
Midterm II
15-453: Formal Languages, Automata, and

Computability

Lenore Blum, Asa Frank, Aashish Jindia, and Andrew Smith

April 8, 2014

Instructions:

1. Once the exam begins, write your name on each sheet.

2. This is a closed-book examination.

3. Do all your work on the attached sheets. Justify your answers.

4. There are 10 questions for a total of 150 points. 100 points will guarantee an A.

5. You have 80 minutes to answer the questions.

6. Read over the whole exam. Pace yourself. Check your work. Good luck!

Last name: First name:

Signature: Andrew ID:

Question Points Score
1-5 50
1a 10
2a 10
3a 10
4a 10
5a 10
6 10
7 10
8 10
9 10
10 10

Total 150

15-453 Midterm 1 Name:

1. Recall the following definitions:

• ATM = {〈M,w〉 |M is a Turing machine and w ∈ L(M)}
• ETM = {〈M〉 |M is a Turing machine and L(M) = ∅}
• EQTM = {〈M,N〉 |M and N are Turing machines and L(M) = L(N)}
• EQDFA = {〈M,N〉 |M and N are DFAs and L(M) = L(N)}
• EQPDA = {〈M,N〉 |M and N are PDAs and L(M) = L(N)}

Additionally, define NoLeft to be the language of pairs 〈M,w〉 where M is a Turing
machine, and when M is run on input w it never moves the tape head left during
computation.

Finally, recall that ATM is Turing-recognizable but not Turing co-recognizable.

Fill in the following table. Justify your answers for part a. (5 points for each correct
cell; -5 points for each incorrect cell; 10 points for each justification)

Language Turing Recognizable? Turing co-Recognizable?
0 ATM a. Yes b. No
1 ETM a. No a. Yes
2 EQTM a. No b. No
3 EQDFA a. Yes b. Yes
4 EQPDA a. No b. Yes
5 NoLeft a. Yes b. Yes

1a. (10 points) Justify.

Solution: We will show that ¬ATM ≤m ETM .
Given an input 〈M,w〉 for ¬ATM , we create a new machine T〈M,w〉 that does the fol-
lowing:
T〈M,w〉 =”On input x,
1. Return M(w)”
Now, if w /∈ L(M) then T〈M,w〉 will not accept any strings and L(T〈M,w〉) = ∅.
Hence, T〈M,w〉 ∈ ETM . If w ∈ L(M) then T〈M,w〉 will accept all strings and T〈M,w〉 /∈
ETM

We have successfully shown that ¬ATM ≤m ETM . If ETM was Turing-recognizable,
then would ¬ATM be too. But we know that this is not the case. Hence, ETM is not
Turing recognizable.

2a. (10 points) Justify.
Solution: We will show that ETM ≤m EQTM .
Let M∅ be the Turing machine that rejects all inputs. So, L(M∅) = ∅.
Given an input 〈M〉 for ETM , we will construct the input 〈M,M∅〉 for EQTM .
Now, if M ∈ ETM , we have that L(M) = ∅ = L(M∅). Therefore 〈M,M∅〉 ∈ EQTM . If
M /∈ ETM then L(M) 6= L(M∅) and 〈M,M∅〉 /∈ EQTM .
Hence, ETM ≤m EQTM . So if EQTM was Turing recognizable, then ETM would be
too. But we have shown that it is not. So, EQTM is not Turing Recognizable.

Page 2 of 6

15-453 Midterm 1 Name:

3a. (10 points) Justify.
Solution: We can design a decider for EQDFA as follows:
M =”On input 〈M1,M2〉:
1. Minimize M1 and M2 using the DFA minimization algorithm.
2. Compare states and transitions of minimized DFAs and check for equivalence.
3. Accept if the minimized DFAs are equivalent and reject otherwise.”
This machine decides EQDFA. So, EQDFA is decidable and hence Turing-Recognizable.

