
Midterm I
15-453: Formal Languages, Automata, and

Computability

Lenore Blum, Asa Frank, Aashish Jindia, and Andrew Smith

February 11, 2014

Instructions:

1. Once the exam begins, write your name on each sheet.

2. This is a closed-book examination.

3. Do all your work on the attached sheets. Prove your answers for problems 5-10. For
problems 1 through 4, proofs are not required.

4. There are 9 questions for a total of 100 points, plus one extra credit problem for a
bonus 15 points.

5. You have 80 minutes to answer the questions.

6. Read over the whole exam. Pace yourself. Check your work. Good luck!

Last name: First name:

Signature: Andrew ID:

Question Points Score
1 5
2 5
3 5
4 5
5 10
6 15
7 15
8 20
9 20
10 0

Total 100

15-453 Midterm 1 Name:

1. (5 points) Give regular expressions and DFAs for the following language in {0, 1}∗:

{w | w contains an even number of 0s, or w contains exactly two 1s}

Regular expression: (1∗01∗0)∗1∗ ∪ 0∗10∗10∗

DFA:

Page 2 of 11

15-453 Midterm 1 Name:

2. (5 points) Give a CFG and a PDA for the following language in {0, 1}∗:

{w | w is not the empty string, and w starts and ends with the same symbol}

CFG:

S → 0 | 1 | 0T0 | 1T1

T → 0T | 1T | ε

PDA:

Page 3 of 11

15-453 Midterm 1 Name:

3. (5 points) Give a regular expression for the language recognized by the following DFA:

(Ra)∗(R ∪ ε), where R abbreviates (a ∪ b)(a∗(bb)∗)∗b.

4. (5 points) Convert the following context-free grammar G to Chomsky normal form:
G = ({A,B}, {0, 1}, R,A), where R is defined by

A→ ABA | B | ε
B → 00 | 1

A→ CA | ZZ | 1 | ε
C → AB

B → ZZ | 1
Z → 0

Page 4 of 11

15-453 Midterm 1 Name:

5. (10 points) Let B be the language of all palindromes over {0, 1} containing an equal
number of 0s and 1s. Show that B is not context-free.

Note: This proves that context-free languages are NOT closed under intersection!

Idea: We choose a palindrome with 2p 1’s and 2p 0’s such that the 1’s are all at the
middle. We pump it by deleting the repeated strings. Because there are so many 1s,
the deleted strings cannot have 0s from both side, so they either take 0s from one side
and leave the string asymmetric or take only 1s and leave the string with an unequal
amount of 0s and 1s.

AFSOC L is context-free and let p be its pumping length. Let s = 0p12p0p ∈ L. By the
pumping lemma, we may choose u, v, x, y, z such that s = uvxyz, |v| > 0 or |y| > 0,
|vxy| ≤ p, and uxz ∈ L. If v and y both consist entirely of 1’s, then uxz = 0p12p−|vy|0p

does not have the same number of 0s and 1s. Otherwise, v or y contains a nonzero
amount of symbols m from one of the sets of 0s and some amount n from the set of
1s, but none from the other set of 0s since |vxy| ≤ p. We have four cases: the set
of 0s intersecting vy can be 0 or 1, and the substring containing 0s and 1s can by
v or y. These correspond to uxz is of the form 0p−m12p−n−|y|0p, 0p−m−|v|12p−n0p, or
0p12p−n−|v|0p−m, 0p12p−n0p−m−|y|. None of these is a palindrome since m > 0. In any
case uxz /∈ L.

Page 5 of 11

15-453 Midterm 1 Name:

6. (15 points) Let Σ = {0, 1,+,=} and define

Add = {x=y+z | x, y, z are binary integers, and x = y + z}.

Show that Add is not regular.

Idea: there must be only one - and one + in any string in Add, so the repeated string
must be in one of the binary numbers. But of course changing the sum term makes
the equation wrong, and changing the numbers added changes their sum, also making
it wrong.

