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Abstract

Time series data arise in numerous applications, such asmedpture, computer net-
work monitoring, data center monitoring, environmentalmitaring and many more. Finding
patterns in such collections of sequences is crucial faerkying them to solve real-world,
domain specific problems, for example, to build humanoiatsfto detect pollution in drink-
ing water, and to identify intrusion in computer networks.

The central theme of our work is to answer the question: howin@ interesting and
unexpected patterns in large time series? In this propesalfocus on fast algorithms on
mining large collections of co-evolving time series, withwith out missing values. We
will present three pieces of our current work: natural &iitg of human motions, time series
mining and summarization with missing values, and a pdraéning algorithm for the un-
derlying model, Linear Dynamical Systems (LDS). Algorithproposed in these work allow
us to obtain meaningful patterns effectively and efficigrdhd subsequently to perform var-
ious mining tasks including forecasting, compression, sgginentation for co-evolving time
series, even with missing values. Furthermore, we applyatyorithms to solve practical
problems including recovering occlusions in human motiaptare, and generating natural
motions by stitching together carefully chosen pairs ofdidates. We also proposed a paral-
lel learning algorithm for LDS to fully utilize the power of ufticore/multiprocessors, which
will serve as a corner stone of many applications and alymstfor time series. All our algo-
rithms scale linearly with respect to the length of sequsnaad outperform the competitors
often by large factors.

Based on aforementioned work, we propose to attack a nunfilbiecesting problems in
mining time series data, which can be categorized into twesds: (a) without missing val-
ues: including feature extraction, indexing, clusterimgl @ata stream monitoring; (b) with
missing values: mining under domain constraints, like blemgth constraints in motion cap-
ture sequences. Potential applications of these proposddimclude occlusion recovery for
motion capture, fast retrieval of similar sequences in gdatatabase, and anomaly detection
in sensor data and network traffics.
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Chapter 1

Introduction

Given a large collection of co-evolving time sequencese likotion capture sequences, chlorine level
measurements in drinking water systems, and temperatuniteriag in data centers, we investigate the
following questions:

1. How to extract compact and meaningful features from mlaltco-evolving sequences that will
enable better clustering of time series?

2. How to do forecasting and to recover missing values in serées data?

3. How to identify the patterns in the time sequences thataviacilitate further mining tasks such as
compression, segmentation and anomaly detection?

Those questions are strongly related to two basic miningstéar time series:pattern discoveryand
feature extraction The justification is as follows: Once we discover pattedilee (cross-correlations,
auto-correlations) in time series, we can do (a) forecggtny continuing pattern trends), (b) summariza-
tion (by a compact representation of the pattern, like aigamae matrix, or auto-regression coefficients),
(c) segmentation (by detecting a change in the observedrpptand (d) anomaly detection (by identi-
fying data points that deviating too much from what the patfgedicts). Similarly, once we have good
features, we can do (a) clustering of similar time sequen@sndexing large time series database, and
(c) visualizing long time series, plotting them as pointsiilower-dimensional feature space.

In this report, we will review our approaches to some of thesdlems, and propose potential attacks to
the remaining. We will both look at algorithms that are véifean diverse applications and mining tasks,

and also study domain specific scenarios where domain kdgeteshould be integrated with general
models.

1.1 Motivation - Scenario

Time sequences appear in numerous applications, like sereasurementsifin et al, 2004, mobile ob-
ject tracking Kollios et al, 1999, data center monitoringHeeves et al 2009, computer network mon-
itoring [Sun et al, 2007, motion capture sequencesdogh et al. 2004, environmental monitoring (like
automobile traffic Papadimitriou et a/.200 and chlorine levels in drinking watePppadimitriou et a.
2005 Leskovec et a).2007) and many more.



In these scenarios, it is very important to understand tlieee in the data such as correlation and
evolving behavior. Better patterns will help make predioi, compress and detect anomalies. Our goal is
to develop algorithms for mining and summarizing any timeéesedata, and we list here a few motivating
applications.

Motion capture sequences Motion capture (mocap) is a technique for modelling humationo CMU
researchers have built several large databases of humaonsi§t VU, b]. Such databases are used to
create models of human motion for many applications such @se®s, computer games, medical care,
sports and surveillance among others. The revenue mereligé@o game and interactive entertainment
industry is expected to be $57 hillion in 2000HC, 200g. Besides the monetary benefits, research
on motion capture databases has increasing applicatioimspiroving the quality of life. For example,
there is already a motion capture database with various taskformed in the kitchen ViU, a], and
analyzing motions in such a database will help design rathatiscan, say, prepare a balanced diet for the
elderly [la Torre Frade et g|2004.
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Figure 1.1: Example motion capture sequences: marker positions in bedter coordinate versus time.
The curves are z-coordinates of four markers: left footi¢stime), right foot (dashed line),
left hand (dash-dotted line) and right hand (dotted lind)e @ata is fromCMU, b].

Figure1.1shows three example motion sequences for jumping, walkidganning. We are particularly
interested in the following important problems:

e How to create new and natural human motions from a motiorucamtatabase?
e How to index a large database of motion capture clips and findes motions?

e How to recover the occlusion that is common in mocap seqénce
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Sensor data Wireless sensors are useful in many situations, such agonioigi chlorine levels in drink-

ing waters systems$’apadimitriou et a)2005 and automobile traffic in major infrastructure roa@spadimitriou et a).
2003. Figurel.2shows sample chlorine level data. Sensor data are usuatyeiaming fashion, and well

suited in the context of our time series mining algorithms.

Typical problems in sensor data mining include:

e How to summarize the data to reduce the transmission ovemone€? Since in wireless sensors,
data transmission consumes much of battery energy.

e How to detect anomalies in sensor data? For example, degeitie a leak or an attack in drinking
water by monitoring the chlorine levels.

