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Abstract

Time series data arise in numerous applications, such as motion capture, computer net-
work monitoring, data center monitoring, environmental monitoring and many more. Finding
patterns in such collections of sequences is crucial for leveraging them to solve real-world,
domain specific problems, for example, to build humanoid robots, to detect pollution in drink-
ing water, and to identify intrusion in computer networks.

The central theme of our work is to answer the question: how tofind interesting and
unexpected patterns in large time series? In this proposal,we focus on fast algorithms on
mining large collections of co-evolving time series, with or with out missing values. We
will present three pieces of our current work: natural stitching of human motions, time series
mining and summarization with missing values, and a parallel learning algorithm for the un-
derlying model, Linear Dynamical Systems (LDS). Algorithms proposed in these work allow
us to obtain meaningful patterns effectively and efficiently, and subsequently to perform var-
ious mining tasks including forecasting, compression, andsegmentation for co-evolving time
series, even with missing values. Furthermore, we apply ouralgorithms to solve practical
problems including recovering occlusions in human motion capture, and generating natural
motions by stitching together carefully chosen pairs of candidates. We also proposed a paral-
lel learning algorithm for LDS to fully utilize the power of multicore/multiprocessors, which
will serve as a corner stone of many applications and algorithms for time series. All our algo-
rithms scale linearly with respect to the length of sequences, and outperform the competitors
often by large factors.

Based on aforementioned work, we propose to attack a number of interesting problems in
mining time series data, which can be categorized into two classes: (a) without missing val-
ues: including feature extraction, indexing, clustering and data stream monitoring; (b) with
missing values: mining under domain constraints, like bone-length constraints in motion cap-
ture sequences. Potential applications of these proposed work include occlusion recovery for
motion capture, fast retrieval of similar sequences in a large database, and anomaly detection
in sensor data and network traffics.
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Chapter 1

Introduction

Given a large collection of co-evolving time sequences, like motion capture sequences, chlorine level
measurements in drinking water systems, and temperature monitoring in data centers, we investigate the
following questions:

1. How to extract compact and meaningful features from multiple co-evolving sequences that will
enable better clustering of time series?

2. How to do forecasting and to recover missing values in timeseries data?

3. How to identify the patterns in the time sequences that would facilitate further mining tasks such as
compression, segmentation and anomaly detection?

Those questions are strongly related to two basic mining tasks for time series:pattern discoveryand
feature extraction. The justification is as follows: Once we discover patterns (like cross-correlations,
auto-correlations) in time series, we can do (a) forecasting (by continuing pattern trends), (b) summariza-
tion (by a compact representation of the pattern, like a covariance matrix, or auto-regression coefficients),
(c) segmentation (by detecting a change in the observed pattern), and (d) anomaly detection (by identi-
fying data points that deviating too much from what the pattern predicts). Similarly, once we have good
features, we can do (a) clustering of similar time sequences, (b) indexing large time series database, and
(c) visualizing long time series, plotting them as points ina lower-dimensional feature space.

In this report, we will review our approaches to some of theseproblems, and propose potential attacks to
the remaining. We will both look at algorithms that are versatile in diverse applications and mining tasks,
and also study domain specific scenarios where domain knowledges should be integrated with general
models.

1.1 Motivation - Scenario

Time sequences appear in numerous applications, like sensor measurements [Jain et al., 2004], mobile ob-
ject tracking [Kollios et al., 1999], data center monitoring [Reeves et al., 2009], computer network mon-
itoring [Sun et al., 2007], motion capture sequences [Keogh et al., 2004], environmental monitoring (like
automobile traffic [Papadimitriou et al., 2003] and chlorine levels in drinking water [Papadimitriou et al.,
2005, Leskovec et al., 2007]) and many more.
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In these scenarios, it is very important to understand the patterns in the data such as correlation and
evolving behavior. Better patterns will help make predictions, compress and detect anomalies. Our goal is
to develop algorithms for mining and summarizing any time series data, and we list here a few motivating
applications.

Motion capture sequences Motion capture (mocap) is a technique for modelling human motion. CMU
researchers have built several large databases of human motions [CMU, b]. Such databases are used to
create models of human motion for many applications such as movies, computer games, medical care,
sports and surveillance among others. The revenue merely invideo game and interactive entertainment
industry is expected to be $57 billion in 2009 [DFC, 2008]. Besides the monetary benefits, research
on motion capture databases has increasing applications inimproving the quality of life. For example,
there is already a motion capture database with various tasks performed in the kitchen [CMU, a], and
analyzing motions in such a database will help design robotsthat can, say, prepare a balanced diet for the
elderly [la Torre Frade et al., 2008].
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Figure 1.1: Example motion capture sequences: marker positions in bodycenter coordinate versus time.
The curves are z-coordinates of four markers: left foot (solid line), right foot (dashed line),
left hand (dash-dotted line) and right hand (dotted line). The data is from [CMU, b].

Figure1.1shows three example motion sequences for jumping, walking and running. We are particularly
interested in the following important problems:

• How to create new and natural human motions from a motion capture database?

• How to index a large database of motion capture clips and find similar motions?

• How to recover the occlusion that is common in mocap sequences?
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Sensor data Wireless sensors are useful in many situations, such as monitoring chlorine levels in drink-
ing waters systems [Papadimitriou et al., 2005] and automobile traffic in major infrastructure roads [Papadimitriou et al.,
2003]. Figure1.2shows sample chlorine level data. Sensor data are usually instreaming fashion, and well
suited in the context of our time series mining algorithms.

Typical problems in sensor data mining include:

• How to summarize the data to reduce the transmission over network? Since in wireless sensors,
data transmission consumes much of battery energy.

• How to detect anomalies in sensor data? For example, detecting the a leak or an attack in drinking
water by monitoring the chlorine levels.

