15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
UNDECIDABLE PROBLEMS
THURSDAY Feb 13
Definition: A Turing Machine is a 7-tuple \(T = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}) \), where:

- \(Q \) is a finite set of states
- \(\Sigma \) is the input alphabet, where \(\square \notin \Sigma \)
- \(\Gamma \) is the tape alphabet, where \(\square \in \Gamma \) and \(\Sigma \subseteq \Gamma \)
- \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\} \)
- \(q_0 \in Q \) is the start state
- \(q_{\text{accept}} \in Q \) is the accept state
- \(q_{\text{reject}} \in Q \) is the reject state, and \(q_{\text{reject}} \neq q_{\text{accept}} \)
CONFIGURATIONS

11010q700110

corresponds to:

q7

1 1 1 0 1 0 0 0 0 1 1 1 0
A Turing Machine M accepts input w if there is a sequence of configurations C_1, \ldots, C_k such that

1. C_1 is a \textit{start} configuration of M on input w, i.e. C_1 is q_0w
2. each C_i \textit{yields} C_{i+1}, i.e. M can legally go from C_i to C_{i+1} in a single step

\[
ua \ q_i \ bv \quad \text{yields} \quad u \ q_j \ acv \quad \text{if} \quad \delta(q_i, b) = (q_j, c, L)
\]
\[
ua \ qi \ bv \quad \text{yields} \quad uac \ q_j \ v \quad \text{if} \quad \delta(q_i, b) = (q_j, c, R)
\]
A Turing Machine M accepts input w if there is a sequence of configurations C_1, \ldots, C_k such that

1. C_1 is a \textit{start} configuration of M on input w, ie C_1 is q_0w

2. each C_i \textit{yields} C_{i+1}, ie M can legally go from C_i to C_{i+1} in a single step

3. C_k is an \textit{accepting} configuration, ie the state of the configuration is q_{accept}
A Turing Machine M *rejects* input w if there is a sequence of configurations C_1, \ldots, C_k such that

1. C_1 is a *start* configuration of M on input w, ie C_1 is q_0w
2. each C_i *yields* C_{i+1}, ie M can legally go from C_i to C_{i+1} in a single step
3. C_k is a *rejecting* configuration, ie the state of the configuration is q_{reject}
A TM **recognizes** a language if it accepts all and only those strings in the language.

A language is called **Turing-recognizable** or recursively enumerable, (or r.e. or semi-decidable) if some TM recognizes it.

A TM **decides** a language if it accepts all strings in the language and rejects all strings not in the language.

A language is called **decidable** or recursive if some TM decides it.
Theorem: L is decidable if both L and \(\neg L \) are recursively enumerable.
There are languages over \{0,1\} that are not decidable

If we believe the Church-Turing Thesis, this is **MAJOR**: it means there are things that computers inherently cannot do.

We can prove this using a **counting argument**. We will show there is no **onto** function from the set of all Turing Machines to the set of all languages over \{0,1\}. (**Works for any \Sigma**) Hence there are languages that have no decider.

Then we will prove something stronger: There are **semi-decidable (r.e.)** languages that are NOT decidable.
Turing Machines

Languages over \{0,1\}
Let L be any set and 2^L be the power set of L.

Theorem: There is no onto map from L to 2^L.

Proof: Assume, for a contradiction, that there is an onto map $f : L \rightarrow 2^L$.

Let $S = \{ x \in L \mid x \notin f(x) \}$.

If $S = f(y)$ then $y \in S$ if and only if $y \notin S$.

Let L be any set and 2^L be the power set of L

Theorem: There is no onto map from L to 2^L

Proof: Assume, for a contradiction, that there is an onto map $f : L \rightarrow 2^L$

Let $S = \{ x \in L \mid x \not\in f(x) \}$

If $S = f(y)$ then $y \in S$ if and only if $y \not\in S$

Can give a more constructive argument!
Theorem: There is no onto function from the positive integers to the real numbers in (0, 1).

