
15-453: Formal Languages, Automata, and Computability
Lenore Blum, Asa Frank, Aashish Jindia, Andrew Smith Homework #5 Solutions

1

Strategy

Proof by constructing a TM.

Outline

We simply determine if L(M) is the same as its reversal language. This works because the reverse of the implication
in the definition of S must also be true for any machine in S by reversing twice.

Proof

Consider a TM which, on input 〈M〉, does the following:

1. Check if the input is a valid encoding of a DFA. If not, reject.

2. Compute the NFA N for the reversal language of L(M) (by reversing all transitions, making the start state
the only final state, and adding a new start state with ε-transitions to all of the old final states).

3. Convert N to a DFA D by its powerset.

4. Determine if the DFAs M and D are equivalent, using the decidability of EQDFA. Accept if they are and
reject if they are not.

Obviously if M accepts, then for any w in L(M), wR ∈ L(M)R = L(D).

In the other direction, if M rejects then either some w is in L(M) but not L(D), or in L(D) but not L(M). In
the first case, w ∈ L(M) but wR /∈ L(M). In the second, wR ∈ L(M) but w = (wR)R /∈ L(M).

Thus this TM accepts exactly S.

2

Strategy

Proof by construction for each direction of the biconditional.’

Outline

Given a decider for L, we construct an enumerator simply by iterating through Σ∗ in shortlex order, running each
string through the decider and printing the ones it accepts. Given an enumerator for L, we decide whether a string
is in L by running the enumerator until it prints the string, whence we accept, or one greater, whence we reject.

1



15-453: Formal Languages, Automata, and Computability
Lenore Blum, Asa Frank, Aashish Jindia, Andrew Smith Homework #5 Solutions

Proof

Let L be a language, and first assume it is decidable, say by a TM M . Then our enumerator E operates as follows.
Iterate through the strings of Σ∗ in shortlex order. For each one, run M on it, and, if M accepts, write it to the
write tape and print (otherwise move on). Since E only prints strings M accepts and M decides L, E only prints
strings in L. Further, for each string in L, E will eventually reach it while iterating through Σ∗ since E never
hangs (note that running M will never hang by the definition of a decider), at which point E will find that E
accepts it and therefore print it. Thus E enumerates L. Finally, as L considers each string exactly once in shortlex
order, it enumerates L in shortlex order, as required.

Now, suppose L is enumerated in shortlex order by some enumerator E. First, if L finite, then it is trivially
decidable (e.g., since it is regular). Otherwise, we construct a decider M that behaves as follows. On input w, run
E until it outputs a string v with w ≤ v (this is the shortlex ordering). If v = w, then accept; otherwise, reject.

First, note that E must eventaully output such a v, for there are only finitely many strings u with u < w, but L is
infinite, so some such v is in L and therefore must be printed by E in finite time, since E enumerates L. Now, let
w ∈ Σ∗ and let v be the first string E prints with w ≤ v. Suppose w ∈ L. Since E enumerates L, E will eventually
print w, and furthermore, since it does so in shortlex order and w is the least string less than or equal to itself, we
must have v = w. Thus M will accept w. If w 6= L, then E will never print w, so we must have v 6= w, and thus
M will reject w. Therefore, M accepts all w ∈ L and rejects all w /∈ L, so M decides L, concluding the proof.

3

Strategy

Construct a stay-put TM in one direction, and a DFA in the other.

Outline

A DFA can be converted to a stay-put TM by directly translating its transitions into rightward TM transitions.
The converse is more complicated. Rightward transitions can be simulated straightforward on a DFA, but what
about stay-put transitions? The answer is to simulate a series of stay-put transitions by transitioning directly to
the state they eventually move right on – or if they never do, accepting or rejecting on the spot.

Proof

Given a DFA M = (Q,Σ, δ, q0, F ), we define a TM T = (Q t {a, r},Σ,Σ t {�}, δ′, q0, a, r), with δ′ defined as
follows:

δ′(q, c) =


(δ(q, c),�, R), c ∈ Σ

(a,�, R), c = �, q ∈ F
(r,�, R), c = �, q /∈ F.

For any input which takes M to state q, the same input will take T through the same states to q, since each
transition is an R-transition which moves on to the next letter. Upon reaching the end of the input, it will then
accept iff the last state reached is an accept state. Thus T recognizes exactly the inputs M does.

Conversely, given a TM with stay put instead of left T = (Q,Σ,Γ, δ, q0, qa, qr), we construct a DFA M =
(Q,Σ, δ′, q0, {qa}), with δ′(q, c) defined as follows for any q ∈ Q, c ∈ Σ:

2



15-453: Formal Languages, Automata, and Computability
Lenore Blum, Asa Frank, Aashish Jindia, Andrew Smith Homework #5 Solutions

• If q = qa or q = qr, then δ(q, c) = q.