¢ How to find incorrect observations or recover missing valinesensor data? It is common to have
missing observations due to various factors, say, low batteradio frequency (RF) error.

1.2
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Figure 1.2: Sample snippets of Chlorine concentration versus time riimkohg water for eight house-
holds. The data is from/janBriesel

Data center monitoring Modern cloud computing applications, like Google's seagcigine for the
whole web, heavily rely on large computer clusters (e.g. 068€rvers as inHan et al, 2007). Thus
many companies and labs build, manage their own data cemtedsstudy their power efficiency and
reliability [Hoke et al, 2006 Barroso and Holzlg2009 Patnaik et al.2009. The number and the scale
of data centers grow tremendously, and such growth of datgersecreates an increasing demand of new
electric power plants. It is reported by EPA that in 2006 U&danters consume 61 billion kilo-watt-
hours of electricity, which amounts to 1.5 percent of USItetactricity consumption that year, or 4.5
billion dollars in expensetHPA, 2007. With such growing trend, it is projected that by 2011 theexse

of electricity in datacenters will reach $ 7.4 billion, arshtmore power plants have to be built to meet the
additional electricity needs. If we could save 2 percenhefénergy consumption, we would save about
$150 million in electricity expense each year.

As expected, there are plenty of streaming data in datacergy. segments of measurements of temper-
atures, humidity, workload and server utilization. Thellgdrage is, how to design algorithms and systems

that automatically find patterns in such data streams anthesindings to better control the datacenters

in order to save energy.
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Figure 1.3: Sample snippets from BGP router data at Washington DC: nuofhgdates versus time (in
seconds). Notice the original sequence is bursty with nmgaities (shown in part (a)), thus
we take the logarithm (shown in part (b)). No obvious patiem neither (a) nor (b). Data is
from [Feamster et L.

Computer network traffic ~ Another important time series application is computer camitation streams,
such as port to port tep/ip traffiGln et al, 2007 and web click streams ju et al,, 2009. Understanding
such sequencies is crucial to the cybersecurity. FiguBeshows a sample BGP (Border Gateway Proto-
col) traffic sequence for a router at Washington D€4mster et g.. We are particularly interested in the

following problems:

e How to find patterns in such time series? How to group simiaffit patterns together? The
challenge lies in the bursty nature of these data sequences.

e How to identify intrusion/anomalies in such computer natwivaffic data?

1.2 Big Picture

In the thesis, we will focus on the theme of mining large aillens of co-evolving sequences, with
the goal of developing fast algorithms for finding patterssmmarization, and anomalies. Two very
promising future directions are: (a) how to learn in a stremgor “never ending” fashion; (b) how to

control or intervene given such findings.

In the following chapters, we will review related techniteckground, summarize our completed work,
and describe our proposed work.



Chapter 2

Survey

There is a lot of work on time series analysis, on indexingpatisionality reduction, forecasting, and
parallelization.

Indexing, signals and streams For indexing, the idea is to extract featurés\outsos et /1994 and

then use a spatial access method. Typical features indiededurier transform coefficients, waveletslpert et al,
2001, Jahangiri et a}.2009, piece-wise linear approximationg¢ogh et al.2001]. These are mainly use-

ful for the Euclidean distance, or variation&:dfiei and Mendelzgnl997, Ogras and Ferhatosmanoglu
2004. Indexing for motion databases has also attracted attentioth in the database community (eg.,
[Keogh et al.2004]) as well as in graphics (e.g.5hfonova and Hodgin2007).

Typical distance functions are the Euclidean distance hadime warping distance, also known Rg-
namic Time WarpindDTW) (e.g., see the tutorial by Gunopulos and Dasifopulos and Da2007)]).
Wang and Bodenheimer have usethdowed Euclidean distande assess the quality of stitched mo-
tion segments and proposed an algorithm to select the l@sition [Vang and Bodenheimg200d.
The original, quadratic-time DTW, has been studiedindt al., 199¢, and its linear-time constrained
versions (ltakura parallelogram, Sakoe-Chiba bandiioph 2002, Fu et al, 2004.

There is also vast, recent literature on indexing movingaisjensen and Pakalpiz007, Mouratidis et al,
2004, as well as streams (e.g., see the edited volusw jfalakis et a].2009). An additional recent ap-
plication for time series is monitoring a data centerepves et gl.2009, where the goal is to observe
patterns in order to minimize energy consumption. An eguatiportant monitoring application is envi-
ronmental sensor$eshpande et gl2004, Leskovec et a).2007.

Dimensionality reduction and matrix methods: There are numerous papers on the topic, with typical
methods being PCAIplliffe, 1984, SVD/LSI [Dumals 1994, random projectionsHapadimitriou et a.
1999, fractals [lraina et al, 200(; and a vast literature on feature selection and non-lidegaensionality
reduction.

Time series forecasting Autoregression is the standard first step for forecastinig.dart of the ARIMA
methodology, pioneered by Box and Jenkimsf et al, 1994, and it discussed in every textbook in
time series analysis and forecasting (e.@.,ofkwell and Davig 1987,[Tong, 199Q). [Kalpakis et al,
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2007 used autoregression to extract features, using the $eda@pstrummethod from voice processing.
Kalman filters and Linear Dynamical Systems are closelytedlto autoregression, trying to detect hidden
variables (like velocity, acceleration) at every timektiand use them for forecastinglfirvey, 1990. In
the database community, Kalman filters have been proposestifigor datalgin et al, 2004 as well as
for moving objects Tao et al, 2004].