• How to find incorrect observations or recover missing valuesin sensor data? It is common to have
missing observations due to various factors, say, low battery or radio frequency (RF) error.
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Figure 1.2: Sample snippets of Chlorine concentration versus time, in drinking water for eight house-
holds. The data is from [VanBriesen].

Data center monitoring Modern cloud computing applications, like Google’s searchengine for the
whole web, heavily rely on large computer clusters (e.g. 5000 servers as in [Fan et al., 2007]). Thus
many companies and labs build, manage their own data centers, and study their power efficiency and
reliability [Hoke et al., 2006, Barroso and Hölzle, 2009, Patnaik et al., 2009]. The number and the scale
of data centers grow tremendously, and such growth of data centers creates an increasing demand of new
electric power plants. It is reported by EPA that in 2006 US datacenters consume 61 billion kilo-watt-
hours of electricity, which amounts to 1.5 percent of US total electricity consumption that year, or 4.5
billion dollars in expense [EPA, 2007]. With such growing trend, it is projected that by 2011 the expense
of electricity in datacenters will reach $ 7.4 billion, and ten more power plants have to be built to meet the
additional electricity needs. If we could save 2 percent of the energy consumption, we would save about
$150 million in electricity expense each year.

As expected, there are plenty of streaming data in datacenters, e.g. segments of measurements of temper-
atures, humidity, workload and server utilization. The challenge is, how to design algorithms and systems
that automatically find patterns in such data streams and usethe findings to better control the datacenters
in order to save energy.

3



0 2 4 6

x 10
5

0

1000

2000

3000

4000

time (s)

# 
up

da
te

s

(a)

0 2 4 6

x 10
5

10
0

10
2

10
4

time (s)

# 
up

da
te

s

(b)

Figure 1.3: Sample snippets from BGP router data at Washington DC: number of updates versus time (in
seconds). Notice the original sequence is bursty with no periodicities (shown in part (a)), thus
we take the logarithm (shown in part (b)). No obvious patterns, in neither (a) nor (b). Data is
from [Feamster et al.].

Computer network traffic Another important time series application is computer communication streams,
such as port to port tcp/ip traffic [Sun et al., 2007] and web click streams [Liu et al., 2009]. Understanding
such sequencies is crucial to the cybersecurity. Figure1.3shows a sample BGP (Border Gateway Proto-
col) traffic sequence for a router at Washington DC [Feamster et al.]. We are particularly interested in the
following problems:

• How to find patterns in such time series? How to group similar traffic patterns together? The
challenge lies in the bursty nature of these data sequences.

• How to identify intrusion/anomalies in such computer network traffic data?

1.2 Big Picture

In the thesis, we will focus on the theme of mining large collections of co-evolving sequences, with
the goal of developing fast algorithms for finding patterns,summarization, and anomalies. Two very
promising future directions are: (a) how to learn in a streaming or “never ending” fashion; (b) how to
control or intervene given such findings.

In the following chapters, we will review related technicalbackground, summarize our completed work,
and describe our proposed work.

4



Chapter 2

Survey

There is a lot of work on time series analysis, on indexing, dimensionality reduction, forecasting, and
parallelization.

Indexing, signals and streams For indexing, the idea is to extract features [Faloutsos et al., 1994] and
then use a spatial access method. Typical features include the Fourier transform coefficients, wavelets [Gilbert et al.,
2001, Jahangiri et al., 2005], piece-wise linear approximations [Keogh et al., 2001]. These are mainly use-
ful for the Euclidean distance, or variations [Rafiei and Mendelzon, 1997, Ogras and Ferhatosmanoglu,
2006]. Indexing for motion databases has also attracted attention, both in the database community (eg.,
[Keogh et al., 2004]) as well as in graphics (e.g., [Safonova and Hodgins, 2007]).

Typical distance functions are the Euclidean distance and the time warping distance, also known asDy-
namic Time Warping(DTW) (e.g., see the tutorial by Gunopulos and Das [Gunopulos and Das, 2001]).
Wang and Bodenheimer have usedwindowed Euclidean distanceto assess the quality of stitched mo-
tion segments and proposed an algorithm to select the best transition [Wang and Bodenheimer, 2003].
The original, quadratic-time DTW, has been studied in [Yi et al., 1998], and its linear-time constrained
versions (Itakura parallelogram, Sakoe-Chiba band) in [Keogh, 2002, Fu et al., 2005].

There is also vast, recent literature on indexing moving objects [Jensen and Pakalnis, 2007, Mouratidis et al.,
2006], as well as streams (e.g., see the edited volume [Garofalakis et al., 2009]). An additional recent ap-
plication for time series is monitoring a data center [Reeves et al., 2009], where the goal is to observe
patterns in order to minimize energy consumption. An equally important monitoring application is envi-
ronmental sensors [Deshpande et al., 2004, Leskovec et al., 2007].

Dimensionality reduction and matrix methods: There are numerous papers on the topic, with typical
methods being PCA [Jolliffe, 1986], SVD/LSI [Dumais, 1994], random projections [Papadimitriou et al.,
1998], fractals [Traina et al., 2000]; and a vast literature on feature selection and non-lineardimensionality
reduction.

Time series forecasting Autoregression is the standard first step for forecasting. It is part of the ARIMA
methodology, pioneered by Box and Jenkins [Box et al., 1994], and it discussed in every textbook in
time series analysis and forecasting (e.g., [Brockwell and Davis, 1987],[Tong, 1990]). [Kalpakis et al.,
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2001] used autoregression to extract features, using the so-called cepstrummethod from voice processing.
Kalman filters and Linear Dynamical Systems are closely related to autoregression, trying to detect hidden
variables (like velocity, acceleration) at every time-tick, and use them for forecasting [Harvey, 1990]. In
the database community, Kalman filters have been proposed for sensor data [Jain et al., 2004] as well as
for moving objects [Tao et al., 2004].

