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What are the problems of sensory coding?

• What should the sensor sense? 

• How is energy transduced? 

• How to deal with noise? 

• How to compress dynamic range? 

• How to prevent the sensor from being damaged?
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Two approaches to the study of systems

1. Experimental/behavioral approach:

• describe and characterize behavior

• understand range and limitations

• investigate system properties and organization

• develop theories to better understand functional roles

2. Theoretical/computational approach:

• define problem

• develop models and algorithms

• understand range and limitations

• develop more algorithms: more general/specialized; faster/less resources
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The complexity of the auditory system

from Warren, 1999

The cochlea and inner ear
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What principles should guide the choice of representation?

5

Unsupervised approaches: 

• find useful “features” 

• adapted to the patterns of interest 

• useful in a wide range of tasks 

Supervised approaches: 

• Maximize performance on given task 

At low-levels, we have to use unsupervised approaches.
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Linear superposition
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Linear superposition

Goal is to describe the data to desired precision.
Code signal by linear superposition of basis functions:

x = !a1s1 + !a2s2 + · · · + !aLsL + !ε

= As + ε

• x(t) is represented by a vector x
• !ai are the basis vectors
• A is the basis (could be Fourier, wavelet, etc.)
• si are the coefficients

Can solve for ŝ in the no noise case

ŝ = A−1x

Computational Perception and Scene Analysis, Jan 29, 2004 / Michael S. Lewicki, CMU !! !

!
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An information theoretic approachInformation Theoretic Approaches

Want algorithm to choose optimal A (basis matrix).

Generative model for data is:
x = As + ε

Probability of pattern x given representation s

P (x|A, s) ∼ f(x−As,Σ, I)

Computational Perception and Scene Analysis, Jan 29, 2004 / Michael S. Lewicki, CMU !! !

!
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Learning objectiveLearning Objective

Objective: maximize coding efficiency
⇒ maximize probability of data ensemble

Probability of pattern ensemble is:

P (x1,x2, ...,xN |A) =
∏

k

P (xk|A)

Computational Perception and Scene Analysis, Jan 29, 2004 / Michael S. Lewicki, CMU !! !

!
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Optimal coding of an acoustic waveform
Efficient coding: focus on coding waveform directly

• We do not assume a Fourier or spectral representation.
• Goal:

Predict optimal transformation of acoutsic waveform
from statistics of the acoustic environment.

• Use a simple model: bank of linear filters

Computational Perception and Scene Analysis, Jan 29, 2004 / Michael S. Lewicki, CMU !! !

!
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Goal : Encode the patters to desired
precision:

x = !a1s1 + · · · + !aLsL + !ε

= As + ε

Posterior :

P (s|x,A) =
P (s)P (x|s,A)

P (x|A)

Prior : si’s are independent and sparse:

P (s) =
∏

i

P (si)

P (si) ∝ exp
[
−

∣∣∣∣
si

λi

∣∣∣∣
qi
]

Coding patterns with a statistical model

x = !a1s1 + !a2s2

!a1

!a2
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q=4

q=2 (Gaussian)

q=1 (Laplacian)

q=0.5
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Goal : Encode the patters to desired
precision:

x = !a1s1 + · · · + !aLsL + !ε

= As + ε

Posterior :

P (s|x,A) =
P (s)P (x|s,A)

P (x|A)

Prior : si’s are independent and sparse:

P (s) =
∏

i

P (si)

P (si) ∝ exp
[
−

∣∣∣∣
si

λi

∣∣∣∣
qi
]

Likelihood : Assume ε ∼ Gaussian,

P (x|s,Σ) ∝ exp
[
−1

2
εTΣ−1ε

]

Inference: use the MAP value:

ŝ = arg max
s

P (s|x,A)

Simple special case: no noise (ICA)

ŝ = A−1x

Inference (or recognition or coding):

finds most efficient representation of
pattern x in a given basis A

Coding patterns with a statistical model
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Learning: Optimizing the model parameters

Learning objective:

maximize coding efficiency
⇒ maximize P (x|A) over A.

Probability of pattern ensemble is:

P (x1,x2, ...,xN |A) =
∏

k

P (xk|A)

P (x|A) is obtained by marginalization:

P (x|A) =
∫

dsP (x|A, s)P (s)

=
P (s)

|detA|

Use independent component analysis
(ICA) to learn A:

∆A ∝ AAT ∂
∂A log P (x|A)

= −A(zsT − I) ,

where z = (log P (s))′. Assume
generalized Gaussians:

P (si) ∼ N qi(si|µ,σ).

This learning rule:

• learns the feature set that captures the
most structure

• optimizes basis to maximize the
efficiency of the code
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Learning the optimal codes

Learning procedure:

- random sound segments (8 msec)

- optimize features using ICA

What sounds to use?

Predict optimal transformation of sound waveform 
from statistics of the acoustic environment

Goal:

Use a variety of sound ensembles:

- non-harmonic environmental sounds
  (e.g. footsteps, stream sounds, etc.)

- animal vocalizations (rainforest mammals,
  e.g. chirps, screeches, cries, etc.)

- speech (samples from 100 male & female
  speakers from the TIMIT corpus)

What tasks are auditory systems adapted to 
do?

- localization ⇒ environmental sounds

- communication ⇒ vocalizations

- general sound recognition
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Optimal linear filters for natural sounds

environmental sounds vocalizations

speech

The optimal code depends on the
class of sounds being encoded:
 - a wavelet-like transform is best for
   environmental sounds 
 - a Fourier-like transform is best for
   vocalizations
 - an intermediate transform is best for
   speech or general natural sounds
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Characterizing the filter population
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Schematic time-frequency distributions
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Comparison to cat auditory nerve data

Q10dB = fc/w10dB

Data

Filter sharpness:

28



Next time:
non-linear coding