Parallel programming for data mining Data mining and parallel programming receives increasing i
terest. Buehrer et al.2007 develop parallel algorithms for mining terabytes of dataffequent item sets,
demonstrating a near-linear scale-up on up to 48 nodes.hReihand Karypisfeinhardt and Karypjs
2007 used OpenMPto parallelize the discovery of frequent patterns in larggpbs, showing excellent
speedup of up to 30 processors-ofng et al, 2009 develop the Par-CSP algorithm that detects closed
sequential patterns on a distributed memory system, arattrgpod scale-up on a 64-node Linux clus-
ter. [Graf et al, 200 developed a parallel algorithm to learn SVMB(ipport Vector Machin8sthrough
cascade SVM.([ollobert et al, 2007 proposed a method to learn a mixture of SVM in parallel. Both
of them adopted the idea of splitting dataset into small stshdraining SVM on each, and then combin-
ing those SVMs. Chang et a}.2007 proposed PSVM to train SVMs on distributed computers tgfou
approximate factorization of the kernel matrix.

There is also work on using Google’s Map-Redubz§n and Ghemaw,a2004 to parallelize a set of
learning algorithm such as naive-Bayes, PCA, linear ssjog and other related algorithmsHu et al,
2006 Ranger et a).2007. Their framework requires the summation form (like dobguct) in the learn-
ing algorithm, and hence could distribute independentutalions to many processors and then sum-
marize them together. Unfortunately, the same techniqoakihardly be used to learn long sequential
graphical models such as Hidden Markov Models and Linearyoal Systems (LDS). On the contrary,
we will show later our propose@ut-And-Stitchmethod can achievalmost linearspeedup for learning
LDS on shared memory multiprocessors.

http://www.openmp.org



Chapter 3

Completed Work

In this chapter, we review some of our work on mining meanihgfatterns from multiple coevolving
time sequences and using those patterns for solving realgms in motion capture and sensor data
monitoring. We present three pieces of work here:

1. Natural motion stitchinglli et al., 2008H;
2. Mining with missing valuesl] et al.,, 2009;
3. Parallelizing on multicore/multiprocessor computerssf al., 20084.

All of these work uses Linear Dynamical Systems (LDS) or #siants as a base model. Here we give
a brief introduction to Linear Dynamical Systems (LDS),lugtng its formalization and its learning
algorithm. Table3.1 gives an overview of the symbols used in all tasks and thédinitiens.

3.1 Background - Introduction to Linear Dynamical Systems

Consider a multi-dimensional sequenge = #,..., 71 of a lengthT. For example X could be a
sequence of marker position vectors captured by video asnethere each vectat is of dimensionality
m (e.g. m = 123 for the motion captured using 41 markers in Fig®®, each marker with three
coordinates). We could also think &f asm sequences, each with the durationTof LDS assumes the
evolution of the observation is driven by a hidden Markovgaeiss: observations are generated:iydden
variables for that time tick and the hidden variables evalased on those of previous time ticks. In LDS,
both thetransitionamong the hidden variables as well as tipeajectionto the observations are described
as linear Gaussian models (E34-3.2)). We denote them as a mati# (also denoted aA in literature)
for thetransition (h x h) with noises{w,, }; and a matrixG (m x h, also denoted a€ in literature) for
the projectionwith the noiseg¢,, } at each time-ticke. For example, Figuré.2(b)shows a sample data
X for a walking motion {n = 4). Hidden variables in such a case may correspond to positelocity
and acceleration, and= 3 indicates degree of freedorf.is a3 x 3 matrix and can be determined from
Newtonian dynamicsG (4 x 3) tells how each of observed marker coordinates is genefabea the
hidden states.



Table 3.1: Symbols and Definitions

Symbol | Definition \
a multi-dimensional sequence of observations with missaiges(z1, ...ZT)
number of sequences

duration (length) of sequences

number of hidden variables for each time tick

a sequence of latent variablég, . . . 1)

initial state for hidden variabléy x 1 vector

initial covariance for hidden variablé, x h

transition matrix,h x h

transition noise covariancé, x h

projection matrix;n x h

projection noise covariance; x m

guery sequence

length of query sequence

the observed values in the sequeite

variables for the missing values in the sequeate

missing value indication matrix with the same duration aimdeshsion ofX’

§§<QR(OH@MO>>'1§1[\Q?H3><

Figure 3.1 provides the graphical representation of following equadidefining a LDS:

21 = zp+wo (3.2)
Zn+1 = FZ, +w, (3.2)
Z, = GZ,+e€, (3.3)

wherez is the initial state of the hidden chain, ang, w; ande; (i = 1...T) are multivariate Gaussian
noises:

wONN(O,F) wiNN(O,A) €4 NN(O,E)

Nz, T)
\o (Fzy, e«nz °N(F-zm, Ao
—> a0

N(G- zlJZ) NG zl{ N(G-z3,|>:) N(G-2y,,3) N(G-zNiZ)

Figure 3.1: A Graphical Representation of the Linear Dynamical Systém.. ., Zr indicate hidden vari-
ables;Z, ..., indicate observation. Arrows indicate Linear Gaussianditional proba-
bilistic distributions.

Given the observation sequence, the goal of the learningrittign is to compute the optimal param-
eter setd = (po,I', F,A,G,X). The optimum is obtained by maximizing the log-likelihod@Y’; 6)
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over the parameter sét A typical learning method for LDS is the expectation-maiation (EM) al-
gorithm [Shumway and Stofferl982, Ghahramani and Hintqgril994, which iteratively maximizes the
expected complete log-likelihood in a coordinate-ascesummer:

Q6" 0°%) = Egoiallog p(§i1 - .. G, 21 - .. Zn[67"))] (3.4)

In brief, the algorithm first guesses an initial set of modaigmeterd,. Then, at each iteration, it uses a
forward-backward algorithm (known as Kalman filteririgalman 196( and Kalman smoothing{auch
1969) to compute expectations of the hidden variabigs= E[z, | X;600] (n = 1,...,T) as well as

the second moments and covariance terms, which is the Eistépe M-step, it maximizes the expected
complete log-likelihood of[L (X, Z;._ )] with respect to the model parameters. Since the computation
of E[Z, | X] depends oi[z,_, | X] andE|[z,+1 | X]. We refer the reader to an excellent explanation
about the EM algorithm for LDS injishop 2004.

