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Abstract

Given two motion-capture sequences that are to be stitched together, how can we assess the goodness of the

stitching? The straightforward solution, Euclidean distance, permits counter-intuitive results because it ignores

the effort required to actually make the stitch. The main contribution of our work is that we propose an intuitive,

first-principles approach, by computing the effort that is needed to do the transition (laziness-effort, or ’L-score’).

Our conjecture is that, the smaller the effort, the more natural the transition will seem to humans. Moreover, we

propose the elastic L-score which allows for elongated stitching, to make a transition as natural as possible. We

present preliminary experiments on both artificial and real motions which show that our L-score approach indeed

agrees with human intuition, it chooses good stitching points, and generates natural transition paths.

Categories and Subject Descriptors (according to ACMCCS): I.3.7 [Computer Graphics]: Three Dimensional Graph-

ics and Realism-Animation

1. Introduction

A good distance function is important for the generation of

realistic character motion from motion capture databases. In

this paper, we propose a novel distance function to pick nat-

ural stitching points between human motions. To motivate

our work, we demonstrate that a a straightforward, ad-hoc

approach may lead to poor stitchings. For example, Fig-

ure 1 shows a problem case for the often-used windowed

Euclidean distance [WB03]. Other ad-hoc metrics like time-

warping and geodesic joint-angle distance [WB04] may suf-

fer from similar issues, because none of them tries to capture

the dynamics of the stitching as explicitly as our upcoming

proposal does.

How do we capture the “naturalness” of a stitching? Our

approach is to go to first principles, informally expressed in

our following conjecture:

Conjecture 1 (Laziness) Between two similar trajectories,

the one that looks more “natural” is the one that implies less

effort/work.

The rationale behind our conjecture is that humans and ani-

mals tend to minimize the work they spend during their mo-

tions, as captured in the “minimum jerk” [FH85] and “min-

imum torque change” [UKS89] hypotheses of motion, for

example. Formally, we are focusing on the following prob-

lem (Figure 2):

Problem 1 (Stitching Naturalness) Given a query se-

quence Q of N points in m-dimensional space with take-
off point qa, and a data sequence X of M points of the
same dimensionality with landing point xb, find a function

to assess the goodness of the resulting stitched sequence, i.e.

q1, . . . ,qa,xb, . . . ,xM.

The goal is that the “goodness” metric should be low if hu-

mans consider the stitching to be natural. Once we obtain

a qualified distance function, we can either do a sequential

scan or use database indexing techniques to perform a fast

search over the whole motion capture database to find the

best stitching motions [LCR∗02].

2. Proposed Method

Here, we describe our L-score for motion stitching. The idea

is to exploit Conjecture 1, that humans tend to use as little

work as possible and thus natural human motion transitions

should be work-efficient. Our L-score relies on a fast, easy to

compute estimate of the effort required to make a stitch. To
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Figure 1: Motivating example: The stitching from (AB)-to-

(CD) (“forward”) seems more natural than the stitching

(AB)-to-(EF) (“backward”). The right part shows the cor-

responding “stitch-ability” scores. However, the Euclidean

distance does not capture the awkwardness of the actual

stitching and assigns the same cost (about 47) to both.

The “forward” stitching (AB)-to-(CD) has a smoother, more

natural-looking trajectory(darker lines).
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Figure 2: Illustration of Problem 1. The query trajectory

(with diamonds) is to be stitched with the data trajectory

(with circles) at the two indicated points: the red diamond

indicates the take-off point qa, and the green circle marks

the landing point xb. Grayed out points indicate points that

we ignore in our stitching.

create the stitch, any on-the-shelf regression/fitting method

(e.g. linear interpolation or spline) could be plugged into

our L-score method in principle. However, these methods

need manual tuning(e.g. order of spline). We recommend

the Kalman filter to estimate the motion dynamics for the

following reasons (a) it has explicit (Newtonian) dynamic

equations consistent with first principles (b) it could reduce

noise as well. Kalman filters have already been applied to hu-

man motion data for retargeting [TK05] and computer pup-

petry [SLSG01].

