Privacy-Preserving Distributed Information Sharing

Lea Kissner
leak@cs.cmu.edu

Advisor: Dawn Song
dawnsong@cmu.edu
Why Share?

• Many applications require mutually distrustful parties to share information

• Many examples in two major categories
 • *Statistics-gathering*. Determining the number of cancer patients on welfare, distributed network monitoring
 • *Security enforcement*. Enforcing the `do-not-fly' list, catching people who fill prescriptions twice
Why Privacy?

• There are complex laws and customs surrounding the use of many kinds of information
 • HIPPA for health information in the U.S.
 • Broad laws in Canada and Europe
 • Customers may avoid companies who compromise data

• Thus, privacy is an important concern in sharing many types of information
Applications

• Do-not-fly list
 • Airlines must determine which passengers cannot fly
 • Government and airlines cannot disclose their lists
Applications

- Public welfare survey: number of welfare recipients who have cancer
- Each list of cancer patients is confidential
- Welfare rolls are confidential
- To reveal the number of welfare recipients who have cancer, must compute private union and intersection operations
Applications

• Distributed network monitoring
 • Nodes in a network identify anomalous behaviors
 • If a possible attack only appears a few times, it is probably a false positive, and should be filtered out
 • The nodes must privately compute the element reduction and union operations
 • If an element \(a \) appears \(t \) times in \(S \), \(a \) appears \(t-1 \) times in the reduction of \(S \)
Current Solutions

- There are some protocols for privacy-preserving information sharing, but:
 - Most applications use a trusted third party (TTP)
 - Some applications are foregone entirely
- A TTP can become a security problem:
 - Betrayal of trust
 - Social engineering
 - Attractive target for attacks
Thesis

• Is it possible to construct protocols for privacy-preserving distributed information sharing such that:
 • eliminate the TTP
 • efficient protocols on large bodies of data
 • applicable to many practical situations
Outline

• Motivation
• Thesis
• Completed Work
 • Privacy-Preserving Set Operations
 • Privacy-Preserving Hot Item Identification
• Proposed Work
• Timeline
• Conclusion
Set Operations

- Each player has a private input multiset
- Composable, efficient, secure techniques for calculating multiset operations:
 - Union
 - Intersection
 - Element reduction (each element \(a\) that appears \(b>0\) times in \(S\), appears \(b-1\) times in \(Rd(S)\))
Set Operations

• We apply these efficient, secure techniques to a wide variety of practical problems:

 • Multiset intersection
 • Cardinality of multiset intersection
 • Over-threshold set-union
 • Variations on threshold set-union
 • Determining subset relations
 • Computing CNF boolean formulas
Polynomial Rep.

• To represent the multiset S as a polynomial with coefficients from a ring R, compute $\prod_{a \in S} (x - a)$

• The elements of the set represented by f is the **roots of f of a certain form** $y \parallel h(y)$

• Random elements are not of this form (with overwhelming probability)

• Let elements of this form represent elements of P
Security

• We design our techniques for set operations on polynomials to hide all information but the result.

• Formally, we define security (privacy-preservation) for the techniques we present as follows:

• The output of a trusted third party (TTP) can be transformed in probabilistic polynomial time to be identically distributed to a TTP using our techniques.

TTP

OUR

TTP

TRANSLATION

SAME DISTRIBUTION
Security

• A uniformly distributed polynomial is one with each coefficient chosen uniformly at random

• If A is the multiset result of an operation, the polynomial representation calculated by our techniques is of the following form:

\[
\left(\prod_{a \in A} (x - a) \right) \ast u
\]

• where u is a uniformly distributed polynomial (length depends on previous operations, size of operands)
Techniques

• Let S, T be multisets represented by the polynomials f, g. Let r, s be uniformly distributed polynomials.

• Union -- $S \cup T$ is calculated as $f*g$

• Intersection -- $S \cap T$ is calculated as $f*r+g*s$

 • Poly. addition preserves shared roots of f, g

 • Use of random polynomials ensures correctness and masks other information about S, T

• The operation can be extended to ≥ 3 multisets
Techniques

• Standard result: if \(f(a) = 0 \),
 \[
 f^{(d)}(a) = 0 \iff (x-a)^{d+1} \mid f
 \]

• Let \(S \) be a multiset represented by the polynomial \(f \). Let \(r, s \) be uniformly distributed polynomials, and \(F \) a random public polynomial of degree \(d \).