Proof: Suppose f is any function mapping the positive integers to the real numbers in (0, 1):

- n-th digit of r = 2 if n-th digit of $f(n)$ $\neq 1$
- 2 otherwise

$f(n) \neq r$ for all n (Here, $r = 11121...$) So f is not onto.
THE MORAL:
No matter what L is, 2^L always has more elements than L.
Not all languages over \{0,1\} are decidable, in fact:
not all languages over \{0,1\} are semi-decidable

\{decidable languages over \{0,1\}\}
\{semi-decidable languages over \{0,1\}\}
\{Turing Machines\}
\{Strings of 0s and 1s\}
Set \(L\)
\{Languages over \{0,1\}\}
\{Sets of strings of 0s and 1s\}
Set of all subsets of \(L\): \(2^L\)
Let $\mathbb{Z}^+ = \{1, 2, 3, 4 \ldots \}$. There exists a bijection between \mathbb{Z}^+ and $\mathbb{Z}^+ \times \mathbb{Z}^+$ (or \mathbb{Q}^+)

$\begin{align*}
(1,1) & \quad (1,2) \quad (1,3) \quad (1,4) \quad (1,5) \quad \ldots \\
(2,1) & \quad (2,2) \quad (2,3) \quad (2,4) \quad (2,5) \quad \ldots \\
(3,1) & \quad (3,2) \quad (3,3) \quad (3,4) \quad (3,5) \quad \ldots \\
(4,1) & \quad (4,2) \quad (4,3) \quad (4,4) \quad (4,5) \quad \ldots \\
(5,1) & \quad (5,2) \quad (5,3) \quad (5,4) \quad (5,5) \quad \ldots
\end{align*}$
Let $Z^+ = \{1,2,3,4\ldots\}$. There exists a bijection between Z^+ and $Z^+ \times Z^+$ (or Q^+)

\[
\begin{align*}
(1,1) & \quad (1,2) & \quad (1,3) & \quad (1,4) & \quad (1,5) & \ldots \\
(2,1) & \quad (2,2) & \quad (2,3) & \quad (2,4) & \quad (2,5) & \ldots \\
(3,1) & \quad (3,2) & \quad (3,3) & \quad (3,4) & \quad (3,5) & \ldots \\
(4,1) & \quad (4,2) & \quad (4,3) & \quad (4,4) & \quad (4,5) & \ldots \\
(5,1) & \quad (5,2) & \quad (5,3) & \quad (5,4) & \quad (5,5) & \ldots
\end{align*}
\]
THE ACCEPTANCE PROBLEM

\[A_{TM} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \} \]

Theorem: \(A_{TM} \) is semi-decidable (r.e.)

but **NOT** decidable

\(A_{TM} \) is r.e. :

Define a TM \(U \) as follows:

On input \((M, w) \), \(U \) runs \(M \) on \(w \). If \(M \) ever accepts, accept. If \(M \) ever rejects, reject.

NB. When we write “input \((M, w) \)” we really mean “input code for (code for \(M, w \)”
THE ACCEPTANCE PROBLEM

\[A_{TM} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \} \]

Theorem: \(A_{TM} \) is semi-decidable (r.e.) but **NOT** decidable

\(A_{TM} \) is r.e.:

Define a TM \(U \) as follows: \(U \) is a *universal* TM

On input \((M, w)\), \(U \) runs \(M \) on \(w \). If \(M \) ever accepts, accept. If \(M \) ever rejects, reject.

Therefore,

\(U \) accepts \((M, w)\) \iff \(M \) accepts \(w \) \iff \((M, w)\) \(\in A_{TM} \)

Therefore, \(U \) recognizes \(A_{TM} \)
$A_{TM} = \{ (M,w) | M \text{ is a TM that accepts string } w \}$

A_{TM} is undecidable: (proof by contradiction)

Assume machine H decides A_{TM}

$$H((M,w)) = \begin{cases}
\text{Accept} & \text{if } M \text{ accepts } w \\
\text{Reject} & \text{if } M \text{ does not accept } w
\end{cases}$$

Construct a new TM D as follows: on input M, run H on (M,M) and output the opposite of H

$$D(M) = \begin{cases}
\text{Reject} & \text{if } M \text{ accepts } M \\
\text{Accept} & \text{if } M \text{ does not accept } M
\end{cases}$$
\[A_{\text{TM}} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \} \]

\(A_{\text{TM}} \) is undecidable: (proof by contradiction)

Assume machine H decides \(A_{\text{TM}} \)

\[
H((M,w)) = \begin{cases}
\text{Accept} & \text{if } M \text{ accepts } w \\
\text{Reject} & \text{if } M \text{ does not accept } w
\end{cases}
\]

Construct a new TM D as follows: on input M, run H on (M,M) and output the opposite of H

\[
D(D) = \begin{cases}
\text{Reject} & \text{if } D \text{ accepts } D \\
\text{Accept} & \text{if } D \text{ does not accept } D
\end{cases}
\]
$$A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$$