2.1. Estimation of Dynamics

Given the query sequence Q and the data sequence X
in m dimensions, we create a new stitching sequence

(within a certain window size w) Y = y1, . . . ,y2w =
qa−w+1, . . . ,qa,xb, . . . ,xb+w−1 (Figure 2). To estimate the
trajectory in the stitching process, we try to find the hid-

den dynamics (the true position, velocity, and acceleration)

at each time tick, while eliminating the observation noise.

Given the observed position at every time tick, we build the

following Kalman filter(Eq. 1) for each dimension of the

stitching sequence. For the following, we assume the data

sequence is one dimensional.

z1 = µ0+ω0

zn+1 = Azn+ωn

yn = Czn+ εn

, A=





1 ∆t ∆t2/2
0 1 ∆t

0 0 1



 (1)

where the hidden states consist of true position pn, velocity

vn, acceleration an: zn = (pn,vn,an)
T . The transition matrix

A is determined from Newtonian mechanics of a point mass,

and the transmission matrix C = (1 0 0), with Gaussian
noise terms ωt ∼ N (0,diag(γ1,γ2,γ3)) and εt ∼ N (0,σ).
We set the prior parameter µ0 = (p0,v0,a0)

T = (y1,(y2 −
y1)/∆t,(y3+ y1−2y2)/∆t2)T .

We use the forward-backward algorithm [GW01] to

achieve our goal: to estimate the expected value of the hid-

den states ẑn =E[zn | Y](n= 1, . . . ,2w). For motion stitching
data in m dimensional space, we build the Kalman estima-

tion for each dimension and estimate position, velocity and

acceleration separately.

2.2. L-score

Now that the velocities and accelerations have been calcu-

lated, the next step is to calculate the effort during the stitch-

ing.

Given the estimated hidden states ẑn = (p̂n, v̂n, ân)
T (n =

1, . . . ,2w), we can compute the energy spent as the product
of force and displacement. Thus, we define the following L-

score = L(Q,a,X ,b,w) for motion stitching:

L(Q,a,X ,b,w) =
2w−1

∑
n=1

|(p̂n+1− p̂n) · ân| (2)

2.3. Generalization: Elastic L-score

To remedy the abrupt transition in above method, we gen-

eralize the problem by allowing the injection of some inter-

mediate frames between take-off and landing. To this end,

we extend the above method and propose our elastic L-score

(Figure 3).

For a given k, we again use the above Kalman filter to

estimate the dynamics also for k injected frames(denoted as

z′i = (p′i ,v
′
i ,a

′
i)
T ,i= 1 . . .k). To estimate the transition effort,

we not only compute the work for real frames, but also com-

pute the effort for injected frames in the same way as in Eq 2.

We define the elastic L-score L∗() for the optimal number of
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Figure 3: Illustration of “take-off”, “injected” and “land-

ing” points. The trajectory of squares is to be stitched with

the trajectory of circles at the two indicated points (red

square for take-off, green circle for landing); the injected

frames, shown as blue triangles, which are to be estimated.

Grayed out points indicate points ignored in our stitching.

injections kopt that minimizes the L-score Lk(Q,a,X ,b,w)
for fixed number of injections k.

Lk(Q,a,X ,b,w) =
w−1

∑
n=1

|(p̂n+1− p̂n) · ân|

+|(p̂′1− p̂w) · âw|+
k−1

∑
i=1

|(p̂′i+1− p̂
′
i) · â

′
i|

+|(p̂w+1− p̂′k) · â
′
k|+

2w−1

∑
n=w+1

|(p̂n+1− p̂n) · ân|

(3)

L∗(Q,a,X ,b,w) =min
k≥0

Lk(Q,a,X ,b,w) (4)

The elastic L-score L∗() not only gives an assessment of
the stitching quality, but it also chooses the most suitable

number kopt of frames to inject - its goal is always to min-

imize the transition effort. Furthermore, once we decide the

number kopt of injected frames, we get a good transition tra-

jectory for free: p̂1, . . . , p̂w, p̂′1, . . . p̂
′
kopt

, p̂w+1, . . . , p̂2w.

