165B
Machine Learning
Model Evaluation &
Regularization

Lei Li (leili@cs)
UCSB

Acknowledgement: Slides borrowed from Bhiksha Raj's 11485 and
Mu Li & Alex Smola’s 157 courses on Deep Learning, with
modification

Resume In-person instruction

 starting on Jan 31, 2022

Recap

« Compute the gradient through Back-
propagation algorithm
— with forward pass and backward pass
— backward pass is application of chain rule

Forward “Pass”

Input: D dimensional
Set:

vector X = [xj, j=1...D]

— Dy = D, is the width of the Ot" (input) layer

0) — : .
=X = 1...D;

(k=1...N) _

Y xp=1

Forlayerk = 1...N

—Forj=1...D,

D, is the size of the kth layer

Dk—l

i=0

k) _ k
N y})—fk<2;)>

() — (), (k=)
y % T > Wijdi

Q1 l’rpu’r'

_Y=y", j=1..Dy

Backward Pass

 Output layer (N) :

— Fori=1...Dy Called "Backpropagation” because
ot —) ot the derivative of the loss is
» agi;N) — IV aLﬂa)A,l(_N) propagated "backwards” through
—yv-n_% : the network
, 6wl§-N) =Y, azj(N) for each j
« Forlayer k = N — 1 downto Very analogous to the forward pass:
— Fori=1...D
oF k of Backward weighted combination of
— () __—_
» 9y = Zwij 20 next layer
] j ’j
or ,((k); or Backward equivalent of activation
y 5o GG
- JYi
iud = y.(k_l)i for each j
> Gwlg-k) : 6Zj(k)

Gradient Descent for FFN

learning rate eta.
l.set initial parameter 6 « 6,

2.for epoch = 1 to maxEpoch or until
converge:

3. for each data (x, y) in D:

4, compute forward y _hat = f(x; 9)
0 , .
5. compute gradient g= migg”}o using
backpropagation
0. total_g += ¢

/. update 0 = 0 — eta x total_g / num_sample

6

Model Evaluation

70"

Training and Generalization

Training error (=empirical risk): model prediction
error on the training data

Generalization error (= expected risk): model
error on new unseen data over full population

Example: practice a GRE exam with past exams

— Doing well on past exams (training error) doesn’t
guarantee a good score on the future exam
(generalization error)

— Student A gets 0 error on past exams by rote learning

— Student B understands the reasons for given
answers

Validation Dataset and Test Dataset

» Validation dataset: a dataset used to evaluate
the model performance

— E.g. Take out 50% of the training data

— Should not be mixed with the training data (#1
mistake)

» Test dataset: a dataset can be used once, e.q.
— A future exam
— The house sale price | bided
— Dataset used in private leaderboard in Kaggle

Model Inference

After train a model

Given an input data x

to compute the prediction for output y
For regression:

— just model output

For classification:

_ y = argmax f(x);

l

Need to do inference for validation and testing

10

K-fold Cross-Validation

« Useful when insufficient data
 Algorithm:
— Partition the training data into K parts
—Fori=1,...,K

>~ Use the i-th part as the validation set, the rest for
training

> Train the model using training set, and evaluate the
performance on validation set.

— Report the averaged the K validation errors
* Popular choices: K=5or 10

11

Underfitting
Overfitting

—\J A\

1de[fltt| Desired Overfitting

Image credit: hackernoon.com

Underfitting and Overfitting

Data complexity

Simple Complex

Model Low ok Underfitting

capacity High Overfitting ok

13

Model Capacity

* The ability to fit variety of
functions

* Low capacity models _"""

struggles to fit training set
— Underfitting

* High capacity models can
memorize the training set

— Overfitting

14

Influence of Model Complexity

- —_—
Underfitting Optimum Overfitting

Loss

/

Generalization loss

Training loss

>

Model complexity
15

Estimate Model Capacity

* It's hard to compare Jal
complexity between

©
different algorithms

— e.g. tree vs neural network
» Given an algorithm family,

two main factors matter:

— The number of parameters

— The values taken by each
parameter

d+1)m+m+ 1k

16

VC Dimension

* A center topic in Statistic
Learning Theory

* For a classification
model, it's the size of
the largest dataset, no
matter how we assign
labels, there exist a
model to classify them
perfectly

& 8 Viadimir Vapnik

Alexey Chervonenkis

17

VC-Dimension for Classifiers

« 2-D perceptron: VCdim =3

— Can classify any 3 points, but not 4 points
(xor)

/O N T

* Perceptron with N parameters: VCdim = N

 Some Multilayer Perceptrons: VCdim =
O(N log,(N))

