# Computational Perception 15-485/785

February 5, 2008

Auditory Coding I

## What are the problems of sensory coding?

- What should the sensor sense?
- How is energy transduced?
- How to deal with noise?
- How to compress dynamic range?
- How to prevent the sensor from being damaged?

## Two approaches to the study of systems

- I. Experimental/behavioral approach:
  - describe and characterize behavior
  - understand range and limitations
  - investigate system properties and organization
  - develop theories to better understand functional roles
- 2. Theoretical/computational approach:
  - define problem
  - develop models and algorithms
  - understand range and limitations
  - develop more algorithms: more general/specialized; faster/less resources

## The complexity of the auditory system



## What principles should guide the choice of representation?

#### Unsupervised approaches:

- find useful "features"
- adapted to the patterns of interest
- useful in a wide range of tasks

#### Supervised approaches:

• Maximize performance on given task

At low-levels, we have to use unsupervised approaches.

## Linear superposition

Goal is to describe the data to desired precision. Code signal by linear superposition of basis functions:

$$\mathbf{x} = \vec{a}_1 s_1 + \vec{a}_2 s_2 + \dots + \vec{a}_L s_L + \vec{\epsilon}$$
$$= \mathbf{A} \mathbf{s} + \boldsymbol{\epsilon}$$

- $\bullet$  x(t) is represented by a vector x
- $\vec{a}_i$  are the basis vectors
- A is the *basis* (could be Fourier, wavelet, etc.)
- $s_i$  are the *coefficients*

Can solve for \$\hat{s}\$ in the no noise case

$$\hat{\mathbf{s}} = \mathbf{A}^{-1}\mathbf{x}$$

## An information theoretic approach

Want algorithm to choose optimal A (basis matrix).

Generative model for data is:

$$x = As + \epsilon$$

Probability of pattern x given representation s

$$P(\mathbf{x}|\mathbf{A},\mathbf{s}) \sim f(\mathbf{x}-\mathbf{A}\mathbf{s},\mathbf{\Sigma},I)$$

## Learning objective

Objective: maximize coding efficiency

⇒ maximize probability of data ensemble

Probability of pattern ensemble is:

$$P(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N | \mathbf{A}) = \prod_k P(\mathbf{x}_k | \mathbf{A})$$

## Optimal coding of an acoustic waveform



- We do not assume a Fourier or spectral representation.
- Goal:

Predict optimal transformation of acoutsic waveform from statistics of the acoustic environment.

• Use a simple model: bank of linear filters

## Coding patterns with a statistical model

Goal: Encode the patters to desired precision:

$$\mathbf{x} = \vec{a}_1 s_1 + \dots + \vec{a}_L s_L + \vec{\epsilon}$$
$$= \mathbf{A}\mathbf{s} + \boldsymbol{\epsilon}$$

Posterior:

$$P(\mathbf{s}|\mathbf{x}, \mathbf{A}) = \frac{P(\mathbf{s})P(\mathbf{x}|\mathbf{s}, \mathbf{A})}{P(\mathbf{x}|\mathbf{A})}$$

Prior:  $s_i$ 's are independent and sparse:

$$P(\mathbf{s}) = \prod_{i} P(s_i)$$
 $P(s_i) \propto \exp\left[-\left|\frac{s_i}{\lambda_i}\right|^{q_i}\right]$ 



## Coding patterns with a statistical model

Goal: Encode the patters to desired precision:

$$\mathbf{x} = \vec{a}_1 s_1 + \dots + \vec{a}_L s_L + \vec{\epsilon}$$
$$= \mathbf{A}\mathbf{s} + \boldsymbol{\epsilon}$$

Posterior:

$$P(\mathbf{s}|\mathbf{x}, \mathbf{A}) = \frac{P(\mathbf{s})P(\mathbf{x}|\mathbf{s}, \mathbf{A})}{P(\mathbf{x}|\mathbf{A})}$$

Prior:  $s_i$ 's are independent and sparse:

$$P(\mathbf{s}) = \prod_{i} P(s_i)$$
 $P(s_i) \propto \exp\left[-\left|\frac{s_i}{\lambda_i}\right|^{q_i}\right]$ 



## Coding patterns with a statistical model

Goal: Encode the patters to desired precision:

$$\mathbf{x} = \vec{a}_1 s_1 + \dots + \vec{a}_L s_L + \vec{\epsilon}$$
$$= \mathbf{A}\mathbf{s} + \boldsymbol{\epsilon}$$

Posterior:

$$P(\mathbf{s}|\mathbf{x}, \mathbf{A}) = \frac{P(\mathbf{s})P(\mathbf{x}|\mathbf{s}, \mathbf{A})}{P(\mathbf{x}|\mathbf{A})}$$

Prior:  $s_i$ 's are independent and sparse:

$$P(\mathbf{s}) = \prod_{i} P(s_i)$$
 $P(s_i) \propto \exp\left[-\left|\frac{s_i}{\lambda_i}\right|^{q_i}\right]$ 

