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Last lecture

® sound propagation: reflection, diffraction, shadowing
® sound intensity (dB)

® defining computational problems

® sound lateralization

® |TD and lIDs

® duplex theory

® |ocalization acuity, minimum audible angle

® estimating ITD, cross correlation




Cross correlation of white noise
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Cross correlation of a high frequency tone
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This is called phase ambiguity because there are multiple
peaks within the natural range of £690 usecs.
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Testing the duplex theory

® Pure tones are ineffective for lateralization > 1500 Hz.

= Does this mean all sounds are?

® Consider bandpass noise: 3000-3300 Hz

- How would you perceive this sound?

® Sound is correctly localized, but with greater error (60 usecs vs |0).




Cross correlation of a high frequency tone
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Why might this sound not be correctly localized?




What does the auditory system do?
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from Yost, 2000
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Frequency mapping of the basilar membrane
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How do we lateralize narrowband sounds if the
ear decomposes sound in terms of frequency?

L 4

*



filtering and frequency space (on board)



Integrating across frequency: psychophysical models

Ensembles of coincidence-counting units (Stern and Trahiotis, 995)
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How is sound localized when
the bandwidth is increased?

Note: the sound is still

lateralized correctly even 0
though ITD is far outside Internal Delay (ms)
it’s natural range. Bandwidth 800 Hz

Narrow band sound lateralized to the right, broadband to left.
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Things are not as simple as the might seem

® Delay a 3900 Hz tone modulated at 300 Hz.
® Can this ITD be detected?
® Could ITD of low frequencies explain this?
® No: Beat frequency is 300 Hz
= spectrum is 3900 and 39001300 Hz.

® Time delay of envelope predicts lateralization.




Limitations of the Duplex Theory

® |imited to lateralization
® doesn’t do front-back discrimination

® doesn’t explain why are sounds are outside your head




Can sound be localized with one ear?

® total deafness in left ear, normal in right
® |00 ms white noise pulses.

® head immobilized

{90°

Localization ability
improves with
experience.
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l direction of the auditory event
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The Function of the Pinna

Older theories:

® sound gathering (1600s -

HELIX
even today)
TRIANGULAR
SCAPHOID : : .
FOSSA FOSSA ® Darwin (1800s): vestigial
ANTI-HELIX form of animal ear, no role
WHUS BY SiELA in sound localization
EAR CANAL
ANning TRAGUS ® Lord Rayleigh (1907):
) INTERTRAGAL PO :
HELix LA distinguish between front
and back
EARLOBE

from Warren, 1999
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Batteau’s theory (1967, 1968)

® FEchos produced by pinnae provide
lateralization and elevation cues.

® used microphones in pinna casts

® measured delays for azimuths and
elevations:

= azimuths: 2 to 80 Msec

- elevations: 100 to 300 psec

® then the key experiment:

Timmear
listening through casts caused
externalization Freedman and Fisher (1968):
® also observed that animals have ® Not necessary to use subject’s own
pinnae of similar shapes pinnae

® subjects can localize with other
pinnae, but with less accuracy

® Only a single pinna (monaural) is
needed for localization

o

"CP08:: Sound localization 2 15 Michael S. Lewicki ¢ Carnegie Mellon




Testing Batteau’s theory

® Do we perceive monaural echos?

® Combining noise with a delay of
itself results in spectral filtering
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Model proposed by Blauert to explain the effect of the pinna as a reflector.

elevation detector

double reflector for distance detection

U1t) . i >_u;(t)
(a) %) 72 (b)

azimuth detector

entrance to the Oudifory canal from Blauert, 1997
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An improved analysis

Shaw and Teranishi (1968):

® |nvestigate pinna behavior in frequency
domain using external ear model:

spherical radiator

\\:// probe

X base plate

V/T

high-impedance
from Blauert, 1997 acoustical termination
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L 4

Acoustic resonance in the outer ear

Distribution of sound pressure for
several natural resonances:

® confirmed first two resonances in
natural ear

® others combine into a broad
resonance

Distribution of sound pressure along
model ear canal for 10 kHz:

® resonances are direction dependent.

® pinna and ear canal form a system of
acoustical resonators.
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The general case

® What limitations do the pinnae measurements have!
= Do not take into account the effect of the head and body.
® How to characterize the filtering?

- Measure the transfer function: ratio of pressure at sound
source to pressure of (ideally) sound reaching eardrum

= this is called the head-related transfer function (HRTF)




Measuring HRTFs

® Different types of HRTFs

= monaural: pressure at source vs
ear drum

= binaural: pressure difference for
two corresponding points in the
ear canal

Subject with probe mics

Kemar the sound dummy

o
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Measured monaural HRTF -
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Measured binaural HRTF

from Blauert, 1997
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Problems in using HRTFs

® HRTFs vary across subjects curve 1

® can’t easily get an “average”

» .y average 1+2
® but can do “structural averaging

curve 2
- ot

from Blauert, 1997
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More than just direction: cues for sound distance

® Frequency independent |/r

® pressure attenuation — works if you know
some properties of sound source

® HRTF depends on distance

® freq.dependent attenuation (long distances)

® head movements (short distances)

Curves have |/r attenuation
15 1 factored out
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Next time: the computational problem




Misconceptions still persist today...

| Incoming signals are made up of

.| sound "waves" or vibrations, which are
| collected by the outer ear. The unique
shape of the outer ear functions like a
radar dish, collecting the sound waves
| and funnelling them down the ear
canal to the ear drum.

VAV
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