4a. (10 points) Justify.
Solution: We will show that ¬ATM ≤m EQPDA.
Let P∅ be the PDA that rejects all inputs.
Given an input 〈M,w〉 for ¬ATM , we construct a PDA PM,w which accepts only those
strings that are accepting configuration histories of M run on input w. We know from
class that we can create such a PDA. We then construct input 〈PM,w, P∅〉 for EQPDA.
Now, if w /∈ L(M) then there are no accepting configuration histories of M run on w
and L(PM,w) = ∅ = L(P∅). So, 〈PM,w, P∅〉 ∈ EQPDA.
If w ∈ L(M) then there is at least one string accepted by PM,w and L(PM.w) 6= L(P∅).
So, 〈PM,w, P∅〉 /∈ EQPDA.
Hence, ¬ATM ≤m EQPDA. Therefore since ¬ATM is not turing recognizable, we have
that EQPDA cannot be Turing recognizable either.

5a. (10 points) Justify.
Solution: We have the following algorithm to decide NoLeft:
Given 〈M,w〉, run TM M on w for |w|+n+ 1 steps, where n =number of states of M.
If during the run, TM ever goes left then reject. If not then accept.

After |w| steps, if the turing machine head never moves left, then we would have
reached the end of input and beginning of blank cells. At this point, if we will only
be following blank transitions. So, if after n + 1 steps, we never move left, then by
pigeonhole principle we would have looped back to some state following only blank
transitions without moving left and hence will never move left.

Page 3 of 6

15-453 Midterm 1 Name:

6 (10 points) Let DoubleSat be the language of CNF formulas with at least two sat-
isfying assignments. Show that DoubleSat is NP-complete.

Solution:
DoubleSat ∈NP: A polynomial verifier for DoubleSat would take as input the CNF
and two satisfying assignments, both of polynomial length. To verify it, the verifier
would just test the assignments against the CNF and check their validity and that they
are different. All of this is possible in polynomial time. Hence, DoubleSat ∈ NP .

DoubleSat is NP-Hard: We will prove this by reducing 3-SAT to DoubleSat.
Given an input 3-CNF φ for a 3-SAT problem, we create input φ′ for DoubleSat as:
φ′ = φ ∧ (x ∨ x ∨ ¬x), where x is a new variable that does not appear in φ.
Now, if φ ∈ 3 − SAT , we have that there is at least one satisfying assignment for φ.
For this assignment, we then have at least 2 satisfying assignments for φ′, one with
x = TRUE and one with x = FALSE. Hence, φ′ ∈ DoubleSat
If φ′ ∈ DoubleSat, then we have at least two satisfying assignment for φ′. Since
φ′ = φ ∧ (x ∨ x ∨ ¬x), we have that both φ and (x ∨ x ∨ ¬x) are satisfied by these
assignments. Also since x appears only in the final clause, removing it from the sat-
isfying assignments of φ′ will yield at least one satisfying assignment for φ. So, φ ∈
3-SAT
Hence, we have successfully reduced 3-SAT to DoubleSat. Moreover this reduction
was in polynomial time. So, DoubleSat is NP-Hard.
We have hence shown that DoubleSat is NP-Complete.

7 (10 points) If A ≤m B and B is regular, must A be regular? Explain your answer.

Solution: No, A may not be regular.
Consider the sets A = {0n1n|∀n ∈ N} and B = {1}
Consider a function f defined as:

f(s) =

{
1 if s is of the form 0n1n

0 otherwise

This function is computable because a Turing machine can easily check if the input is
of the given form and print out the corresponding value accordingly.
Now, if s ∈ A, we have f(s) = 1 ∈ B and if s /∈ A, f(s) = 0 /∈ B.
Therefore, we have that A ≤m B, B is regular and A is not regular.

Page 4 of 6

15-453 Midterm 1 Name:

8 (10 points) Define

Halts = {〈M,w〉 |M is a Turing machine which halts on input w.}
Total = {〈M〉 |M is a Turing machine which halts on all input.}

If we have an oracle for Halts, can we use this to decide Total?