ATM is undecidable: (proof by contradiction)

Assume machine H decides A_{TM}

$$H((M,w)) = \begin{cases}
\text{Accept} & \text{if } M \text{ accepts } w \\
\text{Reject} & \text{if } M \text{ does not accept } w
\end{cases}$$

Construct a new TM D as follows: on input M, run H on (M,M) and output the opposite of H

$$D(D) = \begin{cases}
\text{Reject} & \text{if } D \text{ accepts } D \\
\text{Accept} & \text{if } D \text{ does not accept } D
\end{cases}$$
<table>
<thead>
<tr>
<th></th>
<th>M₁</th>
<th>M₂</th>
<th>M₃</th>
<th>M₄</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
</tr>
<tr>
<td>M₂</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
</tr>
<tr>
<td>M₃</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>M₄</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
</tr>
<tr>
<td></td>
<td>M₁</td>
<td>M₂</td>
<td>M₃</td>
<td>M₄</td>
<td>...</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>M₁</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
</tr>
<tr>
<td>M₂</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
</tr>
<tr>
<td>M₃</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>M₄</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
Theorem: A_{TM} is r.e. but NOT decidable

Theorem: $\neg A_{TM}$ is not even r.e.!
\[A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \} \]

\(A_{TM} \) is undecidable: A constructive proof:

Let machine \(H \) semi-decides \(A_{TM} \) (Such \(\exists \), why?)

\[
H((M,w)) = \begin{cases}
\text{Accept} & \text{if } M \text{ accepts } w \\
\text{Reject or} & \\
\text{No output} & \text{if } M \text{ does not accept } w
\end{cases}
\]

Construct a new TM \(D \) as follows: on input \(M \), run \(H \) on \((M,M) \) and output

\[
D(M) = \begin{cases}
\text{Reject} & \text{if } H((M,M)) \text{ Accepts} \\
\text{Accept} & \text{if } H((M,M)) \text{ Rejects} \\
\text{No output} & \text{if } H((M,M) \text{ has No output}
\end{cases}
\]
\(A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \} \)

\(A_{TM} \) is undecidable: A constructive proof:

Let machine \(H \) semi-decides \(A_{TM} \) (Such \(\exists \), why?)

\[
H((M,w)) = \begin{cases}
\text{Accept} & \text{if } M \text{ accepts } w \\
\text{Reject or} \\
\text{No output} & \text{if } M \text{ does not accept } w
\end{cases}
\]

Construct a new TM \(D \) as follows: on input \(M \), run \(H \) on \((M,M) \) and output

\[
D(D) = \begin{cases}
\text{Reject} & \text{if } H (D, D) \text{ Accepts} \\
\text{Accept} & \text{if } H (D, D) \text{ Rejects} \\
\text{No output} & \text{if } H (D, D) \text{ has No output}
\end{cases}
\]

\[
H((D,D)) = \text{No output} \quad \text{No Contradictions!}
\]
We have shown:
Given any machine H for semi-deciding A_{TM}, we can effectively construct a TM D such that $(D,D) \not\in A_{TM}$ but H fails to tell us that.

That is, H fails to be a decider on instance (D,D).

In other words,
Given any "good" candidate for deciding the Acceptance Problem, we can effectively construct an instance where the candidate fails.
THE classical HALTING PROBLEM

\[\text{HALT}_\text{TM} = \{ (M,w) | M \text{ is a TM that halts on string } w \} \]

Theorem: \(\text{HALT}_\text{TM} \) is undecidable

Proof: Assume, for a contradiction, that TM \(H \) decides \(\text{HALT}_\text{TM} \).

We use \(H \) to construct a TM \(D \) that decides \(A_\text{TM} \).

On input \((M,w) \), \(D \) runs \(H \) on \((M,w) \):

- If \(H \) rejects then reject
- If \(H \) accepts, run \(M \) on \(w \) until it halts:
 - Accept if \(M \) accepts i.e. halts in an accept state
 - Otherwise reject
If M doesn't halt: REJECT

If M halts

Does M halt on w?

If M doesn't halt: REJECT

ACCEPT if halts in accept state

REJECT otherwise
In many cases, one can show that a language L is undecidable by showing that if it is decidable, then so is A_{TM}.

We reduce deciding A_{TM} to deciding the language in question.

$A_{TM} \leq L$

We just showed: $A_{TM} \leq Halt_{TM}$

Is $Halt_{TM} \leq A_{TM}$?
WWW.FLAC.WS

Read chapter 4 of the book for next time