AFSOC Add is regular and let p be its pumping length. Let s = 1p+1-10p+1p. Clearly
this equation is true, so s ∈ L. Now, |s| ≥ p, so by the pumping lemma, we can write
s = xyz with |xy| ≤ p, |y| > 0, and xz ∈ L. Since the first p characters of s are all
1 and |xy| ≤ p, y must be made of 1s only, so xz = 1p−|y|-10p+1p. Since |y| > 0, xz
has a different string to the left of its equals sign than s but is otherwise identical.
Since binary expansions are unique, the equation given by xz cannot be true (or both
strings would be binary expansions of the number to which their common right-hand
side evaluates). Thus xz /∈ L, contradicting the pumping lemma and proving that L
is not regular.

Page 6 of 11

15-453 Midterm 1 Name:

7. (15 points) Let G be a context-free grammar in Chomksy normal form that contains
b variables. Show that if G generates some string with a derivation having at least 2b

substitions, then L(G) is infinite.

(Recall that a derivation is a sequence of substitions starting at the start variable and
ending at a string of terminals).

IDEA: We will want to use the pigeonhole principle. But on what? The derivation
length alone isn’t good enough, because knowing a variable is substituted twice in the
derivation doesn’t tell us it actually derives itself. Instead, we use the derivation length
to bound the depth of the parse tree. Then we can use the pigeonhole principle on
any path down the parse tree to find a variable that derives a string including itself.
Repeating this substitution gives us arbitrarily long strings, so the language is infinite.

From lecture, we know that if G is in Chomsky normal form, a string of length x must
have any derivation of length at most 2x − 1. Thus if there is a derivation of length
2b, G must derive a string of length b + 1. Then the parse tree must have depth at
least b + 1, since any substitution in Chomsky normal form only increases the length
by 1. Thus there is a path down the parse tree of length b + 1. By pigeonhole, this
path must contain some variable A twice. Then A derives a string of the form uAv
for u, v ∈ Σ∗, and A also derives some string x ∈ Σ∗. Then we see A yields uixvi for
any i ∈ N, by substituting uAv for A i times and then substituting x for A, as in the
proof of the pumping lemma for regular languages. Since A is in the tree below the
start variable S, S derives some aAb. Then auixvib is in the string for any i. There
are infinitely many such strings, so L(G) is infinite.

Page 7 of 11

15-453 Midterm 1 Name:

8. (20 points) Consider the language F = {aibjck | i, j, k ≥ 0 and either i 6= 1 or j = k}.

(a) Show that F is not regular.

IDEA: Since the pumping lemma won’t work here, we’ll reason directly about a
DFA for F . In fact we can use the pigeonhole principle in the same way as in the
proof of the pumping lemma.

AFSOC that F is regular and let D be a DFA with k states that recognizes it. Let
s = abkck, which is clearly in L. While processing the bk substring of s, D makes
k transitions and thus is in k + 1 states. By the pigeonhole principle, some two of
them must be the same, say state q after processing bi and bj for i < j. Therefore,
after processing abj, D is in state q, from which point processing bk−jck takes it to
some accept state qa (since abjbk−jck = s ∈ L). But we also have that processing
abi takes D to q, from which point processing bk−jck takes D to qa, so D accepts
abi+k−jck. But j > i, so k = j + k − j > i + j − j, and therefore abi+n−jck /∈ L,
contradicting the assumption that D recognizes L. Therefore L is not regular.

(b) Show that the pumping lemma for regular languages applies to F . In other words,
show that there is p such that for any w ∈ F with |w| > p, there are x, y, z with
xyz = w, |y| > 0, and |xy| < p such that for any i > 0, xyiz ∈ F .

Note: (a) and (b) together show that the converse of the pumping lemma is false.

IDEA: If w has some number of as, we can pump the first few of them, being
careful not to reach a string with only one a. Otherwise, the relative amounts of
bs and cs don’t matter, so we can simply pump whichever one of them exists.