LDS will serve as a common underlying model for the followiwgrk, and we use it or its variant in
diverse settings: (a) with domain specific and predefinedrpaters (e.gF and G) in natural motion
stitching; (b) extending to missing values for mining tasksd (c) using the EM algorithm as the baseline
competitor of our parallel algorithm.

3.2 Natural Motion Stitching

This section is based on the work init al., 2008. Recently researchers have been creating large
databases of human motion capture, for example, the CMU mdatabase MU, b] and the multi-
modal activity database_[ViU, a]. One particular goal, among others, is to generate new humtions
from such databases. This has a lot of applications in p&ddr example, generating new animations in
the movie industry, and generating new actions in complderas.

3.2.1 Problem Definition

Given two motion-capture sequences that are to be stitaggther, how can we assess the goodness of
the stitching?

A good distance function is important for the generationeaflistic character motion from motion capture
databases. We proposed a novel distance function to pickabadtitching points between human mo-
tions. To motivate our work, we demonstrate that a a stréaglard, ad-hoc approach may lead to poor
stitchings. For example, Figui&?2 shows a problem case for the often-useitidowed Euclidean dis-
tancd\Wang and Bodenheimg2003: Suppose we want to connect the segments (AB)-to-(CD) &){A
to-(EF), both give equally good results with the euclidedstashce. However, (AB)-to-(CD) visually
looks more appealing than (AB)-to-(EF). Ideally “goodriesgetric should be low if humans consider
the stitching to be natural. Our proposed L-score capturas tOther ad-hoc metrics like time-warping
and geodesic joint-angle distancé/4ng and Bodenheimgl004 may suffer from similar issues, be-
cause none of them tries to capture the dynamics of the istitas explicitly as our upcoming proposal
does.

Problem 1 (Stitching Naturalness)

Given a query sequenc@ of T points inm-dimensional space with take-off poift, and a data sequence
X of T points of the same dimensionality with landing paipt

9
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Figure 3.2: Motivating example: The stitching from (AB)-to-(CD) (“faard”) seems more natural than
the stitching (AB)-to-(EF) (“backward”). The right part @s the corresponding “stitch-
ability” scores. However, the Euclidean distance does aptuwre the awkwardness of the
actual stitching and assigns the same cost (about 47) to both“forward” stitching (AB)-
to-(CD) has a smoother, more natural-looking trajectoayker lines).

find a function to assess the goodness of the resulting stitobguesce) = ¢, ..., ¢, Zp, - - ., TT, SO
that it agrees with human intuition.

Figure3.3shows an illustration of the problem with the “take-off” atidnding” points.

Once we obtain a qualified distance function, we can eithex slequential scan or use database indexing
techniques to perform a fast search over the whole motiotucamatabase to find the best stitching
motions [ee et al, 2007.

Take-off point

Query qu(=yw)
sequence
\
\
| At
Qu»w+1(:y x \\
AL
b+w—1(:Y2w)
Landing point Data
Xp(=Yu-1)  sequence

Figure 3.3: lllustration of “take-off” (red square) and “landing” pds(green circle). Grayed out points
indicate points ignored in our stitching.

3.2.2 Main ldea

How do we capture the “naturalness” of a stitching? Our agginds to go to first principles, informally
expressed in our following conjecture:

10



Conjecture 3.1 (Laziness) Between two similar trajectories, the one that looks morattmal” is the
one that implies less effort/work.

The rationale behind our conjecture is that humans and adsitead to minimize the work they spend
during their motions, as captured in the “minimum jerkidsh and Hoggrnl 989 and “minimum torque
change” Jno et al, 1989 hypotheses of motion, for example.

The main contribution of our work is that we proposed an tintaij first-principles approach, by computing
the effort that is needed to do the transition (lazinessrefor “L-score”). From the above conjecture,
the smaller the effort, the more natural the transition w@em to humans. Our L-score relies on a fast,
easy to compute estimate of the effort required to make ehstitWe used the Kalman filters (LDS but
with fixed parameters) to estimate the motion dynamics {joos, speeds, and accelerations) for the
following reasons (a) it has explicit (Newtonian) dynamduations consistent with first principles (b) it
could reduce noise as well.

Mathematical details and a variation: In order to compute L-score, we use Kalman filters to estimate
hidden states (real position, velocity, acceleratiof)): = (py, o, an) (n = 1,...,2w, w is window
size), we define the following L-scoré,(Q, a, X', b, w), to approximate the energy spent as the product
of force and displacement.

2w—1
L(Q,a,X,b,w) = > [(Pns1 — bn) - in (3.5)
n=1

The details on how to compute and optimize all those objedtinctions are inl[i et al,, 2008H.

3.2.3 Results

We present experimental results on both artificial (Figdid and real motions which show that our L-
score approach indeed agrees with human intuition, it ade@gsod stitching points.

We capture a set of waving, walking, running and jumping oriat 30 frames per second. These
motions are 300 to 2000 frames in length and ha93 dimensional joint positions in body local coor-
dinates. We use one Kalman filter for each of the93 features as described in Sectidi, and set the
parameters according to Newtonian dynamics. We use theowind 2w = 10, i.e. use five frames right
before stitching and five after. To make the stitching morirad, we extend the method to allow elon-
gated stitching with “injected frames” in between “také*adnd “landing” points. We have informally
viewed a large variety of transitions within this databasd find that our approach consistently performs
as well or better than the Euclidean distance metric at ggingrpleasing transitions.