• If there is a number n ≥ 0 and a sequence of states q = q0, q1, . . . , qn+1 and characters c = c0, c1, . . . , cn+1

with δ(qi, ci) = (qi+1, ci+1, S) for i < n and δ(qn, cn) = (qn+1, cn+1, R), then δ′(q, c) = qn+1.

• Similarly, if there is an n ≥ 0 and a sequence of states q = q0, q1, . . . , qn+1 ∈ {qa, qr} and c = c0, c1, . . . , cn+1

with δ(qi, ci) = (qi+1, ci+1, S) for i < n and δ(qn, cn) = (qn+1, cn+1, R) or (qn+1, cn+1, S), then δ′(q, c) = qn+1.

• Otherwise, δ′(q, c) = qr.

If T reads a character from the input and enters state q and never moves right again, it must accept, reject, or
loop with only S-transitions. In these cases, M will move to the appropriate final state and stay there until the
end of computation.

Alternatively, if T reads a character from the input and eventually moves on to the next character, M will
eventually move on to the next character as well, and read it in the same state that T eventually reads it in.

Thus M accepts iff T accepts.

4

Strategy

In one direction, simulate all the branches using configuration histories. In the other, store the tape before and
after the head in the two stacks.

Outline

To simulate a 2-PDA on a Turing machine, we construct a Turing machine that stores the configuration of the
PDA. It then performs a BFS on the possible configurations of the PDA, and accepts iff it finds a valid path to
an accepting configuration.

To simulate a Turing machine on a 2-PDA, we first ensure that the 2-PDA is deterministic. We use the right
stack to represent the tape after (or at) the Turing machine’s head, and the left stack to represent the tape before
the Turing machine’s head. We thus must first move the input into the right stack. Once that is done, we can
determine all our actions by reading from the right stack, and perform moves by moving a character from the
right stack to the left stack or vice versa.

Proof

We simulate a 2-PDA on a Turing machine by using the tape as a “queue” of possible configuration of the 2-PDA
(say by simply keeping them in sequence with delimiters, popping by reading the first configuration and then
moving the others left, and pushing by adding configurations at the end). Each configuration in the “queue”
encodes a state of the 2-PDA, the contents of both stacks, and the remaining input. Our TM will then pop
a configuration, iterate through the possible 2-PDA transitions from this configuration, and for each transition
pushing the resulting configuration onto the stack. If the transition popped has no more input and is in an accept
state, the TM accepts. If the “queue” is ever empty, the TM rejects.

3



15-453: Formal Languages, Automata, and Computability
Lenore Blum, Asa Frank, Aashish Jindia, Andrew Smith Homework #5 Solutions

The 2-PDA accepts iff there is some sequence of valid transitions which brings it to an accept state with no input
left. If such a sequence exists the TM will eventually follow it and accept; conversely, if no such sequence exists
the TM will not accept. Thus this TM accepts iff the 2-PDA did.

Conversely, we simulate a TM T = (Q,Σ,Γ, δ, q0, qa, qr) with a 2-PDA P = (Q t (Q′Σ,Γ t {L}, δ′, q′0, {qa}) with

Q′ = Q t {r(q, g), l(q, g) | q ∈ Q, g ∈ Γ} t {q′0, qL, qR}

and δ′ as follows:

q′(q, c, gl, gr) =



{(qR, L, ε)}, q = q′0, c = gl = gr = ε

{(qR, ε, c)}, q = qR, c 6= �, gl = gr = ε

{(qL, ε, ε)}, q = qR, c = �, gl = gr = ε

{(qL, ε, gr)}, q = qL, c 6= L, c = gr = ε

{(q0, ε, ε)}, q = qL, gl = L, c = gr = varepsilon

{(l(q′, c′), gl, ε)}, δ(q, gr) = (q′, c′, R), gl = c = ε

{(r(q′, gl), ε, c′)}, δ(q, gr) = (q′, c′, L), gl = c = ε

{(q′, c′, ε)}, q = l(g′, c′), gl = gr = ε

{(q′, ε, c′)}, q = r(g′, c′), gl = gr = ε

{}, otherwise.

All outputs of δ′ are size 1 or 0, so P is deterministic. It first adds the entire input to the first stack, then reverses
it so it is in the second stack with the first character at the top. At any point, it will modify the tape to the left
and right of the head exactly as T would, ensuring that it will ever reach an accept state iff T will ever reach qa.
Thus it accepts exactly the strings T does.

4