Choose p = 2. Let s = aibjck ∈ L with |s| ≥ p. Choose x = ε, y to be the first
character of s or first two (aa) if i = 2, and z to be the rest of s. Clearly s = xyz,
|xy| ≤ p, and |y| > 0; we will show that xynz ∈ L for each n ∈ N.

• Case i = 0: If j = 0, then s = ck, y = c, z = ck−1, and xynz = εcnck−1 =
ck+n−1. Otherwise, by similar reasoning (we will use this implicitly through-
out), y = b and xynz = bj+n−1ck. Both of these are in L since they begin with
a0 and 0 6= 1.

• Case i = 1: In this case we must have j = k since i = 1. xynz becomes
anbjck, which has the form aibjck where j = k, so it is in L for any n.

• Case i = 2: Here y = a2 and xynz = a2nbjck, which is in L for any n since
2n 6= 1.

• Case i > 2: Here xynz = an+i−1bjck. For any n, n + i − 1 ≥ i − 1 > 1, so
n+ i− 1 6= 1 and xynz ∈ L.

We see that in any case x, y, and z as constructed satisfy the constraints of the
pumping lemma for p = 2.

Page 8 of 11

15-453 Midterm 1 Name:

9. (20 points) If A and B are languages over the same alphabet Σ, define the equal
concatenation of A and B to be

EC(A,B) = {xy | x ∈ A, y ∈ B, |x| = |y|}.

Show that if A and B are regular, then EC(A,B) is context-free.

IDEA: our PDA will follow along the DFAs for A and B, only reaching a final state if
it traverses both in order. This gives concatenation. To make sure the strings are even
length, we push onto the stack for every transition in the DFA for A, and we pop off
the stack for every transition in B. We accept only if it reaches a final state with an
empty stack.

Let DA be a DFA that recognizes B and DB, B. We construct a PDA P that recognizes
EC(A,B) as follows. Its state set is the union of those of DA and DB (WLOG these are
disjoint), plus a unique start state and a unique accept state. The start state simply
pushes a $ onto the stack and ε-transitions to the start state of DA. P ’s transition
function behaves as those of DA and DB on those states. For each transition within its
copy of DA, P pushes a 0 onto the stack; for those within DB, it pops from the stack.
Each accept state of DA makes an ε-transition to the start state of DB (without reading
or changing the stack), and the accept states of DB ε-transition with a $ atop the stack
to the accept state, which makes no transitions. We now show that L(P) = EC(A,B)

(⊆): Let s ∈ L(P). Then some execution path of P on s must behave as folloows.
P pushes a $ and reads, say, n characters of s, pushing n 0s onto the stack, before
accepting in DA and transitioning to the start state of DB. Then it reads precisely
enough characters to leave a $ on the stack upon reaching an accept state in DB. Since
it pops a character with each transition in DB, it must read exactly n characters here,
too. For p to accept, this must be the end of s. Therefore, if s = s1 . . . sk, where each
si ∈ Σ, we have s1 . . . sn ∈ A, sn+1 . . . k ∈ B, and these strings have equal size: k = 2n.
Therefore s ∈ EC(A,B).

(⊇): The converse argument follows the same reasoning: for s ∈ EC(A,B, we can
write s = xy with |x| = |y|, and then s causes P to behave as described above and to
accept. Therefore L(P) = EC(A,B), completing the proof.

Page 9 of 11

15-453 Midterm 1 Name:

10. (15 points extra credit) For any language A over Σ, consider the language of strings
obtained by deleting a single character from any string in A:

Delete(A) = {xz | x, z ∈ Σ∗ and xyz ∈ A for some y ∈ Σ}

Show that if A is regular, then Delete(A) is regular.

IDEA: Our NFA has a second set of states, to record if it has already guessed a deleted
character. From any state until it has already guessed, it has the option to choose
to travel an extra transtion, effectively guessing as to what the deleted character is.
When it does so it moves into the second set of states, so that it cannot guess again.

Let L be a regular language and D a DFA that recognizes it; we will construct an NFA
N that recognizes Delete(A).

