x) in the logarithmic term of the maxdet objective
function. In other words, formulate the force optimization
problem as follows.
Optimization Problem 4: Force Optimization as a

MaxDet Problem (maxdet2)

minimize ~	(z) = ~wT z + log det ~D�1(z) (43)

subject to ~D(z) � 0
The objective function (43) restricts optimal force solu-

tion to the interior of the constraint set. It is known [25],
[33] that interior solutions to convex optimization programs
vary smoothly with changes in the input data. Therefore,
the convex optimization problem 4 would lead to smooth
force solutions.
Remark 2: There are many other ways to de�ne con-

vex objective functions for the force optimization problem,
which can be formulated as semi-de�nite programming,
second-order cone programming or determinant maximiza-
tion problems. For example, de�ne an objective function
as maxi(jjxijj); i = 1; � � � ; k, i.e., the maximum contact
wrench magnitude among all contact wrenches of a grasp.
Then the minimization problem for this objective function
can be formulated as follows.

minimize t (44)

subject to jjxijj � t; i = 1; � � � ; k

equations(2; 3; 10; 12)

where t is a slack variable. Since the newly-added con-
straint jjxijj � t is also a second order cone constraint, the
problem above can be cast into SOCP and SDP problems
as discussed in this section.
Remark 3: This paper formulates the force optimiza-

tion problems in terms of contact forces x. It should be
stressed that it is easy to formulate force optimization
problem with respect to joint e�orts or both joint e�orts
and grasp forces to obtain various kinds of \optimal grasp
forces".
Remark 4: Current algorithms solve the semide�nite

programming, second-order cone programming and deter-
minant maximization problems with interior-point convex
programming techniques, which need an valid initial grasp
force to start the optimization procedure. Our solver of the
grasp force feasibility problem, discussed in next section,
will provide such an initial force, if the problem is deter-
mined to be feasible. Such an initial force can also be used
for other optimization procedures, such as the gradient 
ow
algorithm by Buss et al. [20], [23].

D. Transforming LMI Feasibility Problem to Optimization
Problem

This section shows that an LMI feasibility problem can
be transformed to an optimization problem with a easily
computable starting point, and thus, can be solved utilizing
corresponding optimization algorithms.

First notice that

Q = QT � 0() 9t � 0; s:t:Q+ tI � 0 (45)

where t 2 R, I is the identity matrix with same dimension
as Q(x). This is true since (a) Q+tI � 0 is true if and only
if t � ��min(Q), where �min(Q) is the minimal eigenvalue
of Q. (b) Under the constraint Q+tI � 0, t � 0 if and only
if �min(Q) � 0, i.e., Q is positive semi-de�nite. (A matrix
is positive semide�nite if and only if all of its eigenvalues
are non-negative.)
Therefore, an LMI feasibility problem, Q(x) � 0, can be

formulated as a semi-de�nite programming problem.
Optimization Problem 5: The SDP problem Equiv-

alent to the LMI feasibility Problem

minimize t

subject to Q(x) + tI � 0
The LMI is feasible if and only if the optimal value t� �
0. Second order feasibility problem can be transformed
to second order cone programming problem in a similar
manner.
Notice that a valid initial point for optimization prob-

lem 5 is x = 0; t = ��min(Q(0)), where �min(Q(0)) is the
minimal eigenvalue of Q(0). Therefore, we can use this ini-
tial point to start any interior-point semide�nite program
algorithms to solve optimization problem 5.
Also notice that the SDP problem 5 can be transformed

to an equivalent maxdet problem by choosing the logarith-
mic term P (x) = 1, i.e.:

minimize t + log det(1) (46)

subject to Q(x) + tI � 0

Therefore, a maxdet algorithm can also solve the LMI
feasibility problem. Indeed, SDP is a special case of
maxdet.
Finally notice that the optimal objective value of opti-

mization problem 5 is the negative of the maximum min-
imum eigenvalue of Q(x). In particular, when the LMI
Q(x) � 0 is feasible, optimization problem 5 is equivalent
to

maximize �min(Q(x)) (47)

subject to Q(x) � 0

with the optimal values of the two problems being related
by t� = �maxQ(x)�0�min(Q(x)).
The minimal eigenvalue of a positive de�nite matrix can

be used as a \robustness" criterion of the matrix since it
denotes how far the matrix is to the boundary of the set of
the positive de�nite matrices [20]. Therefore, the optimal
solution from optimization problem 5 can be interpreted as
the \most robust" solution to the LMI constraint under the
max-min de�nition (47). Optimization problem 5, when
used to solve the grasp force feasibility problem, will yield
a grasp force x corresponding to forces at each contact
point that are farther away from the boundaries of their
friction cones and the joint e�ort limits.
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It should be noted that the SDP and maxdet formula-
tions of the grasp force optimization problems only need a
valid grasp force to start the optimization procedure. So
there is no need to �nish the optimization problem 5. In-
stead, it can be terminated whenever t becomes negative
and then use the corresponding x as a valid initial grasp
force.