In order to assess the quality of the stitching found by oschre, we blank out a short interval (2 frames)
and a long interval (11 frames) from the transition made by tliman actor during 2 waving circle
motions, and we compare the actual trajectory against timaaed transition trajectories. The processing
time is around two and a half hours on a Pentium class machimeobservations (see Figused) are as
follows:

e Our method computes the correct value of blanked-out framregets very close to it.

11



e Our generated trajectories match very well the actual dtajées (please see the online vidgo
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Figure 3.4: Real motion stitching: Right-hand coordinates of a humandition motion, with the dashed
part blanked out (2 blank-out frames for the left figure, 14tk right). A/O marks the take-
off/landing frame, respectively. Redl stand for our reconstructed path using out method;
notice how close they are to the ground truth (gray dashe&d.li@ur method either finds the
correctk,,: (=2 in left) or gets very close (=14, vs 11, in right). The distdrom [Li et al,,
20088.

3.3 Mining with Missing Values

This section is based on the work in Et al., 2009.

Another important problem is mining missing values in tinegiss. Missing values can happen, e.g.,
due to occlusion in motion capture sequences where somesah#ikers are temporarily out of sight,

or in sensor streams, due to radio frequency interferenaierto low battery. For example, periods of
occlusion for some markers are common due to the complexenafthuman body and relative position

of markers (Figure3.5).

Our second piece of work is exactly on recovering and minintp wnissing values for general time
series.

3.3.1 Problem Definition

Given multiple time sequences with missing values, we mep®ynaMMo” which summarizes, com-
presses, and finds latent variables. The idea is to discideeh variables and learn their evolving pattern,
making our algorithm able to function even when there aresimgsvalues.

The problem is formally defined as follows (see Tabl&for a summary of symbols):
Problem 2 (Missing Values)
Given a time sequence&’ with the durationT in m dimensionsX = {#,...,Z}, with the observed

http://www.cs.cmu.edigili/mocap.stitch
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Figure 3.5: Markers on human actors in CMU motion capture databasé!], b].

part as X,;, and the missing part ad’,,, and missing indication matrixV, w, , = 0 wheneverX’s k-th
dimensional observation is missing at tifyeand otherwiser, ;, = 1, the goal is to solve the following
issues:

e recover the missing values;
¢ forecastthe future trends.
So that both the recovery and forecasting match underlyattem in the data.

As discussed in the introduction (Chap the ability to forecast is vital in time series mining taskonce
we have a good model to forecast, we can obtain extra benefitses summarization by storing less with
the forecast and segmentation by detecting changing pthiatsleviate from the forecast.

3.3.2 Main Ildea

Our main idea is to simultaneously exploit smoothness anetledion, as shown in Figuré.7. Smooth-
ness is what splines and linear interpolation exploit: feirgle time-sequence (say, the left-hand x-value
over time), we expect successive entries to have nearbewvdh) ~ x,.1). Correlation reflects the
fact that sequences are not independent; for a given mateon {walking”), the left-hand and the right-
hand are correlated, lagging each other by half a period.s,T'when we are missing,,, say, the left
hand at time-tickn, we can reconstruct it by examining the corresponding &bfehe right hand (say,
Yn—1,Yn, Yn+1)- This two-prong approach can help us handle ev#ack-outs, which we define as time
intervals where we lose track of all the time-sequences.
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Figure 3.6: Occlusion in handshake motion. 66 joint angles (rows)~#d200 frames. Dark color indi-
cates a missing value due to occlusion. Notice that ocahssioe clustered.

The main contribution of our approach is that it shows howxg @t both sources of redundancy (smooth-
ness and correlation) in a principled way. We set up the pratds a Dynamic Bayesian Network (specif-
ically, LDS) and solve it efficiently, yielding results withe best reconstruction error and agreeing with
human intuition. Furthermore, we propose several varibated on DynaMMo for additional time series
mining tasks such as forecasting, compressing, and segtizent

Mathematical details We build a probabilistic model (Figui& 8) to estimate the expectation of missing
values conditioned on the observed pdktsy,, | X, ]. We use a sequence of latent variables (hidden states),
Zn, to model the dynamics and hidden patterns of the observagquence. DynaMMo method recovers
the missing values by alternately iteratively estimating:

1. the governing dynamidg andG, as well as other parametess, I', A and;
2. the latent variables, = E[Z,], (n =1...T);
3. the missing values of the observation sequétice,, |- X, ].

The goal of parameter estimation is achieved through maximmithe likelihood of observed daté(f) =
P(X,). However, it is difficult to directly maximize the data likebod in missing value setting, instead,
we maximize the expected log-likelihood of the observatiequence. Once we get the model parameters,
we use belief propagation to estimate the occluded markstipios. We define the following objective
function as the expected log-likelihodg{ 6) with respect to the parametéts= {F, G, zo, ', A, X }:

Q(O) = EXm,Z\Xg,W[P(XmZm» Z)]
T
Ex, zx, wl—D(z1,20,T) — ZD(Z?, Fz_1,T)
=2
logll| (T —1)loglA| T1ogyz\]
2 2 2

~+

T

—> D(#,G%.%)
t=1

(3.6)

whereD() is the square of the Mahalanobis distadeer, 77, ) = (7 — 7)7 S 1(Z — 7).

One benefit of DynaMMo is that it helps compress time seriesernompactly and accurately. The basic
compression idea is to store the learned model paraméefs &nd etc.) and values of hidden variables

14
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Figure 3.7: lllustration of DynaMMo intuition: use both correlation teen sequences (black dashed
double arrow) and temporal smoothness (pink arrow) to recmissing values (black box).
The data is from #16.22 irc[MU, b].
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Figure 3.8: Graphical lllustration of the Modelz}...,: latent variablesy; 2 4: observationss: partial
observations. Arrows denote Gaussian distributions.