Solution: We from from class that Halt ∈ Σ0
1 and Total ∈ Π0

2. We also have from
class that Total is in fact m-complete in Π0

2. Hence we cannot have that Total ∈ ∆0
2

as ∆0
2 6= Π0

2.
Therefore, Total cannot be decided even with an oracle for Halt because it is not
in ∆0

2.

9 (10 points) Recall that a Turing machine is minimal if there is no equivalent Turing
machine with a shorter description, and that MinTM is the language of minimal Turing
machines. Show that any infinite subset of MinTM is not Turing-recognizable.

Solution: Assume for sake of contradiction that there exists some infinite subset of
MinTM that is Turing-Recognizable. Let this subset be S.
Since S is Turing-recognizable, we have that there exists some enumerator E that
enumerates S. Consider the following turing machine M:
M = ”On input x:
1. Obtain own source code 〈M〉.
2. Use E to enumerate elements of S until you find a TM T output by E such that
|〈M〉| < |〈T 〉|.
3. Output T(x).”

We have that step 1 is possible by the recursion theorem. In step 2 will will eventually
find such a TM T because S is infinite and hence its elements’ lengths are not bounded.
Hence, we have that the above Turing machine M effectively simulates T on all it’s
inputs. i.e., M accepts, rejects and loops on exactly those inputs that are accepted,
rejected and looped on respectively by T. Therefore M is equivalent to T. But we have
that |〈M〉| < |〈T 〉|. This is a contradiction as T is supposed to be minimal. Hence,
MinTM has no infinite subset that is Turing recognizable.

Page 5 of 6

15-453 Midterm 1 Name:

10 (10 points) Define HalfClique to be the language

{〈G〉 | G is an undirected graph containing a clique with at least half its vertices} .
Show that HalfClique is NP-complete.

Solution:
HalfClique ∈ NP: A possible verifier for HalfClique could take as input the Graph
and set of vertices that form a half-clique. It would then just check if the set has size
at least half the number of vertices and if the set of vertices forms a clique. Each of
these is possible in polynomial time. Hence HalfClique ∈ NP .

HalfClique is NP-Hard: We will show this by reducing Clique to HalfClique.
Given an input 〈G, k〉 for Clique we create an input for HalfClique based on the
following cases:

1. If k = |G|
2

, our new input is 〈G〉.

In this case if 〈G〉 ∈ HalfClique, then we have a clique of size at least |G|/2 = k.
So, a clique of size k exists in G and 〈G, k〉 ∈ Clique. If 〈G〉 /∈ HalfClique then
the largest clique in G is of size < |G|/2 = k. So 〈G, k〉 /∈ Clique

2. If k < |G|
2

, then construct graph G’ by adding adding a complete graph of |G| − 2k
vertices to G and connecting each of these new vertices to every vertex in G. Our new
input is now 〈G′〉

In this case, if 〈G′〉 ∈ HalfClique, then there exists a clique of size ≥ |G| − k. We
know that at most|G|−2k of these vertices came from the complete graph we added, we
know that the original graph G must have had a clique of size ≥ |G|−k−(|G|−2k) = k.
So, 〈G, k〉 ∈ Clique. If 〈G′〉 /∈ HalfClique then the largest clique in G’ has size
< |G| − k. Since the added complete graph would have increased the size of largest
clique in G by |G| − 2k, we have that the largest clique in G is of size < k. Hence,
〈G, k〉 /∈ Clique

3. If k > |G|
2

, then construct graph G’ by adding 2k − |G| new isolated vertices to G.
Our new input is now 〈G′〉.

In this case, if 〈G′〉 ∈ HalfClique, then there exists a clique of size ≥ k. We know
that none of the new vertices could have contributed to this clique as they were all
isolated. So this clique exists wholly within the original graph G. So, 〈G, k〉 ∈ Clique.
If 〈G′〉 /∈ HalfClique, then the largest clique in G’ has size < k. This would hence
also be the largest clique in G and therefore, 〈G, k〉 /∈ Clique.
We have hence successfully reduced Clique to HalfClique. So, HalfClique is
NP-Hard.

So, HalfClique is NP-Complete.

Page 6 of 6