V. Numerical Examples

In this section, we present the numerical results obtained
from applying the maxdet optimization package developed
by Wu, Vandenberghe and Boyd [34] to grasp force feasi-
bility and optimization problems. The results for the force
closure problem are not presented here since the existence
problem of an admissible internal force is essentially a force
feasibility problem. The �gures in the paper are chosen to
highlight the convergence of contact forces and the e�ect
of di�erent optimization problem formulations on optimal
forces. More numerical results and �gures can be found in
our technical report [35].

A. MaxDet

The ANSI C source code ofmaxdet was downloaded from
http://www.stanford.edu/�boyd/MAXDET.html. We
further developed auxiliary C code to compute various
problem data (such as grasp maps), formulate LMI con-
straints, transform an LMI feasibility problem to a maxdet
optimization problem, and record the feasibility and opti-
mization data. An executable �le was generated by link-
ing the standard Fortran77 math libraries blas and lapack
provided on our HP/Convex computer to the object �les
generated by gcc.
Maxdet implements a primal-dual interior-point convex

optimization algorithm. Assume the optimal objective
value of a concerned maxdet problem is 	�. Brie
y, maxdet
computes an upper bound 	u and a lower bound 	l for the
optimal value. The quality 	u � 	l is called the duality
gap [32], [34]. The program uses three parameters, namely,
maximum number of iterations allowed, absolute tolerance
abstol and relative tolerance reltol, as its termination cri-
teria. More speci�cally, the program will stop if at least
one of the following conditions is satis�ed:

� The maximum number of iterations is exceeded.
� The absolute tolerance is reached: 	u � 	l � abstol:

� The relative tolerance is reached. If both upper and lower
bounds are positive and 	u � 	l � reltol � 	l , or both
bounds are negative and 	u � 	l � �reltol �	u:

In our numerical study, the maximum number of itera-
tions allowed was 100, the relative tolerance was 0.005; the
absolute tolerance was set in the way that its correspond-
ing relative tolerance was at most 0.005. Note that relaxing
tolerance criteria could reduce the running times.

B. Numerical Example

Consider a case in which four �ngertips grasp a ball
of unit radius. In our numerical study, we assumed (a)
the �rst two contact points were frictionless. (b) The

third contact was a soft �nger contact with elliptic ap-
proximation (SFCE), with 0:632 tangential friction co-
e�cient and 0:669 torsion friction coe�cient. (c) The
fourth contact was a point contact with friction (PCWF)
with 0.4 tangential friction coe�cient. (d) The con-
tact points on the object had spherical coordinates [7]
f(0; 0); (�5 ;

�
2 ); (0;

2�
3 ); (0;

�2�
3 )g. To simplify the presenta-

tion, we will present the numerical results without includ-
ing a detailed kinematic description of a robotic hand in
the problem. In our study, however, we mimicked kine-
matic e�ects on the grasping capabilities by assuming par-
tially admissible space of the contact forces. We also as-
sumed that the minimal normal solution x0 (31) to the
force equilibrium constraint (30) was admissible, and thus,
the term �x0 in our admissible force formula (32) was set to
zero. Furthermore, we assumed lower and upper bounds
for the contact force components as a simpli�ed way to
incorporate joint e�ort constraints. In particular, all con-
tact wrench components were assumed to have -10 and 10
as their lower and upper bounds. The task was to solve
the grasp force feasibility and optimization problems for
resultant object wrench (2:1;�0:2;�4:3;0:4;�1:5; 0:6).

C. Numerical Results

The grasp map G 2 R6�9 of the 4-�nger grasp was
rank 6 and had a 3-dimensional null space, whose ba-
sis vectors were (0.1866, 0.6042, 0.1183, -0.2781, -0.5772,
0.2051, 0.2368, 0.2781, -0.0128), (0.7033, -0.3277, -0.0642,
-0.3986, 0.1661, -0.1112, -0.1284, 0.3986, -0.1400), and
(0.3703, 0.3180, 0.0623, 0.1176, 0.4254, 0.1079, 0.1246, -
0.1176, 0.7225). When the last basis vector of the null
space was assumed to be non-admissible, the problem was
determined to be infeasible in 7.81ms. On the other hand,
when the �rst basis vector was not admissible, the system
could generate the desired object wrench. The �gures in
this section show the feasibility and optimization results
for the latter case.
The convergence of the contact forces and objective value

