
1

Definition. A partially labeled graph is a tuple (V,E,L,m), where (V,E) forms a graph (called
the underlying graph), L ⊆ V , and m : L→ N is a function.

Definition. A mine assignment of a partially labeled graph G = (V,E, L,m) is a subset of V \ L
such that for each v ∈ L, m(v) = |N(v) ∩M |.

Definition. Define MineConsistency to be the language

{〈G〉 | G is a partially labeled graph and there exists a mine assignment on G}

where G is represented as lists of vertices and edges, and a list of pairs 〈v,m(v)〉.

Now first, we need to prove that MineConsistency ∈ NP. We define the certificate of a mine-
labeled graph to be the mine assignment, and clearly only graphs in MineConsistency have
certificates. A verifier then need only check that L ⊆ V \M , and that each m(v) = |N(v)∩M |, so
clearly there is a polynomial-time verifier.

Next, to show that MineConsistency is NP-hard, we show 3-SAT ≤p MineConsistency. For
any CNF φ with variables x1, · · · , xn and clauses c1, · · · , cs, we define the partially labeled graph
Gφ = (V,E, L,m) with mine labeling mφ : L→ N:

V = {vi, xi,¬xi | i ≤ n} t {cj , c1j , c2j | j ≤ s}
E = {{vi, xi}, {vi,¬xi} | i ≤ n} ∪ {{cj , c1j}, {cj , c2j} | j ≤ s} ∪ {{x, c} | x is a literal apearing in clause c}
L = {vi | i ≤ n} ∪ {cj | j ≤ s}

where m(vi) = 1 and mφ(cj) = 3.

The number of vertices is 3n+3s, the number of edges is 2n+5s, and the number of labels is n+s,
so 〈Gφ,mφ〉 can be computed in polynomial time in the size of φ.

Claim. If there is a satisfying assignment to φ, there is a mine assignment on Gφ.

Proof. Consider the set M of true literals in the satisfying assignment. Clearly it has only one of
{xi,¬xi} for each i, so each vi neighbors exactly 1 = m(vi) mines.
Moreover, each cj neighbors at least one true literal and at most three. Thus we can add some
amount of c1j , c

2
j to M so that cj borders exactly 3 = m(cj) mines.

Claim. If there is a mine assignment on Gφ, there is a satisfying assignment to φ.

Proof. Let M be the mine assignment, and consider M ∩ {xi,¬xi | i ≤ n}. Since each vi borders
exactly one mine, this contains exactly one of each {xi,¬xi}, so it is a valid assignment to φ. Since
each cj borders exactly 3 mines, and only 2 of its neighbors are not literals, it borders some literal
which is a mine, and hence set true in the assignment. This is a satisfying assignment to φ.

Hence 〈Gφ〉 ∈ MineConsistency iff φ ∈ 3-SAT. Thus the polynomial-time computable function
φ 7→ 〈Gφ〉 is a reduction, and 3-SAT ≤p MineConsistency.

2

If the window was 2x2, we might not detect certain invalid configurations due to the head appearing
more than once in the same row. For example, if a NTM had the choice of moving its head left or
right when in a certain state, on reading a certain symbol then the next configuration must have
one of these possibilities, but not both at once! However, if we used a 2x2 window, a row that
contained two state symbols corresponding to each possible next move would not appear incorrect,
as each window would be legal on its own. Furthermore, once two heads appeared in a single row,
they could collaborate, as it were, to make the final row accepting, even though no actual accepting
computation existed.

3

Suppose A is PSPACE-hard. Then for any L ∈ NP ⊆ NPSPACE = PSPACE, by PSPACE-hardness
L ≤p A. Thus A is NP-hard.

4

We first give a useful fact:

Lemma 1. Two DFAs A with a states and B with b states differ on some input iff they differ on
some input of length at most ab.

Proof. The reverse direction is trivial. In the forward direction, suppose A and B differ, and let w
be a string of minimal length on which they differ. Suppose |w| > ab. There are only ab possible
combinations of states w can take A and B to, so there must by pigeonhole be some j > i for which
both A and B are at the same states after i or j symbols of w. Then deleting symbols i+1 through
j of w, we have a shorter string which takes A and B to the same states as w, and thus a shorter
string on which they differ. This contradicts the minimality of w.

The following corollary is obvious by considering the powerset DFAs.

Corollary 1. Two NFAs A with a states and B with b states differ on some input iff they differ
on some input of length at most 2a+b.

Using these, we have a straightforward nondeterministic algorithm to decide if two DFAs differ:

1. If the input does not encode two NFAs A and B, reject. Otherwise let a = |A|, b = |B|.

2. Store a list of states S ⊆ QA (O(a) space), a list of states T ⊆ QB (O(b) space), and a string
length counter l (a+ b space, since we will bound its value by 2a+b). This uses linear space.

3. Initialize S to be the ε-closure of the initial states of A, and T to be the same in B. Set l = 0.

4. For l = 0 to 2a+b:

(a) If the states of A include a final state but the states of B do not, or vice versa, the
symbols chosen so far construct a string on which A and B differ. Accept.

(b) Nondeterministically choose a symbol σ ∈ Σ.

(c) Update S to be (the ε-closure of) the union
⋃
s∈S δA(s, σ). Do the same for T .

This accepts iff there is a string of length at most 2a+b (i.e. if there is any string at all, by the
previous corollary) on which the two NFAs differ.

This shows that the complement of EQREX lies in NPSPACE = PSPACE. But PSPACE is closed
under complement: given a deterministic polynomial-space decider, you can switch the accept and
reject states to get a decider for the complement. Thus EQREX ∈ PSPACE.

