Privacy-Preserving Distributed Information Sharing

Lea Kissner leak@cs.cmu.edu

Advisor: Dawn Song dawnsong@cmu.edu

Why Share?

- Many applications require mutually distrustful parties to share information
- Many examples in two major categories
 - Statistics-gathering. Determining the number of cancer patients on welfare, distributed network monitoring
 - Security enforcement. Enforcing the `do-not-fly' list, catching people who fill prescriptions twice

Why Privacy?

- There are complex laws and customs surrounding the use of many kinds of information
 - HIPPA for health information in the U.S.
 - Broad laws in Canada and Europe
 - Customers may avoid companies who compromise data
- Thus, privacy is an important concern in sharing many types of information

Applications

- Do-not-fly list
 - Airlines must determine which passengers cannot fly
 - Government and airlines cannot disclose their lists

Applications

- Public welfare survey: number of welfare recipients who have cancer
 - Each list of cancer patients is confidential
 - Welfare rolls are confidential
 - To reveal the number of welfare recipients who have cancer, must compute private union and intersection operations

Applications

- Distributed network monitoring
 - Nodes in a network identify anomalous behaviors
 - If a possible attack only appears a few times, it is probably a false positive, and should be filtered out

 Anomalous Behaviors Per Node
 - The nodes must privately compute the element reduction and union operations
 - If an element a appears t times in S, a appears t-I times in the reduction of S

Current Solutions

- There are some protocols for privacypreserving information sharing, but:
 - Most applications use a trusted third party (TTP)
 - Some applications are foregone entirely
- ATTP can become a security problem:
 - Betrayal of trust
 - Social engineering
 - Attractive target for attacks

Thesis

- Is it possible to construct protocols for privacy-preserving distributed information sharing such that:
 - eliminate the TTP
 - efficient protocols on large bodies of data
 - applicable to many practical situations

Outline

- Motivation
- Thesis
- Completed Work
 - Privacy-Preserving Set Operations
 - Privacy-Preserving Hot Item Identification
- Proposed Work
- Timeline
- Conclusion

Set Operations

- Each player has a private input multiset
- Composable, efficient, secure techniques for calculating multiset operations:
 - Union
 - Intersection
 - Element reduction (each element a that appears b>0 times in S, appears b-1 times in Rd(S))

Set Operations

- We apply these efficient, secure techniques to a wide variety of practical problems:
 - Multiset intersection
 - Cardinality of multiset intersection
 - Over-threshold set-union
 - Variations on threshold set-union
 - Determining subset relations
 - Computing CNF boolean formulas

Polynomial Rep.

- To represent the multiset S as a polynomial with coefficients from a ring R, compute $\prod_{a \in S} (x a)$
- The elements of the set represented by f is the roots of f of a certain form $y \mid\mid h(y)$
 - Random elements are not of this form (with overwhelming probability)
 - Let elements of this form represent elements of P

Security

 We design our techniques for set operations on polynomials to hide all information but the result

 Formally, we define security (privacypreservation) for the **techniques** we present as follows:

 The output of a trusted third party (TTP) can be transformed in probabilistic polynomial time to be identically distributed to a TTP using our techniques

Security

- A uniformly distributed polynomial is one with each coefficient chosen uniformly at random
- If A is the multiset result of an operation, the polynomial representation calculated by our techniques is of the following form:

$$\left(\prod_{a\in A}(x-a)\right)*u$$

 where u is a uniformly distributed polynomial (length depends on previous operations, size of operands)

Techniques

- Let S,T be multisets represented by the polynomials f, g. Let r, s be uniformly distributed polynomials.
- Union -- S∪T is calculated as f*g
- Intersection -- $S \cap T$ is calculated as f*r+g*s
 - Poly. addition preserves shared roots of f, g
 - Use of random polynomials ensures correctness and masks other information about S,T
 - The operation can be extended to ≥3 multisets

Techniques

- Standard result: if f(a)=0, $f^{(d)}(a)=0 \Leftrightarrow (x-a)^{d+1} \mid f$
- Let S be a multiset represented by the polynomial f. Let r, s be uniformly distributed polynomials, and F a random public polynomial of degree d.
- Element reduction -- $Rd_d(S)$ is calculated as $f^{(d)}*F*r + f*s$
 - According to standard result, desired result is obtained by calculating intersection of f, f^(d)

Without TTP

- We now give techniques to allow use of our operations in real-world protocols
- Encrypt coefficients of polynomial using a threshold additively homomorphic cryptosystem
- We can perform the calculations needed for our techniques with encrypted polynomials (examples use Paillier cryptosystem)
 - Addition

$$h = f + g$$

$$h_i = f_i + g_i$$

$$E(h_i) = E(f_i) * E(g_i)$$

Without TTP

- We can perform the calculations needed for our techniques with encrypted polynomials
 - Formal derivative

$$h_i = f'$$

$$h_i = (i+1)f_{i+1}$$

$$E(h_i) = E(f_i)^{i+1}$$

Multiplication

$$h_{i} = f * g$$

$$h_{i} = \sum_{j=0}^{k} f_{j} * g_{i-j}$$

$$E(h_{i}) = \prod_{j=0}^{k} E(f_{j})^{g_{i-j}}$$

Multiset Intersection

- Let each player i (I≤i≤n) hold an input multiset S_i
- Each player calculates the polynomial f_i representing their private input set and broadcasts $E(f_i)$
- For each i, each player j (I≤j≤n) chooses a uniformly distributed polynomial $r_{i,i}$, and broadcasts $E(f_i * r_{i,j})$
- All players calculate and decrypt $E\left(\sum_{i=1}^n f_i * \left(\sum_{j=1}^n r_{i,j}\right)\right) = E(p)$ Players determine the intersection multiset: if $(x-a)^b \mid p$
- then a appears b times in the result