Say D = (Q,Σ, δ, q0, F). Then we put

N = (Q ∪Q′,Σ, δ′, q0, F ′),

where

Q′ = {q′|q ∈ Q}
F ′ = {q′|q ∈ F}

and δ is given by

δ′(q, c) = {δ(q, c)}
δ′(q′, c) = {δ(q, c)′}
δ′(q, ε) = {δ(q, a)′|a ∈ Σ}
δ′(q′, ε) = ∅

for q ∈ Q, q′ ∈ Q′ and c ∈ Σ.

We now show that L(N) = Delete(A).

(⊆): Let s ∈ L(N). Then by definition we can write s = s1 . . . sn where each si ∈ Σε,
and we have r0 . . . rn, where r0 = q0, rn ∈ F ′, and each ri+1 ∈ δ′(ri, si+1). Since
rn ∈ F ′ ⊆ Q′, choose the smallest k such that rk ∈ Q′. Since we never have an element
of Q in an output of δ on a state in Q′, ri ∈ Q′ for every i ≥ k. Therefore, we must
have si 6= ε for i > k, since no δ′(rj, sj+1) can be empty for 0 ≤ j < n (for it contains
ri+1). Note that, for q ∈ Q, δ(q, c) ∈ Q′ ⇐⇒ c = ε. We have rk−1 ∈ Q and rk ∈ Q′,
so this means sk = ε, and similarly, since r0 = q0 ∈ Q, we must have si 6= ε for i < k
by the minimality of k.

Now, qk−1 ∈ δ′(qk−1, ε), so, considering δ′, there must be some a ∈ Σ such that
δ(qk−1, a) = qk. Further, we have ri+1 ∈ δ′(ri, si) = {δ(ri, si)} and thus ri+1 = δ(ri, si)
for 0 ≤ i < k − 1. Similarly, for each i ≥ k, we have ri ∈ Q′, say ri = (′ri)

′,
and then ′ri+1 = δ(′ri, si+1). Now let s′ = s0 . . . sk−1ask . . . sn ∈ Σ∗ and consider
r0 . . . r

′
k−1rk . . .

′ dn. We have every ri ∈ Q, r0 = q0,
′rn ∈ F , and

δ(ri, si+1) = ri+1, 0 ≤ i < k − 1

δ(rk−1, a) = rk

δ(′ri, si+1) = ′ri+1, k ≤ i < n

Page 10 of 11

15-453 Midterm 1 Name:

Therefore, by definition, D accepts s′, so s′ ∈ L. Further, we have s ∈ Delete(L)
with x = s0 . . . sk−1, y = a, z = sk+1 . . . sn. Therefore, N accepts only strings in
Delete(A).

(⊇): Let s ∈ Delete(A) and choose x, y, z with x, z ∈ Σ∗, y ∈ Σ, xz = s, and
s′ = xyz ∈ A. Then D accepts xyz, so we have s′ = s′0 . . . s

′
n and a sequence of states

q0 . . . qn with qn ∈ F and δ(qi, s
′
i+1) = qi+1 for 0 ≤ i < n. Let k = |x| (so sk = y) and

write s = s′0 . . . s
′
k−1εs

′
k+1 . . . s

′
n and consider r0 . . . rn = q0 . . . qk−1q

′
k . . . q

′
n. We have

r0 = q0 ∈ Q, and qn ∈ F ′ so rn = q′n ∈ F ′. Now, for each 0 ≤ i < k − 1,

ri+1 = qi+1 ∈ {qi+1} = δ′(qi, si);

for i = k − 1,

ri+1 = q′k ∈ {δ(qi, a)′ | a ∈ Σ} = δ′(qi, ε) = δ′(ri, si+1)

because δ(qi, y) = qk; and for i ≤ k < n,

ri+1 = q′i+1 ∈ {q′i+1} = δ′(q′i, si) = δ′(ri, si).

Thus, by definition, N accepts s. Therefore N accepts every string in Delete(A),
concluding the proof.

Page 11 of 11