(z’s) for a subset of time ticks. Based on different strategieshoose the subsets, hence different com-
pression ratio and accuracy, we proposed three variantyidliIMo compression: (a) fixed compression
(DynaMMoy), with the time ticks at fixed interval stored; (b) adapti@pression (DynaMMg), with
only the time ticks exceeding error threshold stored; anaptimal compression (DynaMMg, with the
best subset of time ticks computed by dynamic programming.

As a further merit, DynaMMo is able to segment the data secpiemtuitively, this is possible because
DynaMMo identifies the dynamics and patterns in data secsso segments with different patterns are
expected to have different model parameters and laterdahlas. We use the reconstruction error as an
instrument of segmentation, with spikes in error markingrmtaries.

We refer the reader td | et al., 2009 for more technical details on DynaMMo, its compressior;aia-
pression and segmentation algorithms.
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3.3.3 Results

We presented experiments on motion capture sequences mthelmeasurements and demonstrated
that our proposed DynaMMo method and its extensions (a) secessfully recover missing values, (b)
can provide high compression for little loss of reconstinrttaccuracy, and (c) can identify meaningful
segments, (d) scalable on duration of time series.

Recovering missing values Figure3.9 shows the reconstructed signal for an occluded jumpinganoti
DynaMMo gives the best result close to the original valuguFes3.11(a}3.11(c)show the scatter plots
of the average reconstruction error over 58 motions in theidhodataset, with 10% missing values and
50 average occlusion length. Notice that the reconstmaiows little with increasing occlusion length,
compared with other alternative methods (Fig8r&l). There is a similar result found in experiments on
additional datasets presentedlin¢t al,, 2009. Again, DynaMMo achieves the best performance among
the four methods.
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Figure 3.9: Reconstruction for a jump motion with 322 frames in 93 dimens of bone coordinates.
Blue line: the original signal forot bonez-coordinate - the dash portion indicates occlusion
from frame 100 to 200. The proposed DynaMMo, in red, gets wtoge to the original,
outperforming all competitors. The data is from #16.01ar/]U, b].
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Figure 3.11: Average error for missing value recovery on a sample mocap @16.22 in CVIU, b]).
Average rmse over 10 runs, versus average missing lex@bm 10 to 100). Randomly
10.44% of the values are treated as “missing”. DynaMMo (thselid line) wins. Splines
are off the scale.

Compression Here we present the main results for compression. Figut& shows the decompres-

sion error (in terms of RMSE) versus compression ratio caegbavith the baseline compression using
a combined method SVD and linear interpolation. DynalMMans especially, in high compression ra-
tios.

11 - - — Baseline . ’
08 DynaMMo, basellne\ J,/
5 0.6H i DynaMMoa , A
T g4 DynaMMo,, ;:;M
0.2 I i
% 50 100 150 200 250 300 350

compression ratio

Figure 3.12: Compression for Chlorine dataset: Reconstruction errsugecompression ratio. Lower is
better. DynaMMgq (in red solid) is the best.

Segmentation Figure 3.13 shows the segmentation result on a sequence composed ofidoes pof
sinusoid signals with different frequencies. Our segmt@rianethod could correctly identify the time
of frequency change by tracking the spikes in reconstraatisor. Figure3.14 shows the reconstruction
error from segmentation experiment on a real human motiguesgce in which an actor running to a
complete stop. Two (y-coordinates of left hip and femur)»0f=93 joint coordinates are shown in the
top of the plot. Note the spikes in the error plot coincidehwitie slowdown of the pace and transition to
stop.
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reconstruction error per time tick. Note the spike in the dfeccorrectly identify the shifting
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Figure 3.14: Reconstruction error plot for segmentation on a real motiapture sequence im =93
dimensions withl' =250 frames, an actor running to a complete stop, with lefaiigpfemur
y-coordinates shown in top plots. The spikes in bottom pbihcide with the slowdown of
the pace and transition to stop. The data is from #16.8 [, b].
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3.4 Parallelizing on Multicore

This section is based on the work ini et al., 20084. Symbols used in this section are summarized in
Table3.1

3.4.1 Problem Definition

In both problems described above, there are estimatioraoniley steps for Kalman filters or Linear Dy-
namical Systems involved in the corresponding algorithifilse well known expectation-maximization
(EM) algorithm for learning of LDS iterates between compgtconditional expectations of hidden vari-
ables through the forward-backward procedure (E-step)ugmidting model parameters to maximize its
likelihood (M-step) Bishop 200€. Although EM algorithm generally produces good resulig EM it-
erations may take long to converge. For example, our expetiah results show that on a 93-dimensional
dataset of length over 300, the EM algorithm would take over second to compute each iteration and
over ten minutes to converge on a high-end multi-core cormleromputer. Given multiple co-evolving
sequences, our goal is to develop a parallel algorithm tm [EBS parameters, by taking advantage of the
quickly developing parallel processing technologies toiee dramatic speedup (Probléin

Problem 3 (Parallelizating)

Given a multi-dimensional sequence and k& shared memory processors,

designa parallel learning algorithm for Linear Dynamical Systenssich that it achieve maximum scale
up on multi-processors.

3.4.2 Main ldea

Traditionally, the EM algorithm for LDS running on a multee computer only takes up a single core
with limited processing power, and the current state-efdint dynamic parallelization techniques such as
speculative executiorCplohan et al.2004 give little benefit to the straightforward EM algorithm dtee
the nontrivial data dependencies in the graphical modeld [(Figure3.1).