*Likelihood*: Assume  $\epsilon \sim$  Gaussian,

$$P(\mathbf{x}|\mathbf{s}, \Sigma) \propto \exp\left[-\frac{1}{2}\boldsymbol{\epsilon}^T \Sigma^{-1}\boldsymbol{\epsilon}\right]$$

Inference: use the MAP value:

$$\hat{\mathbf{s}} = \arg\max_{\mathbf{s}} P(\mathbf{s}|\mathbf{x}, \mathbf{A})$$

Simple special case: no noise (ICA)

$$\hat{\mathbf{s}} = \mathbf{A}^{-1}\mathbf{x}$$

Inference (or recognition or coding):

finds most efficient representation of pattern  ${\bf x}$  in a given basis  ${\bf A}$ 

## Learning: Optimizing the model parameters

Learning objective:

maximize coding efficiency  $\Rightarrow$  maximize  $P(\mathbf{x}|\mathbf{A})$  over  $\mathbf{A}$ .

Probability of pattern ensemble is:

$$P(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N | \mathbf{A}) = \prod_k P(\mathbf{x}_k | \mathbf{A})$$

Use independent component analysis (ICA) to learn A:

$$\Delta \mathbf{A} \propto \mathbf{A} \mathbf{A}^T \frac{\partial}{\partial \mathbf{A}} \log P(\mathbf{x}|\mathbf{A})$$

$$= -\mathbf{A}(\mathbf{z}\mathbf{s}^T - \mathbf{I}),$$

where  $\mathbf{z} = (\log P(\mathbf{s}))'$ . Assume generalized Gaussians:

$$P(s_i) \sim \mathcal{N}^{q_i}(s_i|\mu,\sigma).$$

 $P(\mathbf{x}|\mathbf{A})$  is obtained by marginalization:

$$P(\mathbf{x}|\mathbf{A}) = \int d\mathbf{s} P(\mathbf{x}|\mathbf{A}, \mathbf{s}) P(\mathbf{s})$$
$$= \frac{P(\mathbf{s})}{|\det \mathbf{A}|}$$

This learning rule:

- learns the feature set that captures the most structure
- optimizes basis to maximize the efficiency of the code

## Learning the optimal codes

#### Goal:

Predict optimal transformation of sound waveform from statistics of the acoustic environment

#### Learning procedure:

- random sound segments (8 msec)
- optimize features using ICA

#### What sounds to use?

What tasks are auditory systems adapted to do?

- localization ⇒ environmental sounds
- communication ⇒ vocalizations
- general sound recognition

Use a variety of sound ensembles:

- non-harmonic environmental sounds (e.g. footsteps, stream sounds, etc.)
- animal vocalizations (rainforest mammals, e.g. chirps, screeches, cries, etc.)
- speech (samples from 100 male & female speakers from the TIMIT corpus)

|               | environmental sounds |                        |
|---------------|----------------------|------------------------|
| vocalizations | transient            | ambient                |
| fox           | walking on<br>leaves | rustling<br>leaves     |
| squirrel      | cracking<br>branches | stream by<br>waterfall |

| vocalizations | environmental sounds |                        |
|---------------|----------------------|------------------------|
|               | transient            | ambient                |
| fox           | walking on<br>leaves | rustling<br>leaves     |
| squirrel      | cracking<br>branches | stream by<br>waterfall |

|               | environmer           | ntal sounds            |
|---------------|----------------------|------------------------|
| vocalizations | transient            | ambient                |
| fox           | walking on<br>leaves | rustling<br>leaves     |
| squirrel      | cracking<br>branches | stream by<br>waterfall |

|               | environmental sounds |                        |
|---------------|----------------------|------------------------|
| vocalizations | transient            | ambient                |
| fox           | walking on<br>leaves | rustling<br>leaves     |
| squirrel      | cracking<br>branches | stream by<br>waterfall |

|               | environmental sounds |                        |
|---------------|----------------------|------------------------|
| vocalizations | transient            | ambient                |
| fox           | walking on<br>leaves | rustling<br>leaves     |
| squirrel      | cracking<br>branches | stream by<br>waterfall |

|               | environmental sounds |                        |
|---------------|----------------------|------------------------|
| vocalizations | transient            | ambient                |
| fox           | walking on<br>leaves | rustling<br>leaves     |
| squirrel      | cracking<br>branches | stream by<br>waterfall |

|               | environmental sounds |                        |
|---------------|----------------------|------------------------|
| vocalizations | transient            | ambient                |
| fox           | walking on<br>leaves | rustling<br>leaves     |
| squirrel      | cracking<br>branches | stream by<br>waterfall |



### Optimal linear filters for natural sounds







The optimal code depends on the class of sounds being encoded:

- a wavelet-like transform is best for environmental sounds
- a Fourier-like transform is best for vocalizations
- an intermediate transform is best for speech or general natural sounds

## Characterizing the filter population

#### time-frequency distributions









## Schematic time-frequency distributions







## Comparison to cat auditory nerve data





$$Q_{10\mathrm{dB}} = f_c/w_{10\mathrm{dB}}$$



- + vocalizations
- o speech/combined
- x environmental sounds

Next time: non-linear coding