Parallel programming for data mining Data mining and parallel programming receives increasing in-
terest. [Buehrer et al., 2007] develop parallel algorithms for mining terabytes of data for frequent item sets,
demonstrating a near-linear scale-up on up to 48 nodes. Reinhardt and Karypis [Reinhardt and Karypis,
2007] used OpenMP1 to parallelize the discovery of frequent patterns in large graphs, showing excellent
speedup of up to 30 processors. [Cong et al., 2005] develop the Par-CSP algorithm that detects closed
sequential patterns on a distributed memory system, and report good scale-up on a 64-node Linux clus-
ter. [Graf et al., 2005] developed a parallel algorithm to learn SVM (’Support Vector Machines’) through
cascade SVM. [Collobert et al., 2002] proposed a method to learn a mixture of SVM in parallel. Both
of them adopted the idea of splitting dataset into small subsets, training SVM on each, and then combin-
ing those SVMs. [Chang et al., 2007] proposed PSVM to train SVMs on distributed computers through
approximate factorization of the kernel matrix.

There is also work on using Google’s Map-Reduce [Dean and Ghemawat, 2004] to parallelize a set of
learning algorithm such as naı̈ve-Bayes, PCA, linear regression and other related algorithms [Chu et al.,
2006, Ranger et al., 2007]. Their framework requires the summation form (like dot-product) in the learn-
ing algorithm, and hence could distribute independent calculations to many processors and then sum-
marize them together. Unfortunately, the same techniques could hardly be used to learn long sequential
graphical models such as Hidden Markov Models and Linear Dynamical Systems (LDS). On the contrary,
we will show later our proposedCut-And-Stitchmethod can achievealmost linearspeedup for learning
LDS on shared memory multiprocessors.

1http://www.openmp.org
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Chapter 3

Completed Work

In this chapter, we review some of our work on mining meaningful patterns from multiple coevolving
time sequences and using those patterns for solving real problems in motion capture and sensor data
monitoring. We present three pieces of work here:

1. Natural motion stitching [Li et al., 2008b];

2. Mining with missing values [Li et al., 2009];

3. Parallelizing on multicore/multiprocessor computers [Li et al., 2008a].

All of these work uses Linear Dynamical Systems (LDS) or its variants as a base model. Here we give
a brief introduction to Linear Dynamical Systems (LDS), including its formalization and its learning
algorithm. Table3.1gives an overview of the symbols used in all tasks and their definitions.

3.1 Background - Introduction to Linear Dynamical Systems

Consider a multi-dimensional sequenceX = ~x1, . . . , ~xT of a lengthT. For example,X could be a
sequence of marker position vectors captured by video cameras, where each vector~xi is of dimensionality
m (e.g. m = 123 for the motion captured using 41 markers in Figure3.5, each marker with three
coordinates). We could also think ofX asm sequences, each with the duration ofT. LDS assumes the
evolution of the observation is driven by a hidden Markov process: observations are generated byh hidden
variables for that time tick and the hidden variables evolvebased on those of previous time ticks. In LDS,
both thetransitionamong the hidden variables as well as theirprojectionto the observations are described
as linear Gaussian models (Eq (3.2-3.2)). We denote them as a matrixF (also denoted asA in literature)
for the transition (h × h) with noises{ωn}; and a matrixG (m × h, also denoted asC in literature) for
theprojectionwith the noises{ǫn} at each time-tickn. For example, Figure1.2(b)shows a sample data
X for a walking motion (m = 4). Hidden variables in such a case may correspond to position, velocity
and acceleration, andh = 3 indicates degree of freedom.F is a3× 3 matrix and can be determined from
Newtonian dynamics.G (4 × 3) tells how each of observed marker coordinates is generatedfrom the
hidden states.
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Table 3.1: Symbols and Definitions

Symbol Definition

X a multi-dimensional sequence of observations with missingvalues(~x1, ...~xT)

m number of sequences
T duration (length) of sequences
h number of hidden variables for each time tick
Z a sequence of latent variables(~z1, . . . ~zT)

~µ0 initial state for hidden variable,h × 1 vector
Γ initial covariance for hidden variable,h × h

A transition matrix,h × h

Λ transition noise covariance,h × h

C projection matrix,m × h

Σ projection noise covariance,m × m

Q query sequence
TQ length of query sequence

Xg the observed values in the sequenceX
Xm variables for the missing values in the sequenceX
W missing value indication matrix with the same duration and dimension ofX

Figure3.1provides the graphical representation of following equations defining a LDS:

~z1 = z0 + ω0 (3.1)

~zn+1 = F~zn + ωn (3.2)

~xn = G~zn + ǫn (3.3)

wherez0 is the initial state of the hidden chain, andω0, ωi andǫi(i = 1 . . . T) are multivariate Gaussian
noises:

ω0 ∼ N (0,Γ) ωi ∼ N (0,Λ) ǫj ∼ N (0,Σ)

( N , )Z 1 Z 2 Z 3 Z N 
 1 Z N
X 1 X 2 X 3 X N 
 1 X N

z 1 , )( z 0 , ) 3 , )2 , )( G z 1 , ) z 2 , ) N 
 1 , ) N 
 1 , )
Figure 3.1: A Graphical Representation of the Linear Dynamical System:~z1, . . . , ~zT indicate hidden vari-

ables;~x1, . . . , ~xT indicate observation. Arrows indicate Linear Gaussian conditional proba-
bilistic distributions.