General Functions

- Using our techniques, efficient protocols can be constructed for any function described by (let s be a privately held set):
 - $\gamma ::= s \mid Rd_d(\gamma) \mid \gamma \cap \gamma \mid s \cup \gamma \mid \gamma \cup s$
- To compute the operator A ∪ B, where E(f), E(g) are encrypted polynomial representations of A, B
 - Players additively share g; each player holds g_i
 - Each player computes $E(f^*g_i)$, and all players compute $E(f^*g_1 + ... + f^*g_n) = E(f^*g)$

Outline

- Motivation
- Thesis
- Completed Work
 - Privacy-Preserving Set Operations
 - Privacy-Preserving Hot Item Identification
- Proposed Work
- Timeline
- Conclusion

Hot Item Identification

- Hot Item ID is the problem of identifying items that appear often in players' private input sets
- Can be addressed by our privacy-preserving set operation techniques
- Requires greater efficiency and flexibility, in many applications
 - Distributed network monitoring
 - Distributed computer troubleshooting

Hot Item Identification

- We give protocols that:
 - use comparable bandwidth to non privacypreserving protocols
 - use only lightweight, efficient cryptography
 - players can join and leave at any time
 - very robust for ALL connected players
 - use tailored security definitions

Approx. Filters

- We utilize a strategy of approximate collaborative filtering
 - Each player constructs a set of local filters to represent his private input set
 - For each element a, for filter $1 \le i \le T$, mark bucket $h_i(a)$ as `hit'

Global Filters

- Each bucket hit by at least t people is marked as `hot'
- An item a is hot if $\forall_{i \in [T]} h_i(a)$ is hot

Approx. Counting

- The players construct global filters
 - For each bucket of each filter, the players determine whether at least t players hit it
- Exact counting is expensive, so we utilize an approximate counting scheme
- We will count the number of distinct uniformly distributed elements
 - Each player can produce exactly one uniformly distributed element per bucket
 - These One-Show Tags can be constructed using a modified group signature scheme

Approx. Counting

- If the kth smallest uniform element in S is $\alpha \in (0,1]$, then we estimate that $|S|=k/\alpha$
 - $\geq t$ elements iff there are $\geq k$ items s.t. $\alpha \leq k/t$
- Thus, for each bucket in each filter, the players try to collect these k items
 - Broadcast eligible tags to neighbors
 - Forward tags until have sent k or converges
 - Valid
 - Small (tag value is $\leq k/t$)

Outline

- Motivation
- Thesis
- Completed Work
- Proposed Work
 - Overview
 - Secure Cryptographic Substitution Framework
- Timeline
- Conclusion

Proposed Work

- We wish to explore at least one problem in the following areas, relating to privacypreserving distributed information sharing:
 - Improved efficiency
 - Extending scope -- there are not efficient protocols for many situations
 - all of our protocols, and most related work, compute on sets or multisets
 - there are interesting opportunities in other structures, such as graphs, junction trees, etc.

- Many protocols secure against malicious adversaries are inefficient
- We believe that use of more efficient tools can make many protocols more efficient
- Examples:
 - Equivocal, chameleon, ... commitments (as used in our set operation protocols)
 - no-key boxes (undecrypted ciphertexts)
- We wish to allow secure substitution of expensive tools for more efficient ones

 Main idea: any pair of tools that are interface indistinguishable can be substituted in almost all protocols secure against malicious parties, even when these substituted tools are composed

- A tool is interface indistinguishable if it `acts like' the ideal functionality
- We have multiple ways of proving this -intuitively, they all show security
- We say A is a workalike of B if
 - B is secure with respect to ideal functionality I
 - A is left-or-right indistinguishable from I

- A handle is any input/output data that differs between workalikes A and B (commitments, ciphertexts)
- Theorem: we can securely substitute tool A for tool B if
 - A is a workalike of B
 - The protocol does not require any player to send a non-identity function of a handle

- Proof by non-uniform reduction
- The tool translator mediates communication between parties using the original tool and the substituted tool
- This translator often must be non-uniform
- Use of the translator gives a simulation proof

- Future work
 - Attempt proof in standard model
 - Complete formalization of proofs
 - Non-uniform
 - Non-black-box
 - Possibly standard or other models

Outline

- Motivation
- Thesis
- Completed Work
- Proposed Work
- Related Work
- Timeline
- Conclusion

Timeline

- Sept. 2005 -- Complete proofs for tool substitution
- Nov. 2005 -- Formalize proofs for tool substitution
- Dec. 2005 -- Begin exploration of other problems
- May 2006 -- Begin writing thesis draft
- July 2006 -- Draft thesis completed
- Aug. 2006 -- Thesis defense

Conclusion

- In my thesis, I will address efficient and secure protocols for privacy-preserving distributed information sharing
 - Privacy-preserving multiset operations
 - Hot item identification and publication
 - Secure cryptographic tool substitution
- These protocols and techniques allow practical and secure use of many important applications.