18

Usefulness of VC-Dimension

* Provides theoretical insights why a model
Works

— Bound the gap between training error and
generalization error

« Rarely used in practice with deep learning

— The bounds are too loose

— Difficulty to compute VC-dimension for deep
neural networks

« Same for other statistic learning theory tools

19

Data Complexi

* Multiple factors matters
— # of examples

— # of features in each
example

— temporal/spacial structure
— diversity/coverage

20

Regularization

Neural Network - 10 Units, No Weight Decay Neural Network - 10 Units, Weight Decay=0.02

Training Emror: 0.100 : Training Error: 0.160
Test Enor: 0.259 Test Emor 0.223
Bayes Emor: 0.210 Bayes Emor 0.210

L> Regularization as Hard Constraint

* Reduce model complexity by
limiting value range

min £(0) subjectto ||6||*> <A y

— Often do not regularize bias b

* Doing or not doing has little X
difference in practice

— A small /1 means more
regularization

22

L> Regularization as Soft Constraint

« Using Lagrangian multiplier method
* Minimizing the loss plus additional penalty

. A
min 2(0) + 5||9||

— Hyper-parameter A controls regularization
Importance

— 4=0 : no effect

— 1> 00,0 >0

23

lllustrate the Effect on Optimal
Solutions

w* = argmin £(w,b) + EIIWII2

w* = argmin Z(w,b)

N—

24

Update Rule - Weight Decay

« Compute the gradient

9 A 90
9 2o+ 2012) = 229 4 20
00 2 00

* Update weight at step ¢ backprop

04(6)
0.1 = —nA)0,—n %0

— Often ni<1 | so also called weight decay in
deep learning

25

Weight Decay in Pytorch

import torch

learning_rate = le-3

welight _decay = 1.0

optimizer =
torch.optim.SGD(model.parameters()
, Lr=learning_rate,

welght decay=weight decay)

26

General Penalty

* Minimizing the loss plus additional penalty
min Z(0) + R(0)

— £(0) is the original loss

— R(0) is penalty (or regularization term), not
necessary smooth

27

L1 Regularization

* Minimizing the loss plus additional penalty
min Z(0) + 1|0

— £(0) is the original loss
— using L1 norm as penalty

28

L1 Update Rule - Soft Thresholding

« £(0) + A|0] is not always differentiable!
« Soft-threshold (Proximal operator):
S,(x) = sign(x) max(0, | x| — 4) = sign(x)Relu(| x| — 1)
« Update weight at step ¢
0 (6)
00,
Or1 = Sﬂ,(é)
* Also known as Proximal Gradient Descent

29

étzet H

Effects of L1 and L2 Regularization

* L1 Regularization

— will make parameters sparse (many
parameters will be zeros)

— could be useful for model pruning
» L2 Regularization

— will make the parameter shrink towards 0, but
not necessary 0.

30

Dropout

HiGH SCHX

Motivation

* A good model should be
robust under modest
changes in the input
— Dropout: inject noises

into internal layers
(simulating the noise)

32

Add Noise without Bias

* Add noise into x to get x’°, we hope

E[xX'| =X

* Dropout perturbs each element by

0 with probablity p
- otherise

33

Apply Dropout

« Often apply dropout on the output of
hidden fully-connected layers

h=c(Wx+b))
h’ = dropout(h)
o=W,h'+b,

y = softmax(o)

34

Dropout in Training and Inference

* Dropout is only used in training

h’ = dropout(h)
* No dropout is applied during inference!
* Pytorch Layer:

torch.nn.Dropout(p=0.5)

35

Dropout: Typical results

T ¥ T T
2.5_) e e — T —

odl . Without drop out .. A—

i V T W AN WA X) X
. v LAY TN - / :
3 01| ERPRRTETEPRTIPIRIRS e PR PPN LT PRE T A2 VA Ve Ve,

154

Classification Error %

i i i i
0 200000 400000 600000 800000 1000000
Number of weight updates

From Srivastava et al., 2013. Test error for
different architectures on MNIST with and without
dropout

— 2-4 hidden layers with 1024-2048 units

36

Recap

Generalization error: the expected error on unseen data
(general population)

Minimizing training loss does not always lead to
minimizing the generalization error

Under-fitting: model does not have adequate capacity ==>
Increase model size, or choose a more complex model

Over-fitting: validation loss does not decrease while
training loss still does
Regularization

— L1 ==> more sparse parameters

— L2/Weight decay ==> shrink parameters

— Dropout, equivalent to L2, but as a network Layer

37

Numerical Stability

Gradients for Neural Networks

» Consider a network with d layers

h'=fh™") and y=~¢ofc...0fi(x)

« Compute the gradient of the loss # w.r.t. w,

of of oh® on*t! on'

OW! ohd ohd-1" " oh! oW!