• Element reduction -- \(\text{Rd}_d(S) \) is calculated as
 \[
 f^{(d)} * F * r + f * s
 \]

• According to standard result, desired result is obtained by calculating intersection of \(f, f^{(d)} \)
Without TTP

• We now give techniques to allow use of our operations in real-world protocols

• Encrypt coefficients of polynomial using a threshold additively homomorphic cryptosystem

• We can perform the calculations needed for our techniques with encrypted polynomials (examples use Paillier cryptosystem)

• Addition

\[
\begin{align*}
 h &= f + g \\
 h_i &= f_i + g_i \\
 E(h_i) &= E(f_i) \cdot E(g_i)
\end{align*}
\]
Without TTP

• We can perform the calculations needed for our techniques with encrypted polynomials

 - Formal derivative
 \[
 h = f'
 \]
 \[
 h_i = (i + 1) f_{i+1}
 \]
 \[
 E(h_i) = E(f_i)^{i+1}
 \]

 - Multiplication
 \[
 h = f * g
 \]
 \[
 h_i = \sum_{j=0}^{k} f_j * g_{i-j}
 \]
 \[
 E(h_i) = \prod_{j=0}^{k} E(f_j)^{g_{i-j}}
 \]
Multiset Intersection

- Let each player i ($1 \leq i \leq n$) hold an input multiset S_i

- Each player calculates the polynomial f_i representing their private input set and broadcasts $E(f_i)$

- For each i, each player j ($1 \leq j \leq n$) chooses a uniformly distributed polynomial $r_{i,j}$, and broadcasts $E(f_i \ast r_{i,j})$

- All players calculate and decrypt $E \left(\sum_{i=1}^{n} f_i \ast \left(\sum_{j=1}^{n} r_{i,j} \right) \right) = E(p)$

- Players determine the intersection multiset: if $(x - a)^b \mid p$ then a appears b times in the result
General Functions

• Using our techniques, efficient protocols can be constructed for any function described by (let \(s \) be a privately held set):

\[
\gamma ::= s \mid R_d(\gamma) \mid \gamma \cap \gamma \mid s \cup \gamma \mid \gamma \cup s
\]

• To compute the operator \(A \cup B \), where \(E(f), E(g) \) are encrypted polynomial representations of \(A, B \):

 - Players additively share \(g \); each player holds \(g_i \)
 - Each player computes \(E(f \cdot g_i) \), and all players compute \(E(f \cdot g_1 + \ldots + f \cdot g_n) = E(f \cdot g) \)
Outline

• Motivation
• Thesis
• Completed Work
 • Privacy-Preserving Set Operations
 • Privacy-Preserving Hot Item Identification
• Proposed Work
• Timeline
• Conclusion
Hot Item Identification

• *Hot Item ID* is the problem of identifying items that appear often in players’ private input sets

• Can be addressed by our privacy-preserving set operation techniques

• Requires greater efficiency and flexibility, in many applications
 • Distributed network monitoring
 • Distributed computer troubleshooting
Hot Item Identification

- We give protocols that:
 - use comparable bandwidth to non privacy-preserving protocols
 - use only lightweight, efficient cryptography
 - players can join and leave at any time
 - very robust for ALL connected players
 - use tailored security definitions
Approx. Filters

• We utilize a strategy of approximate collaborative filtering

• Each player constructs a set of local filters to represent his private input set

• For each element a, for filter $1 \leq i \leq T$, mark bucket $h_i(a)$ as ‘hit’

<table>
<thead>
<tr>
<th>Filter 1</th>
<th>Filter 2</th>
<th>Filter 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$h_1(a) = 2$
$h_2(a) = 4$
$h_3(a) = 1$
Global Filters