Given the observation sequence, the goal of the learning algorithm is to compute the optimal param-
eter setθ = (µ0,Γ, F,Λ, G,Σ). The optimum is obtained by maximizing the log-likelihoodl(X ; θ)
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over the parameter setθ. A typical learning method for LDS is the expectation-maximization (EM) al-
gorithm [Shumway and Stoffer, 1982, Ghahramani and Hinton, 1996], which iteratively maximizes the
expected complete log-likelihood in a coordinate-ascent manner:

Q(θnew, θold) = Eθold [log p(~y1 . . . ~yN , ~z1 . . . ~zN |θnew)] (3.4)

In brief, the algorithm first guesses an initial set of model parametersθ0. Then, at each iteration, it uses a
forward-backward algorithm (known as Kalman filtering [Kalman, 1960] and Kalman smoothing [Rauch,
1963]) to compute expectations of the hidden variables~̂zn = E[~zn | X ; θ0] (n = 1, . . . ,T) as well as
the second moments and covariance terms, which is the E-step. In the M-step, it maximizes the expected
complete log-likelihood ofE[L(X , ~z1...T)] with respect to the model parameters. Since the computation
of E[~zn | X ] depends onE[~zn−1 | X ] andE[~zn+1 | X ]. We refer the reader to an excellent explanation
about the EM algorithm for LDS in [Bishop, 2006].

LDS will serve as a common underlying model for the followingwork, and we use it or its variant in
diverse settings: (a) with domain specific and predefined parameters (e.g.F andG) in natural motion
stitching; (b) extending to missing values for mining tasks; and (c) using the EM algorithm as the baseline
competitor of our parallel algorithm.

3.2 Natural Motion Stitching

This section is based on the work in [Li et al., 2008b]. Recently researchers have been creating large
databases of human motion capture, for example, the CMU mocap database [CMU, b] and the multi-
modal activity database [CMU, a]. One particular goal, among others, is to generate new human motions
from such databases. This has a lot of applications in practice, for example, generating new animations in
the movie industry, and generating new actions in computer games.

3.2.1 Problem Definition

Given two motion-capture sequences that are to be stitched together, how can we assess the goodness of
the stitching?

A good distance function is important for the generation of realistic character motion from motion capture
databases. We proposed a novel distance function to pick natural stitching points between human mo-
tions. To motivate our work, we demonstrate that a a straightforward, ad-hoc approach may lead to poor
stitchings. For example, Figure3.2 shows a problem case for the often-usedwindowed Euclidean dis-
tance[Wang and Bodenheimer, 2003]: Suppose we want to connect the segments (AB)-to-(CD) or (AB)-
to-(EF), both give equally good results with the euclidean distance. However, (AB)-to-(CD) visually
looks more appealing than (AB)-to-(EF). Ideally “goodness” metric should be low if humans consider
the stitching to be natural. Our proposed L-score captures that. Other ad-hoc metrics like time-warping
and geodesic joint-angle distance [Wang and Bodenheimer, 2004] may suffer from similar issues, be-
cause none of them tries to capture the dynamics of the stitching as explicitly as our upcoming proposal
does.
Problem 1 (Stitching Naturalness).
Given a query sequenceQ of T points inm-dimensional space with take-off point~qa, and a data sequence
X of T points of the same dimensionality with landing point~xb,

9
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to-(CD) has a smoother, more natural-looking trajectory(darker lines).

find a function to assess the goodness of the resulting stitched sequenceY = ~q1, . . . , ~qa, ~xb, . . . , ~xT, so
that it agrees with human intuition.

Figure3.3shows an illustration of the problem with the “take-off” and“landing” points.

Once we obtain a qualified distance function, we can either doa sequential scan or use database indexing
techniques to perform a fast search over the whole motion capture database to find the best stitching
motions [Lee et al., 2002].

Take-off point 

qa(=yw)

Landing point

xb(=yw+1)

Query

sequence

Data
sequence

qa-w+1(=y1)

xb+w-1(=y2w)

t

t

t

Figure 3.3: Illustration of “take-off” (red square) and “landing” points (green circle). Grayed out points
indicate points ignored in our stitching.

3.2.2 Main Idea

How do we capture the “naturalness” of a stitching? Our approach is to go to first principles, informally
expressed in our following conjecture:
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Conjecture 3.1 (Laziness). Between two similar trajectories, the one that looks more “natural” is the
one that implies less effort/work.

The rationale behind our conjecture is that humans and animals tend to minimize the work they spend
during their motions, as captured in the “minimum jerk” [Flash and Hogan, 1985] and “minimum torque
change” [Uno et al., 1989] hypotheses of motion, for example.

The main contribution of our work is that we proposed an intuitive, first-principles approach, by computing
the effort that is needed to do the transition (laziness-effort, or “L-score”). From the above conjecture,
the smaller the effort, the more natural the transition willseem to humans. Our L-score relies on a fast,
easy to compute estimate of the effort required to make a stitch. We used the Kalman filters (LDS but
with fixed parameters) to estimate the motion dynamics (positions, speeds, and accelerations) for the
following reasons (a) it has explicit (Newtonian) dynamic equations consistent with first principles (b) it
could reduce noise as well.

Mathematical details and a variation: In order to compute L-score, we use Kalman filters to estimate
hidden states (real position, velocity, acceleration):~̂zn = (p̂n, v̂n, ân)T (n = 1, . . . , 2w, w is window
size), we define the following L-score,L(Q, a,X , b, w), to approximate the energy spent as the product
of force and displacement.

L(Q, a,X , b, w) =
2w−1∑

n=1

|(p̂n+1 − p̂n) · ân| (3.5)

The details on how to compute and optimize all those objective functions are in [Li et al., 2008b].

3.2.3 Results

We present experimental results on both artificial (Figure3.2) and real motions which show that our L-
score approach indeed agrees with human intuition, it chooses good stitching points.

We capture a set of waving, walking, running and jumping motions at 30 frames per second. These
motions are 300 to 2000 frames in length and havem=93 dimensional joint positions in body local coor-
dinates. We use one Kalman filter for each of them=93 features as described in Section3.1, and set the
parameters according to Newtonian dynamics. We use the window of 2w = 10, i.e. use five frames right
before stitching and five after. To make the stitching more natural, we extend the method to allow elon-
gated stitching with “injected frames” in between “take-off” and “landing” points. We have informally
viewed a large variety of transitions within this database and find that our approach consistently performs
as well or better than the Euclidean distance metric at generating pleasing transitions.