39

Two Issues for Deep Neural Networks

hl+1
oh’

Gradient Exploding Gradlent Vanishing

« Two common issues with H

0.8~ 2x 10710

40

Example: FFN

* Assume FFN (without bias for simplicity)

£ = o(Wh'™1) o is the activation function

ahf—l — dlag (g’(Wtht—l))(Wt)T o is the gradient function of o

T ohtl . .
= | [diag (c/(Whi=h)(w)?
=t

1=t

41

Gradient Exploding

 Use RelLU as the activation function

1 ifx>0

o(x) = max(0,x) and o'(x) = _
0 otherwise

i+1

» Elements of H‘)ah —Hd'ag o W) (W7 may
from H(Wl)T

— Leads to large values when d-t is large

1.5190 & 4 x 1017

42

Issues with Gradient Exploding

* Value out of range: infinity value
— Severe for using 16-bit floating points
> Range: 6E-5 ~ 6E4
* Sensitive to learning rate (LR)

— Not small enough LR -> large weights ->
larger gradients

— Too small LR -> No progress

— May need to change LR dramatically during
training

43

Gradient Vanishing

* Use sigmoid as the activation function
o'(x) = o(x)(1 = 6(x))

o(x) =

I +e*
1.07 — sigmoid
—— gradient
0.8
0.6 -
0.4
Small
0.2
0.0 - —

Gradient Exploding

* Use sigmoid as the activation function

o(x) = - o'(x) = o(x)(1 — o(x))
I +e*
° Elements ﬁa:: = ﬁdiag (' (Wh=h)(whHT are

products of d-t small values
0.810 ~ 2 x 10719

45

Issues with Gradient Vanishing

» Gradients with value O
— Severe with 16-bit floating points
* No progress in training
— No matter how to choose learning rate

« Severe with bottom layers
— Only top layers are well trained
— No benefit to make networks deeper

46

Stabilize Training

Stabilize Training

Goal: make sure gradient values are in a
proper range

— E.g.In[1e-6, 1e3]

Multiplication -> plus

— ResNet, LSTM (later lecture)

Normalize

— Gradient clipping

— Batch Normalization / Layer Normalization (later)

Proper weight initialization and activation
functions

48

Weight Initialization

random

* Initialize weights with
random values in a proper
range

« The beginning of training
easily suffers to numerical
instability

— The surface far away from
an optimal can be complex
— Near optimal may be flatter
* Initializing according to 470, 0.01) near optimal
works well for small
networks, but not guarantee
for deep neural networks

49

Constant Variance for each Layer

* Treat both layer outputs and gradients are
random variables

 Make the mean and variance for each layer’s
output are same, similar for gradients

Forward Backward

E[h]=0 of of |
E|—| =0 Var|— | =b Vi, t
Var[h/] = a ohf ohf

l

a and b are constants

50

Example: FFN

* Assumptions Epw; 1 =0, varfw!] =,

. t
— L..d w;

— p-lis independent to w;;
— Identity activation: n'=wn~! with W’ e R%¥-

E[h/] = E

;w

t -1
i,jhj

=) E[w!JE[R"] =0
J

51

Forward Variance

Var[h{] = E[(h})*] -

=[E Z(W

| J

_ -
[E[hit]2 = [szjhft 1J

4
L]

) (ht 1> +ZW1J zkht 1ht 1

JFk

= ;[E [(%)1 E [(h]?‘1>2]

=) Var[w! |Var[h!~'] = n,_,y,Var[h/~!]

J

n,_yy, =1

n,_y is the number of units in t-1 layer

52

Backward Mean and Variance

* Apply forward analysis as well

of of of \ ' AN
= W — whHT[=
oht-1 — oh leads to (ahf—l) (W) <0hf>

of
. [] o
oht-1

ot or
Var | T n;y,var T ny, =1

53

Xavier Initialization

» Conflict goal to satisfies both n,_,7, = 1
and ny, = 1

e Xavier rm-1+n)2=1 -y =2/n_ +n)
— Normal distribution # (0v27ei-+7))

— Uniform distribution « (-/87e). /67 +))
» Variance of %[-a,a] IS 42/3

* Adaptive to weight shape, especially when
n, varies

54

Other heuristics: Early stopping

error validation

training

epochs

« Continued training can result in over fitting to
training data
— Track performance on a held-out validation set

— Apply one of several early-stopping criterion to
terminate training when performance on validation
set degrades significantly 55

Additional heuristics: Gradient clipping

Loss

)y

« Often the derivative will be too high
— When the divergence has a steep slope
— This can result in instability
e Gradient clipping: set a ceiling on derivative value

ifo D> 0then 0,D =10

— Typical 0 value is 5
— Can be easily set in pytorch/tensorflow

56

Recap

* Numerical issues in training
— gradient explosion
— gradient vanishing

* Proper initialization of parameters

57

Next Up

* Convolutional Neural Networks
* Visual perception:

— Image classification

— Object recognition

— Face detection

58