for the feasibility phase is shown in Fig. 1. Notice the
grasp force constraints were violated at the beginning: (a)
At step 0, the �rst contact force x13 reached 10.02, above
its upper limit 10.0. (b) Again at step 0, the weighted tan-
gential force at the fourth contact point, jx4tj, was larger
than the normal force component x43, violating the friction
cone constraints. (c) At steps one through four, the normal
force component of the fourth contact x43 was greater than
its upper limit 10.0. By the end of the feasibility phase,
all contact wrenches satis�ed friction cone constraints and
torque limit constraints, which were also satis�ed through
the whole optimization procedure (Figs. 2 to 5). One
point to notice here is that the feasibility condition became
satis�ed at step 5 (the objective value became negative),
while the feasibility phase continued up to step 15. This
is because maxdet implements a two-loop optimization al-
gorithm and only the outer loop checks the objective value
and may terminate the algorithm if at least one termination
criteria is satis�ed. It would be easy to let the inner loop
check the objective value, which would add more compu-
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Fig. 2. Force optimization phase for problem maxdet1 (d=10.0)

tation to each step but could reduce the total time needed
for the feasibility phase by reduced number of steps.
Figs. 2, 3 and 4 are the results of three di�erent runs of

force optimization problem 3 (maxdet1) with the weights
d0is being set to 10, 0.6 and 0.01, respectively. Recall that
larger weights favor smaller normal forces, while smaller
weights favor forces that are far away from the friction cone
boundaries. The e�ect of di�erent weights were clearly re-

ected in Figs. 2, 3 and 4. The normal forces were smallest
when the weight was 10.0 (Fig. 2), and they were the clos-
est to the friction cone boundary. (Notice that the curve
of jxitj almost coincides with that of xi3; i = 3; 4.) On
the other hand, the optimal forces for weight 0.01 (Fig.
4) were furtherest from the friction cone boundaries (the
largest gap between xi3 and jxitj; i = 3; 4; among three dif-
ferent weights), but were closest to the upper limits of the
(simulated) joint e�ort constraints. The weight 0.6 puts
approximately equal importance on the linear term and
the self-concordant term in the maxdet objective function.
Fig. 3 shows that its corresponding optimization results
were found to lie between those for larger weight 10 and
smaller weight 0.01.
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Fig. 4. Force optimization phase for problem maxdet1 (d=0.01)

Fig. 5 shows the optimization results under problem for-
mulation 4 (maxdet2), i.e., with the actuator limits being
included in the logarithmic barrier term, and with weights
d0is being 0.01. Notice that the normal forces were not as
close to their upper bounds 10.0 as those in Fig. 4. This
was expected since the objective function (43) for optimiza-
tion problem 4 would move to in�nity as any force moves
to its friction or e�ort boundaries and thus prohibit any
force to be close to its upper or lower limits.

Figs. 1 to 5 observed jumpy behavior of contact forces at
some iteration steps (e.g., step 5 in Fig. 1), which happened
at the start of new outer loop optimization and appeared

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
on

ta
ct

 F
or

ce
s

Optimization Iteration Number

Convergence of Contact Forces

X_13
X_23
X_33
|X_3t|
X_43
|X_4t|

Fig. 5. Force optimization phase for problem maxdet2 (d=0.01)
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to be caused by the two-loop optimization procedure. The
kind of behavior, which is also typical for many other op-
timization algorithms, is not expected to cause much dif-
�culty in manipulation experiments since not all interme-
diate forces computed within an optimization procedure
need to be sent to the robotic systems especially when the
optimal forces can be generated fast, which is the case of
the maxdet algorithm. Instead, the continuity of optimal
force trajectories during a manipulation task is important
for a stable implementation of the task, and our next nu-
merical example shows the maxdet performance on this
regard. For the ball-in-hand system discussed above, we
simulated a manipulation task where contact points moved
as the ball rotated 180 degrees relative to its z-axis. The
incremental change values of the contact and object con-
�gurations were taken to be (0.000396, 0.000840, 0.000353,
0.000447, 0.000319, 0.000886, 0.000016, 0.000584) and 1.8
degrees. Fig. 6 highlights the smoothness of the solution
trajectories during this simulated manipulation. Also, we
observed that the tangential friction force directions varied
by 129.04 degrees for contact 3 and 305.47 degrees for con-
tact 4. If we were to produce the solution trajectories using
an LP-based grasp analysis using linearized friction cones,
we would expect the friction force directions to contain
jump discontinuities. In other words, a friction direction
would point toward a particular facet in the linearized fric-
tion cone until the external force changed enough to cause
it to jump to a neighboring facet. This behavior is inher-
ent in linearized approaches, but is avoided by our LMI
formulation.
For the results presented in Figs. 1 to 5, maxdet took

at most 7.81ms to solve the feasibility problem or the op-
timization problem. The total computation times, includ-
ing computing the problem data, preparing the LMI con-
straints, determining the feasibility and optimizing the ob-
jectives, ranged from 7.81ms to 15.63ms, which indicated
the preprocessing times, including computing problem data
and prepare the LMI constraints, were insigni�cant. The
last example took about 0.9453 seconds for the 100 runs of
maxdet.