In order to assess the quality of the stitching found by our L-score, we blank out a short interval (2 frames)
and a long interval (11 frames) from the transition made by the human actor during 2 waving circle
motions, and we compare the actual trajectory against the estimated transition trajectories. The processing
time is around two and a half hours on a Pentium class machine.The observations (see Figure3.4) are as
follows:

• Our method computes the correct value of blanked-out frames, or gets very close to it.
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• Our generated trajectories match very well the actual trajectories (please see the online video1).
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Figure 3.4: Real motion stitching: Right-hand coordinates of a human transition motion, with the dashed
part blanked out (2 blank-out frames for the left figure, 11 for the right).△/# marks the take-
off/landing frame, respectively. Red3 stand for our reconstructed path using out method;
notice how close they are to the ground truth (gray dashed line). Our method either finds the
correctkopt (=2 in left) or gets very close (=14, vs 11, in right). The datais from [Li et al.,
2008b].

3.3 Mining with Missing Values

This section is based on the work in [Li et al., 2009].

Another important problem is mining missing values in time series. Missing values can happen, e.g.,
due to occlusion in motion capture sequences where some of the markers are temporarily out of sight,
or in sensor streams, due to radio frequency interference ordue to low battery. For example, periods of
occlusion for some markers are common due to the complex nature of human body and relative position
of markers (Figure3.5).

Our second piece of work is exactly on recovering and mining with missing values for general time
series.

3.3.1 Problem Definition

Given multiple time sequences with missing values, we propose “DynaMMo” which summarizes, com-
presses, and finds latent variables. The idea is to discover hidden variables and learn their evolving pattern,
making our algorithm able to function even when there are missing values.

The problem is formally defined as follows (see Table3.1for a summary of symbols):
Problem 2 (Missing Values).
Given a time sequenceX with the durationT in m dimensions,X = {~x1, . . . , ~xT}, with the observed

1http://www.cs.cmu.edu/l̃eili/mocap.stitch
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(a) (b)

Figure 3.5: Markers on human actors in CMU motion capture database [CMU, b].

part asXg, and the missing part asXm, and missing indication matrixW, ~wt,k = 0 wheneverX ’s k-th
dimensional observation is missing at timet, and otherwise~wt,k = 1, the goal is to solve the following
issues:

• recover the missing values;

• forecast the future trends.

So that both the recovery and forecasting match underlying pattern in the data.

As discussed in the introduction (Chap1), the ability to forecast is vital in time series mining tasks. Once
we have a good model to forecast, we can obtain extra benefits such as summarization by storing less with
the forecast and segmentation by detecting changing pointsthat deviate from the forecast.

3.3.2 Main Idea

Our main idea is to simultaneously exploit smoothness and correlation, as shown in Figure3.7. Smooth-
ness is what splines and linear interpolation exploit: for asingle time-sequence (say, the left-hand x-value
over time), we expect successive entries to have nearby values (xn ≈ xn+1). Correlation reflects the
fact that sequences are not independent; for a given motion (say, “walking”), the left-hand and the right-
hand are correlated, lagging each other by half a period. Thus, when we are missingxn, say, the left
hand at time-tickn, we can reconstruct it by examining the corresponding values of the right hand (say,
yn−1, yn, yn+1). This two-prong approach can help us handle even “black-outs”, which we define as time
intervals where we lose track of all the time-sequences.
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Figure 3.6: Occlusion in handshake motion. 66 joint angles (rows), for≈ 200 frames. Dark color indi-
cates a missing value due to occlusion. Notice that occlusions are clustered.

The main contribution of our approach is that it shows how to exploit both sources of redundancy (smooth-
ness and correlation) in a principled way. We set up the problem as a Dynamic Bayesian Network (specif-
ically, LDS) and solve it efficiently, yielding results withthe best reconstruction error and agreeing with
human intuition. Furthermore, we propose several variantsbased on DynaMMo for additional time series
mining tasks such as forecasting, compressing, and segmentation.

Mathematical details We build a probabilistic model (Figure3.8) to estimate the expectation of missing
values conditioned on the observed parts,E[Xm|Xg]. We use a sequence of latent variables (hidden states),
~zn, to model the dynamics and hidden patterns of the observation sequence. DynaMMo method recovers
the missing values by alternately iteratively estimating:

1. the governing dynamicsF andG, as well as other parametersz0, Γ, Λ andΣ;
2. the latent variableŝ~zn = E[~zn], (n = 1 . . . T);
3. the missing values of the observation sequenceE[Xm|Xg].

The goal of parameter estimation is achieved through maximizing the likelihood of observed data,L(θ) =
P (Xg). However, it is difficult to directly maximize the data likelihood in missing value setting, instead,
we maximize the expected log-likelihood of the observationsequence. Once we get the model parameters,
we use belief propagation to estimate the occluded marker positions. We define the following objective
function as the expected log-likelihoodQ(θ) with respect to the parametersθ = {F,G, z0,Γ,Λ,Σ}:

Q(θ) = EXm,Z|Xg,W [P (Xg,Zm,Z)]

= EXm,Z|Xg,W [−D(~z1, z0,Γ) −
T∑

t=2

D(~zt,F~zt−1,Γ)

−
T∑

t=1

D(~xt,G~zt,Σ) −
log|Γ|

2
−

(T − 1) log|Λ|

2
−

T log|Σ|

2
] (3.6)

whereD() is the square of the Mahalanobis distanceD(~x, ~y,Σ) = (~x − ~y)T Σ−1(~x − ~y).

One benefit of DynaMMo is that it helps compress time series more compactly and accurately. The basic
compression idea is to store the learned model parameters (F,G and etc.) and values of hidden variables
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Figure 3.7: Illustration of DynaMMo intuition: use both correlation between sequences (black dashed
double arrow) and temporal smoothness (pink arrow) to recover missing values (black box).
The data is from #16.22 in [CMU, b].