The basic idea of our Cut-And-Stitch (CAS) is to @tboth the chain of hidden variables as well as the
observed variables into smaller blocks, (b) perform iftl@ek computation, and (Gtitchthe local results
seamlessly by summarizing sufficient statistics and updatiodel parameters and an additional set of
block-specific parameters. The algorithm would iterater @vsteps, where the most time-consuming E-
step in EM as well as the two newly introduced steps could ballptized with little synchronization
overhead. Furthermore, this approximation of global medsl local sub-models sacrifices only a little
accuracy, due to the chain structure of LDS. On the other lityigldsalmost linearspeedup. Figurg.15
and3.16illustrate the main idea and the timeline of the whole aldpon on multiple CPUSs.

In practice, the Cut-And-Stitch algorithm includes an aximitialization to improve the first guess of
parameter: it runs a sequential forward-backward pass emthole observation, estimate parameters,
i.e. it executes th€ut step with one processor, and tBéitch step withk processors. After that, we
begin normal iterations of Cut-And-Stitch withprocessors. We refer to this step as tharm-upstep.
Although we sacrifice some speedup, the resulting methodecges faster and is more accurate.
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Figure 3.15: Cut-and-stitch main idea: Cut step starts computationawitfieedback from previous node
and later Stitch step reconciles.

Implementation details We implement the CAS algorithm for LDS using OpenMPa flexible and
fast multiprogramming interface that supports shared mgnoo many architectures, including both
commercial desktops and supercomputer clusters. In ouleimgntation, we specifically optimize the
performance by a set of techniques, including (a) fully ekjplg cache by carefully choosing of shared
variables, (b) static predefined scheduling of multi-tdsea the f or loops”; and (c) proper adopting
locks and barriers to prevent contention and to minimizeckyonization overhead.

The detail equations and implementation issues are pegsénf_i et al., 20084.

3.4.3 Results

We evaluate our implementation on a standard motion captateset from CMU mocap database (#16 in
[CMU, b)), comparing with base sequential EM algorithm in both gualnd speedup. The conclusion is
our proposed Cut-And-Stitch achieves almost linear spgednuboth a multi-core desktop and a multi-
processor supercomputer.

Table 3.2: Normalized Reconstruction Error

\ method | Walking | Jumping| Running]
Serial 1.929% | 1.139% | 0.988%
Parallel(4-core)| 1.926% | 1.140% | 0.985%

2http://www.openmp.org
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(a) EM: (sequential) E-step (b) CAS: (parallel) Cut step

Figure 3.16: Graphical illustration of EM and Cut-And-Stitch (CAS) alifbm on multiple CPUs. Ar-
rows indicates the computation on each CPU.

Figure3.17shows the speedup (ratio of the wall clock time of sequeEiMlover CAS) on the multi-core
desktop (maximum 4 cores) and a super computer at NC®& also include the theoretical limit from
Amdahl’s law. Table3.2 shows the reconstruction error: both parallel and seribies® very small error
and are similar to each other. Notice the reconstruction A% @ very close to that by sequential EM
algorithm.

350 Amdahl’'s law——> H

speedup
N

L L L L . . . . . . .
0 1 2 3 4 5 0 5 10 15 20 25 30 35 40
# of cores # of processors

(a) desktop (b) supercomputer

Figure 3.17: Average speedup of CAS on a commercial multi-core desktdmaupercomputer, running
on 58 motions (#16 inCMU, b]). The Sequential version is on one processor, identical to
the EM algorithm. The speedup is calculated as the ratioeoill clock of EM over CAS.

3http://www.ncsa.illinois.edu/
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Chapter 4

Ongoing and Proposed Work

In this chapter, we will describe some interesting problémmaining time series data, and propose a plan
to attack those problems. We will also relate those problertisour complete work, based on which we
will propose potential solutions.

Here we group the problems into two categories:
e Mining time series without missing values:

P1 how to extract compact and meaningful features from tienies data, for tasks such as time
series clustering, indexing, forecasting and summaadnati

P2 how to monitor data streams such as sensor measuremehtsliek logs, and network traffic,
and to identify patterns and anomalies?

e Mining time series with missing values:

P3 how to design better optimization techniques to recovssing values more effectively for
general time series?

P4 how to use domain knowledge or constraints to better sxanissing values for specific time
series, like bone length constraints in motion capturetata

4.1 Mining without Missing Values

4.1.1 Feature Extraction for Time Series

Extracting the essence of time sequences is already vefylusewould be even more useful if those
features are compact and easy to interpret, and even bfetiteryicould help us do forecasting. Linear
Dynamical Systems can forecast future values, howeves, not clear what could serve as features for
each sequence, nor to interpret. On the other hand, dinradiioreduction methods such as Principal
Component Analysis (PCA) or Independent Component Anal{i§SA) can extract good features for
time irrelevant or independent data, however they can ndbigzasting. Ability to forecast automatically
leads to anomaly detection (every time-tick that deviat@srhuch from our forecast), segmentation (a
time interval deviating too much from our forecast), congsien (storing the deltas from the forecasts),
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and missing value imputation, extrapolation and interppata And of course, we would like the method
to be scalable, with linear complexity on the length of theusmces. Is it possible to achieab of the
above goals, any of which alone is already very useful?
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Figure 4.1: Left foot positions jumping (#16.01 and #16.05), walkind§#21 and #16.34) and running
(#16.44 and #16.51) motions.