- Each bucket hit by at least \(t \) people is marked as `hot`

- An item \(a \) is hot if \(\forall i \in [T] \) \(h_i(a) \) is hot

<table>
<thead>
<tr>
<th>(S_1 = {\text{Alice,Bob}})</th>
<th>(S_2 = {\text{Alice,Charlie}})</th>
<th>(S_3 = {\text{Alice,Dave}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>filter 1 (h_1(\cdot))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>filter 2 (h_2(\cdot))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>filter 3 (h_3(\cdot))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exact Global Filters

<table>
<thead>
<tr>
<th>0</th>
<th>3</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Approx. Global Filters

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Approx. Counting

- The players construct global filters
 - For each bucket of each filter, the players determine whether at least t players hit it

- Exact counting is expensive, so we utilize an approximate counting scheme

- We will count the number of distinct uniformly distributed elements
 - Each player can produce exactly one uniformly distributed element per bucket
 - These *One-Show Tags* can be constructed using a modified group signature scheme
Approx. Counting

- If the kth smallest uniform element in S is $\alpha \in (0,1]$, then we estimate that $|S| = k/\alpha$
- $\geq t$ elements iff there are $\geq k$ items s.t. $\alpha \leq k/t$
- Thus, for each bucket in each filter, the players try to collect these k items
 - Broadcast eligible tags to neighbors
 - Forward tags until have sent k or converges
 - Valid
 - Small (tag value is $\leq k/t$)
Outline

• Motivation
• Thesis
• Completed Work
• Proposed Work
 • Overview
 • Secure Cryptographic Substitution Framework
• Timeline
• Conclusion
Proposed Work

• We wish to explore at least one problem in the following areas, relating to privacy-preserving distributed information sharing:
 • Improved efficiency
 • Extending scope -- there are not efficient protocols for many situations
 • all of our protocols, and most related work, compute on sets or multisets
 • there are interesting opportunities in other structures, such as graphs, junction trees, etc.
Tool Substitution

- Many protocols secure against malicious adversaries are inefficient

- We believe that use of more efficient tools can make many protocols more efficient

- Examples:
 - Equivocal, chameleon, ... commitments (as used in our set operation protocols)
 - no-key boxes (undecrypted ciphertexts)

- We wish to allow secure substitution of expensive tools for more efficient ones
Tool Substitution

• Main idea: any pair of tools that are *interface indistinguishable* can be substituted in almost all protocols secure against malicious parties, even when these substituted tools are composed.

```
Normal Commitment

Commit
Decommit

Equivocal Commitment

Commit
Decommit
```

Cheating
Tool Substitution

- A tool is interface indistinguishable if it `acts like' the ideal functionality
- We have multiple ways of proving this -- intuitively, they all show security
- We say A is a workalike of B if
 - B is secure with respect to ideal functionality I
 - A is left-or-right indistinguishable from I
Tool Substitution

• A *handle* is any input/output data that differs between workalikes A and B (commitments, ciphertexts)

• Theorem: we can securely substitute tool A for tool B if
 • A is a workalike of B
 • The protocol does not require any player to send a non-identity function of a handle
Tool Substitution

• Proof by non-uniform reduction
• The tool translator mediates communication between parties using the original tool and the substituted tool
• This translator often must be non-uniform
• Use of the translator gives a simulation proof
Tool Substitution

- Future work
 - Attempt proof in standard model
 - Complete formalization of proofs
 - Non-uniform
 - Non-black-box
 - Possibly standard or other models
Outline

- Motivation
- Thesis
- Completed Work
- Proposed Work
- Related Work
- *Timeline*
- *Conclusion*
Timeline

- Sept. 2005 -- Complete proofs for tool substitution
- Nov. 2005 -- Formalize proofs for tool substitution
- Dec. 2005 -- Begin exploration of other problems
- May 2006 -- Begin writing thesis draft
- July 2006 -- Draft thesis completed
- Aug. 2006 -- Thesis defense
Conclusion

• In my thesis, I will address efficient and secure protocols for privacy-preserving distributed information sharing
 • Privacy-preserving multiset operations
 • Hot item identification and publication
 • Secure cryptographic tool substitution
• These protocols and techniques allow practical and secure use of many important applications.
Thank You!