Z1 Z2 Z3 Z4

X1 X2 X3
X4

�(F∙z1, Λ)

�(z0, Γ)

�(G∙z3, Σ)

�(F∙z2, Λ)

�(G∙z1, Σ) �(G∙z2, Σ) �(G∙z4, Σ)

�(F∙z3, Λ) �(F∙z4, Γ)

… 

Figure 3.8: Graphical Illustration of the Model.~z1···4: latent variables;~x1,2,4: observations;~x3: partial
observations. Arrows denote Gaussian distributions.

(~z’s) for a subset of time ticks. Based on different strategiesto choose the subsets, hence different com-
pression ratio and accuracy, we proposed three variants of DynaMMo compression: (a) fixed compression
(DynaMMof ), with the time ticks at fixed interval stored; (b) adaptive compression (DynaMMoa), with
only the time ticks exceeding error threshold stored; and (c) optimal compression (DynaMMod), with the
best subset of time ticks computed by dynamic programming.

As a further merit, DynaMMo is able to segment the data sequence. Intuitively, this is possible because
DynaMMo identifies the dynamics and patterns in data sequences, so segments with different patterns are
expected to have different model parameters and latent variables. We use the reconstruction error as an
instrument of segmentation, with spikes in error marking boundaries.

We refer the reader to [Li et al., 2009] for more technical details on DynaMMo, its compression, decom-
pression and segmentation algorithms.
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3.3.3 Results

We presented experiments on motion capture sequences and chlorine measurements and demonstrated
that our proposed DynaMMo method and its extensions (a) can successfully recover missing values, (b)
can provide high compression for little loss of reconstruction accuracy, and (c) can identify meaningful
segments, (d) scalable on duration of time series.

Recovering missing values Figure3.9shows the reconstructed signal for an occluded jumping motion.
DynaMMo gives the best result close to the original value. Figures3.11(a)-3.11(c)show the scatter plots
of the average reconstruction error over 58 motions in the Motion dataset, with 10% missing values and
50 average occlusion length. Notice that the reconstruction grows little with increasing occlusion length,
compared with other alternative methods (Figure3.11). There is a similar result found in experiments on
additional datasets presented in [Li et al., 2009]. Again, DynaMMo achieves the best performance among
the four methods.
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Figure 3.9: Reconstruction for a jump motion with 322 frames in 93 dimensions of bone coordinates.
Blue line: the original signal forroot bonez-coordinate - the dash portion indicates occlusion
from frame 100 to 200. The proposed DynaMMo, in red, gets veryclose to the original,
outperforming all competitors. The data is from #16.01 in [CMU, b].
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Figure 3.10: Scatter plot of missing value reconstruction error for 58 motion sequences(#16 in [CMU,
b]). Our DynaMMo bests all competitors: (a) linear interpolation, (b) spline, and (c) missing
value SVD (MSVD).
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Figure 3.11: Average error for missing value recovery on a sample mocap data (#16.22 in [CMU, b]).
Average rmse over 10 runs, versus average missing lengthλ(from 10 to 100). Randomly
10.44% of the values are treated as “missing”. DynaMMo (in red solid line) wins. Splines
are off the scale.

Compression Here we present the main results for compression. Figure3.12 shows the decompres-
sion error (in terms of RMSE) versus compression ratio compared with the baseline compression using
a combined method SVD and linear interpolation. DynaMMod wins especially, in high compression ra-
tios.
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Figure 3.12: Compression for Chlorine dataset: Reconstruction error versus compression ratio. Lower is
better. DynaMMod (in red solid) is the best.

Segmentation Figure 3.13 shows the segmentation result on a sequence composed of two pieces of
sinusoid signals with different frequencies. Our segmentation method could correctly identify the time
of frequency change by tracking the spikes in reconstruction error. Figure3.14shows the reconstruction
error from segmentation experiment on a real human motion sequence in which an actor running to a
complete stop. Two (y-coordinates of left hip and femur) ofm =93 joint coordinates are shown in the
top of the plot. Note the spikes in the error plot coincide with the slowdown of the pace and transition to
stop.
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Figure 3.13: Segmentation result on one dimensional synthetic data. Topis a sequence composed of two
pieces of sinusoid signals with different frequencies 64 and 128 respectively. Bottom is the
reconstruction error per time tick. Note the spike in the middle correctly identify the shifting
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Figure 3.14: Reconstruction error plot for segmentation on a real motioncapture sequence inm =93
dimensions withT =250 frames, an actor running to a complete stop, with left hipand femur
y-coordinates shown in top plots. The spikes in bottom plot coincide with the slowdown of
the pace and transition to stop. The data is from #16.8 in [CMU, b].
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3.4 Parallelizing on Multicore

This section is based on the work in [Li et al., 2008a]. Symbols used in this section are summarized in
Table3.1.

3.4.1 Problem Definition

In both problems described above, there are estimation or learning steps for Kalman filters or Linear Dy-
namical Systems involved in the corresponding algorithms.The well known expectation-maximization
(EM) algorithm for learning of LDS iterates between computing conditional expectations of hidden vari-
ables through the forward-backward procedure (E-step) andupdating model parameters to maximize its
likelihood (M-step) [Bishop, 2006]. Although EM algorithm generally produces good results, the EM it-
erations may take long to converge. For example, our experimental results show that on a 93-dimensional
dataset of length over 300, the EM algorithm would take over one second to compute each iteration and
over ten minutes to converge on a high-end multi-core commercial computer. Given multiple co-evolving
sequences, our goal is to develop a parallel algorithm to learn LDS parameters, by taking advantage of the
quickly developing parallel processing technologies to achieve dramatic speedup (Problem3).
Problem 3 (Parallelizating).
Given a multi-dimensional sequenceX andk shared memory processors,
designa parallel learning algorithm for Linear Dynamical Systems, such that it achieve maximum scale
up on multi-processors.