We would like features for the following motivation sceruari

e Automatic motion labelingGivena database of motion sequences, each with bone marker coordi
nates or joint angledjnd groups of similar motions. Ideally, walking motions showble grouped
together even if they start at different footstep or phasgure 4.1 includes sample snippets of
motion sequences. Good features leads to a good distanci®fun

¢ Indexing large motion database: continuing the above stemace we have good compact features
for each motion sequence, we could design good distancéidarend build index over the whole
database. Eventually we would be able to answer the follpwmery: Give me the most similar
motions to the query motion, say, a person’s walking seqele@cir goal is to design fast algorithms
to answer such query quickly over large motion databases.

e Correlation discovery in network trafficGiven network traffic sequences (e.g. BGP updates on
routers), we want to find the correlation between trafficsttad we could group similar hosts,
routers, and subnetwork together.

e Compressing of time serie&Givenmultiple co-evolving sequences, how can we summarize geho
time series? The DynaMMo method already achieves high cessfon ratio, can we do better?

The desired method should achieve the following goals:
1. correlation discovery: the method should be able to firrdetations and lag correlations;

2. forecasting: the method should be able to do good forecast
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3. interpretability: the method should be able to producamregful and easy to interpret features.

4.1.2 Stream Monitoring and Control

The mining problem above is mainly for an offline setting, wehthe data is already present and all the
mining is done in batch mode. On the contrary, we have sensaitaring or click streams coming in an
online fashion, and we still want to monitor the time seriad find patterns in this scenario. Particularly,
we are looking at the following motivation scenarios:

1. Monitoring web click streams and identify patterns andraalies.
2. Monitoring sensor data to detect anomalies.

3. Monitoring the streams in datacenters, such as CPUattiiz, disk utilization, NIC packets, tem-
perature, humidity, and power consumption. A very prongsiirection is optimal control over data
center to save energy consumption.

4.2 Mining with Missing Values

4.2.1 Enhanced General Missing Value Recovery

The DynaMMo algorithm described in SectiBrBalready gives good recovery and mining results. While
in our ongoing work, we discover opportunities to enhanea#dtovery of missing values, by investigating
best optimization path/order over parameters and unknoWespropose a new algorithm to better recover
missing values by carefully choosing the optimization oroethe objective function. Our proposal is
along the same line.

Mathematical details In this work, we propose to solve exactly the same probfenRecalling from
Section3.3, DynaMMo is trying to optimize the following objective fution:

Q) = Ex, zix, wlP(Xy, Zm, Z)]
T
Ex,, zx, wl—D(z1,20,1) — ZD(Zt’ Fz1,T)
=2
logl'l (T —1)log|A[ Tlog]Z\]
2 2 2

~+

T
—> D(#,G%.%) -

t=1

(4.1)

whereD() is the square of the Mahalanobis distaier, 77, ) = (£—7)7 ¥~ (Z—ij) Here the unknowns
include the hidden variabl€'s, missing valueX,,, (and their distribution), and model parameters. Our
proposal is to find a better optimization order for fitting theta. Our preliminary experiments show very
promising results.
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4.2.2 Missing Values under Constraints

In this work, we want to answer the question: is there betteovering of missing values in situations
with domain constraints. As a particular case, we study tbblpm of occlusion filling in human motion,
where the markers are confined to fixed bone lengths on therbody. One problem with DynaMMo in
this setting is that they do not always preserve inter-madigances. While a joint-angle representation
would solve this problem, it would both require that a skaefFigure4.2) be fit to the data (which would
prevent LDS from being used for occlusion filling), and it idpresent a weight-selection challenge (a
small angle error in the shoulder is much more noticeabla themall angle error in the wrist).

Figure 4.2: Markers on body skeleton.

We want to solve this problem in a principled manner, by dpew inter-marker distance constraints and
learning an LDS that operates in this constrained space.fdtes of our work is to handle occlusions
automatically, agreeing with human intuition.

One traditional method to estimate missing values is tontipé a squared loss function, penalizing the
model complexity as Eg4.1. There are several choices with varying implications. Hdwwd we
incorporate bone length constraints (BLC)? There are sgwdoices with subtle issues. We choose to
use hard constraints through the following formulatiomcsi it will result in an efficient algorithm for
solution. The problem is formally defined as follows:

Definition 1. A setB lists bone length constraints (BLC), and it contains théofeing elements:

B = {(i, j,d; j)|markeri, j on the same borje

whered; ; is the distance between markesnd ;.
Definition 2. A pair of marker coordinateg; andy; (€ R?) are said to conform to the BL® if

V(i j,dij) € B=|lyi —y; |°=di;

Problem 4 (Bone-length constrained occlusion filling)
Given (a) X, (the observed marker positions) and (BYbone length constraint),
find values for missing park,,, respecting the bone length constraints.
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4.3

Timeline

We plan to complete the proposed work according to the foligwentative timeline:

December 2009:Thesis proposal.
December 2009:Study enhanced general missing value recovery and mining.

January 2010 - February 2010:Study and analyze missing values under constraints, pkatig
bone-length constrained occlusion filling.

March 2010 - May 2010: Study compact feature extraction from time series. Basedromis-
ing preliminary results, we study how to answer similarityeges efficiently on motion capture
database.

June 2010 - November 2010Study sensor streams and monitoring. We will particulanlyesti-
gate intrusion and anomaly detection in network traffic, dathcenter monitoring and control.

December 2010 - January 2011Write the thesis.
February 2011: Thesis defense.
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Chapter 5

Conclusion

In this proposal, we present fast algorithms on mining cohgmg time series, with or with out missing
values. Our algorithms could mine meaningful patternsotiffely and efficiently. With those patterns, our
algorithms can do forecasting, compression, and segmamtaurthermore, we apply our algorithm to
solve practical problems including occlusions in motioptoae, and generating natural human motions
by stitching low-effort motions. We also propose a paralérning algorithm for Linear Dynamical
Systems, which will serve as corner stone of many applinatemd algorithms for time series.

Next, we will work on the proposed problems and find better tastier algorithms for them, such as
missing values with bone length constraints, indexing aimdng sensor streams.
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