VI. Conclusion

Grasp analysis is of fundamental importance in robotics,
yet despite many years of research e�ort, e�cient solutions
to general formulations of some of the basic problems, such
as grasp feasibility, have not previously been developed.
The major stumbling block has been the nonlinear fric-
tion cone constraints imposed by the contact models. In
this paper, based on the important observation by Buss,
Hashimoto andMoore, that the nonlinear friction cone con-
straints are equivalent to the constraint that certain sym-
metric matrices be positive de�nite, we have cast the fric-
tion cone constraints into linear matrix inequalities (LMIs)
and formulated the basic grasp analysis problems as a set
of convex optimization problems involving LMIs. The re-
sulting problems can be solved in polynomial time by highly
e�cient algorithms. Our simulation results showed the sim-
plicity and e�ciency of this approach.
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Fig. 6. Force optimization curves for problem maxdet2 (d=0.01)

Convex optimization has found wide applications in var-
ious areas such as control and system theory, combinatorial
optimization, statistics, computational geometry and pat-
tern recognition. It can e�ciently solve problems involving
nonlinear and nondi�erentible functions, which would be
considered to be very di�cult in a standard treatment of
optimization. Due to its natural application to grasp analy-
sis problems, it appears that convex optimization will play
an increasingly active role in solving complicated mathe-
matical and engineering problems in robotics.
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Appendix A. Proofs of Propositions

This appendix only proves relatively di�cult proposi-
tions, namely propositions 5 and 6. Refer to [36] for proofs
of all propositions.

De�nition of Self-Concordant Barrier
Assume G � Rn is a closed convex subset in Rn. A

function F de�ned over G is a self-concordant barrier for
G if the following two properties are satis�ed:

jD3F (x)[h; h; h]j � constant1fD
2F (x)[h; h]g

3

2

jDF (x)[h]j � constant2fD
2F (x)[h; h]g

1

2 (48)

where DF (x); D2F (x); D3F (x) denote the �rst, second,
and third order Frechet derivatives of the function F at
a point x in the interior of G, int(G), and h 2 Rn is a
tangent vector at x to G.

Proof of Proposition 5
Denote the set of symmetric matrices and the set of

symmetric positive semide�nite matrices of dimension n

by S(n) and S+(n), respectively.

S(n) = fS 2 Rn�njST = Sg

S+(n) = fS 2 Rn�njST = S; S � 0g

Note that S(n) and S+(n) are smooth manifolds[37]

of dimension n(n+1)
2 , and TPS

+(n), the tangent space to
S+(n) at point P , is S(n). De�ne a function

� : int(S+(n)) �! R

P �! �(P ) = log det(P�1)

We need to prove that the function � is a strictly convex
and self-concordant barrier on the set S+(n).
Proof. Denote the �rst, second, and third order Frechet

derivatives of the function � at a point P as D�P , D
2�P

and D3�P . 8�; �; � 2 TPS
+(n), it can be computed that

D�P (�) = �Tr(P�1�);

D2�P (�; �) = Tr(P�1�P�1�);

D2�P (�; �; �) = �2Tr(P�1�P�1�P�1�)

where Tr denotes trace.
To show that � is strictly convex, we only need to prove

that the Hessian of � is strictly positive de�nite, or equiv-
alently, D2�P (�; �) > 0; 8P 2 S+(n); � 6= 0 2 TPS+(n).

This is true since

D2�P (�; �) = Tr(P�1�P�1�)

= Tr(P
1

2 (P�1�P�1�)P
�1

2 )

= Tr([P
�1

2 �P
�1

2 ]2)

� 0

and the equality holds if and only if � = 0.
The proof of self-concordance utilizes the similar strategy

as above but involves more computation, and is omitted
here. More details can be found in book [25].

Proof of Proposition 6:
Since Ax is convex, we know 8x1; x2 2 Ax, and 8� 2

(0; 1), x� = �x1 + (1� �)x2 is still in Ax. Also note that

	(x) = wTx+ logdetP�1(x) = wTx+ �(P (x))

P (x�) = �P (x1) + (1� �)P (x2) := �P1 + (1 � �)P2

Therefore,

	(x�) = wTx� + logdetP�1(x�)

= wT (�x1 + (1� �)x2) + �(P (x�))

= �wTx1 + (1� �)wTx2 + �(�P1 + (1� �)P2)

< �wTx1 + (1� �)wTx2

+��(P1) + (1� �)�(P2) ( by Proposition 5)

= �	(x1) + (1� �)	(x2)
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