3.4.2 Main Idea

Traditionally, the EM algorithm for LDS running on a multi-core computer only takes up a single core
with limited processing power, and the current state-of-the-art dynamic parallelization techniques such as
speculative execution [Colohan et al., 2006] give little benefit to the straightforward EM algorithm dueto
the nontrivial data dependencies in the graphical model of LDS (Figure3.1).

The basic idea of our Cut-And-Stitch (CAS) is to (a)Cutboth the chain of hidden variables as well as the
observed variables into smaller blocks, (b) perform intra-block computation, and (c)Stitchthe local results
seamlessly by summarizing sufficient statistics and updating model parameters and an additional set of
block-specific parameters. The algorithm would iterate over 4 steps, where the most time-consuming E-
step in EM as well as the two newly introduced steps could be parallelized with little synchronization
overhead. Furthermore, this approximation of global models by local sub-models sacrifices only a little
accuracy, due to the chain structure of LDS. On the other hand, it yieldsalmost linearspeedup. Figure3.15
and3.16illustrate the main idea and the timeline of the whole algorithm on multiple CPUs.

In practice, the Cut-And-Stitch algorithm includes an extra initialization to improve the first guess of
parameter: it runs a sequential forward-backward pass on the whole observation, estimate parameters,
i.e. it executes theCut step with one processor, and theStitch step withk processors. After that, we
begin normal iterations of Cut-And-Stitch withk processors. We refer to this step as thewarm-upstep.
Although we sacrifice some speedup, the resulting method converges faster and is more accurate.
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Figure 3.15: Cut-and-stitch main idea: Cut step starts computation without feedback from previous node
and later Stitch step reconciles.

Implementation details We implement the CAS algorithm for LDS using OpenMP2, a flexible and
fast multiprogramming interface that supports shared memory on many architectures, including both
commercial desktops and supercomputer clusters. In our implementation, we specifically optimize the
performance by a set of techniques, including (a) fully exploiting cache by carefully choosing of shared
variables, (b) static predefined scheduling of multi-threads in the “for loops”; and (c) proper adopting
locks and barriers to prevent contention and to minimize synchronization overhead.

The detail equations and implementation issues are presented in [Li et al., 2008a].

3.4.3 Results

We evaluate our implementation on a standard motion capturedataset from CMU mocap database (#16 in
[CMU, b]), comparing with base sequential EM algorithm in both quality and speedup. The conclusion is
our proposed Cut-And-Stitch achieves almost linear speed up on both a multi-core desktop and a multi-
processor supercomputer.

Table 3.2: Normalized Reconstruction Error

method Walking Jumping Running

Serial 1.929% 1.139% 0.988%
Parallel(4-core) 1.926% 1.140% 0.985%

2http://www.openmp.org
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Figure 3.16: Graphical illustration of EM and Cut-And-Stitch (CAS) algorithm on multiple CPUs. Ar-
rows indicates the computation on each CPU.

Figure3.17shows the speedup (ratio of the wall clock time of sequentialEM over CAS) on the multi-core
desktop (maximum 4 cores) and a super computer at NCSA3. We also include the theoretical limit from
Amdahl’s law. Table3.2shows the reconstruction error: both parallel and serial achieve very small error
and are similar to each other. Notice the reconstruction by CAS is very close to that by sequential EM
algorithm.
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Figure 3.17: Average speedup of CAS on a commercial multi-core desktop and a supercomputer, running
on 58 motions (#16 in [CMU, b]). The Sequential version is on one processor, identical to
the EM algorithm. The speedup is calculated as the ratio of the wall clock of EM over CAS.

3http://www.ncsa.illinois.edu/
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Chapter 4

Ongoing and Proposed Work

In this chapter, we will describe some interesting problemsin mining time series data, and propose a plan
to attack those problems. We will also relate those problemswith our complete work, based on which we
will propose potential solutions.

Here we group the problems into two categories:

• Mining time series without missing values:

P1 how to extract compact and meaningful features from time series data, for tasks such as time
series clustering, indexing, forecasting and summarization?

P2 how to monitor data streams such as sensor measurements, web click logs, and network traffic,
and to identify patterns and anomalies?

• Mining time series with missing values:

P3 how to design better optimization techniques to recover missing values more effectively for
general time series?

P4 how to use domain knowledge or constraints to better recover missing values for specific time
series, like bone length constraints in motion capture data?

4.1 Mining without Missing Values

4.1.1 Feature Extraction for Time Series

Extracting the essence of time sequences is already very useful - it would be even more useful if those
features are compact and easy to interpret, and even better if they could help us do forecasting. Linear
Dynamical Systems can forecast future values, however, it is not clear what could serve as features for
each sequence, nor to interpret. On the other hand, dimensionality reduction methods such as Principal
Component Analysis (PCA) or Independent Component Analysis (ICA) can extract good features for
time irrelevant or independent data, however they can not doforecasting. Ability to forecast automatically
leads to anomaly detection (every time-tick that deviates too much from our forecast), segmentation (a
time interval deviating too much from our forecast), compression (storing the deltas from the forecasts),
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and missing value imputation, extrapolation and interpolation. And of course, we would like the method
to be scalable, with linear complexity on the length of the sequences. Is it possible to achieveall of the
above goals, any of which alone is already very useful?
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Figure 4.1: Left foot positions jumping (#16.01 and #16.05), walking (#16.21 and #16.34) and running
(#16.44 and #16.51) motions.

We would like features for the following motivation scenarios:

• Automatic motion labeling:Givena database of motion sequences, each with bone marker coordi-
nates or joint angles,find groups of similar motions. Ideally, walking motions shouldbe grouped
together even if they start at different footstep or phase. Figure 4.1 includes sample snippets of
motion sequences. Good features leads to a good distance function.