3. Experiments

We have already illustrated (Figure 1) that the Euclidean dis-

tance may lead to counter-intuitive results. Next we present

experiments with the elastic L−score (L∗()) on (a) synthetic
and (b) real motion capture data.

Synthetic DataWe generated the Three-Circles dataset with

a frame rate of 64/cycle in 2-dimensional space (m=2), as
shown in Figure 1. The large, left circle has a radius of 20

units and is centered at (0,0); the right circles both have ra-
dius 10 units and are centered symmetrically at (30,10) and
(30,−10). We perform two experiments: the “forward” and
the “backward” transition(Figure 1). In these experiments,

we identify both the optimal landing point and the optimal

number of injected frames. Figure 4 shows the results: the

elastic L-score favors the forward transition, which agrees

with human intuition. It also chooses a larger number of

frames and a later landing point to ameliorate the effects of

the awkward backward transition.

Real Human Motion: We capture a set of waving, walk-

ing, running and jumping motions at 30 frames per second.

Motions are 300 to 2000 frames in length and have m=93

dimensional joint positions in body local coordinates. We

use one Kalman filter for each of the m=93 features as de-

scribed in Section 2, and set the parameters to be ∆t = 1,
γ1 = γ2 = γ3 = σ = 0.001. We use the window of 2w = 10.
We have informally viewed a large variety of transitions

within this database and find that our approach consistently

performs as well or better than the Euclidean distance metric

at generating pleasing transitions.

In order to assess the quality of the stitching found by our

elastic L-score, we blank out a short interval (2 frames) and a

long interval (11 frames) from the transition made by the hu-

man actor during 2 waving circle motions, and we compare

the actual trajectory against the transition trajectories esti-

mated by the elastic L-score. The processing time is around

two and a half hours on a Pentium class machine. The obser-

vations (see Figure 5) are as follows:

• Our method computes the correct value of blanked-out
frames, or gets very close to it.

• Our generated trajectories match very well the actual tra-
jectories (please see the accompanying video).

4. Conclusions

The main contribution of this paper is the design of a new

distance function for motion stitching, L− score, based on
first principles. Motivated by the weaknesses of Euclidean

distance (Figure 1), we wished to more accurately capture

the perceived “naturalness” of a trajectory. This led to our

Conjecture 1, stating that the most natural-looking motion

trajectory is the laziest-looking one, that is, the one that re-

quires the least effort. The specific contributions of this pa-

per are the following:

• We show how to compute two dynamics-aware distance
functions, the L-score and the elastic L-score. Among the

many possible choices, we recommend the Kalman filter

with Newtonian particle dynamics to estimate velocities

and accelerations required to compute the L-score.

• Our technique allows for elastic stitching, where we au-
tomatically compute the optimal duration of a transition.

Optimality, again, is judged by the total required effort.

• In experiments on both artificial and real motions, the
dynamics-aware distance function chooses good stitching

points and produces natural-looking trajectories.

Although our algorithm works well as is, and is simple to

implement, it uses a rough (particle-based) approximation

of character dynamics for state estimation. Improving this

approximation, perhaps by using full-body dynamics and a

nonlinear filter, is an interesting direction for future work.
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Figure 4: Left shows the elastic L-score versus k (number of injected frames). The starting (“query”) motion is the same, ’AB’

(as in Figure 1), and the data motions correspond to the “forward” and the “backward” cases with both landing on optimal

positions. Right shows the generated paths for the corresponding kopt optimal number of injected frames. Notice the asymmetric

landing positions and that the forward transition has lower elastic L-score, as well as it needs fewer injected frames (k = 3, vs
k = 6), agreeing with human intuition.
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Figure 5: Real motion stitching: Right-hand coordinates of a human transition motion, with the dashed part blanked out (2

blank-out frames for the left figure, 11 for the right).△/# marks the take-off/landing frame, respectively. Red 3 stand for our

reconstructed path using elastic L-score; notice how close they are to the ground truth (gray dashed line). The elastic L-score

either finds the correct kopt (=2 in left) or gets very close (=14, vs 11, in right)
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