• Indexing large motion database: continuing the above scenario, once we have good compact features
for each motion sequence, we could design good distance function and build index over the whole
database. Eventually we would be able to answer the following query: Give me the most similar
motions to the query motion, say, a person’s walking sequence. Our goal is to design fast algorithms
to answer such query quickly over large motion databases.

• Correlation discovery in network traffic:Givennetwork traffic sequences (e.g. BGP updates on
routers), we want to find the correlation between traffics, sothat we could group similar hosts,
routers, and subnetwork together.

• Compressing of time series:Givenmultiple co-evolving sequences, how can we summarize of those
time series? The DynaMMo method already achieves high compression ratio, can we do better?

The desired method should achieve the following goals:

1. correlation discovery: the method should be able to find correlations and lag correlations;

2. forecasting: the method should be able to do good forecasting;
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3. interpretability: the method should be able to produce meaningful and easy to interpret features.

4.1.2 Stream Monitoring and Control

The mining problem above is mainly for an offline setting, where the data is already present and all the
mining is done in batch mode. On the contrary, we have sensor monitoring or click streams coming in an
online fashion, and we still want to monitor the time series and find patterns in this scenario. Particularly,
we are looking at the following motivation scenarios:

1. Monitoring web click streams and identify patterns and anomalies.

2. Monitoring sensor data to detect anomalies.

3. Monitoring the streams in datacenters, such as CPU utilization, disk utilization, NIC packets, tem-
perature, humidity, and power consumption. A very promising direction is optimal control over data
center to save energy consumption.

4.2 Mining with Missing Values

4.2.1 Enhanced General Missing Value Recovery

The DynaMMo algorithm described in Section3.3already gives good recovery and mining results. While
in our ongoing work, we discover opportunities to enhance the recovery of missing values, by investigating
best optimization path/order over parameters and unknowns. We propose a new algorithm to better recover
missing values by carefully choosing the optimization order of the objective function. Our proposal is
along the same line.

Mathematical details In this work, we propose to solve exactly the same problem2. Recalling from
Section3.3, DynaMMo is trying to optimize the following objective function:

Q(θ) = EXm,Z|Xg,W [P (Xg,Zm,Z)]

= EXm,Z|Xg,W [−D(~z1, z0,Γ) −
T∑

t=2

D(~zt,F~zt−1,Γ)

−
T∑

t=1

D(~xt,G~zt,Σ) −
log|Γ|

2
−

(T − 1) log|Λ|

2
−

T log|Σ|

2
] (4.1)

whereD() is the square of the Mahalanobis distanceD(~x, ~y,Σ) = (~x−~y)T Σ−1(~x−~y) Here the unknowns
include the hidden variable~z′s, missing valueXm (and their distribution), and model parameters. Our
proposal is to find a better optimization order for fitting thedata. Our preliminary experiments show very
promising results.
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4.2.2 Missing Values under Constraints

In this work, we want to answer the question: is there better recovering of missing values in situations
with domain constraints. As a particular case, we study the problem of occlusion filling in human motion,
where the markers are confined to fixed bone lengths on the human body. One problem with DynaMMo in
this setting is that they do not always preserve inter-marker distances. While a joint-angle representation
would solve this problem, it would both require that a skeleton (Figure4.2) be fit to the data (which would
prevent LDS from being used for occlusion filling), and it would present a weight-selection challenge (a
small angle error in the shoulder is much more noticeable than a small angle error in the wrist).
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Figure 4.2: Markers on body skeleton.

We want to solve this problem in a principled manner, by specifying inter-marker distance constraints and
learning an LDS that operates in this constrained space. Thefocus of our work is to handle occlusions
automatically, agreeing with human intuition.

One traditional method to estimate missing values is to optimize a squared loss function, penalizing the
model complexity as Eq.4.1. There are several choices with varying implications. How should we
incorporate bone length constraints (BLC)? There are several choices with subtle issues. We choose to
use hard constraints through the following formulation, since it will result in an efficient algorithm for
solution. The problem is formally defined as follows:
Definition 1. A setB lists bone length constraints (BLC), and it contains the following elements:

B = {〈i, j, di,j〉|markeri, j on the same bone}

wheredi,j is the distance between markeri andj.
Definition 2. A pair of marker coordinatesyi andyj (∈ R

3) are said to conform to the BLCB if

∀〈i, j, di,j〉 ∈ B ⇒‖ yi − yj ‖
2= di,j

Problem 4 (Bone-length constrained occlusion filling).
Given (a)Xg (the observed marker positions) and (b)B (bone length constraint),
find values for missing partXm respecting the bone length constraints.
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4.3 Timeline

We plan to complete the proposed work according to the following tentative timeline:

• December 2009:Thesis proposal.

• December 2009:Study enhanced general missing value recovery and mining.

• January 2010 - February 2010:Study and analyze missing values under constraints, particularly
bone-length constrained occlusion filling.

• March 2010 - May 2010: Study compact feature extraction from time series. Based onpromis-
ing preliminary results, we study how to answer similarity queries efficiently on motion capture
database.

• June 2010 - November 2010:Study sensor streams and monitoring. We will particularly investi-
gate intrusion and anomaly detection in network traffic, anddatacenter monitoring and control.

• December 2010 - January 2011:Write the thesis.

• February 2011: Thesis defense.
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Chapter 5

Conclusion

In this proposal, we present fast algorithms on mining co-evolving time series, with or with out missing
values. Our algorithms could mine meaningful patterns effectively and efficiently. With those patterns, our
algorithms can do forecasting, compression, and segmentation. Furthermore, we apply our algorithm to
solve practical problems including occlusions in motion capture, and generating natural human motions
by stitching low-effort motions. We also propose a parallellearning algorithm for Linear Dynamical
Systems, which will serve as corner stone of many applications and algorithms for time series.

Next, we will work on the proposed problems and find better andfaster algorithms for them, such as
missing values with bone length constraints, indexing and mining sensor streams.
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