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Definition: A Turing Machine is a 7-tuple  
T = (Q, Σ, Γ, δ, q0, qaccept, qreject), where:   

Q is a finite set of states 

Γ is the tape alphabet, where  ∈ Γ and Σ ⊆ Γ 

q0 ∈ Q is the start state 

Σ is the input alphabet, where  ∉ Σ  

δ : Q × Γ → Q × Γ × {L,R}  

qaccept ∈ Q is the accept state 

qreject ∈ Q is the reject state, and qreject ≠ qaccept 



CONFIGURATIONS 

11010q700110 

q7 

1 0 0 0 0 0 1 1 1 1 

corresponds to: 



A Turing Machine M accepts  input w if there is a 

sequence of configurations  C1, … , Ck  such that  

1. C1 is a start configuration of M on input w,  ie  

C1 is q0w 

2.  each Ci yields Ci+1, ie M can legally go from Ci 

to Ci+1 in a single step  

ua qi bv    yields    u qj acv   if  δ (qi, b) = (qj, c, L) 
ua qi bv    yields     uac qj v   if  δ (qi, b) = (qj, c, R) 



A Turing Machine M accepts  input w if there is a 

sequence of configurations  C1, … , Ck  such that  

1. C1 is a start configuration of M on input w,  ie  

C1 is q0w 

2.  each Ci yields Ci+1, ie M can legally go from Ci 

to Ci+1 in a single step  

3.  Ck is an accepting configuration, ie the state 

of the configuration is qaccept 



A Turing Machine M rejects  input w if there is a 

sequence of configurations  C1, … , Ck  such that  

1. C1 is a start configuration of M on input w,  ie  

C1 is q0w 

2.  each Ci yields Ci+1, ie M can legally go from Ci 

to Ci+1 in a single step  

3.  Ck is  a  rejecting configuration, ie the state of 

the configuration is qreject 



A TM recognizes a language if it accepts all 
and only those strings in the language 

A TM decides a language if it accepts all 
strings in the language and rejects all strings 
not in the language 

A language is called Turing-recognizable or 
recursively enumerable, (or r.e. or semi-
decidable) if some TM recognizes it 

A language is called decidable or recursive 
if some TM decides it 



w ∈ L ? 

accept reject 

TM 

 
yes no 

w ∈ Σ*  

L is decidable  
(recursive) 

w ∈ L ? 

accept reject or no output 

TM 

 
yes no 

w ∈ Σ*  

L is semi-decidable  
(recursively enumerable, 

Turing-recognizable) 

Theorem: L is decidable if both L and ¬L 
are recursively enumerable 



There are languages over {0,1} 
that are not decidable 

If we believe the Church-Turing Thesis,  
this is MAJOR: it means there are things that 
computers inherently cannot do 

We can prove this using a counting argument. We 
will show there is no onto function from the set of 
all Turing Machines to the set of all languages 
over {0,1}. (Works for any Σ) Hence there are 
languages that have no decider. 

Then we will prove something stronger:  
There are semi-decidable (r.e.) languages that are 
NOT decidable 



Turing 
Machines 

Languages 
over {0,1} 



Let L be any set and 2L be the power set of L 
Theorem: There is no onto map from L to 2L 

Proof:    Assume, for a contradiction, that 
there is an onto map f : L → 2L 

Let S = { x ∈ L | x ∉ f(x) }  

If S = f(y) then y ∈ S if and only if y ∉ S 



Let L be any set and 2L be the power set of L 
Theorem: There is no onto map from L to 2L 

Proof:    Assume, for a contradiction, that 
there is an onto map f : L → 2L 

Let S = { x ∈ L | x ∉ f(x) }  

If S = f(y) then y ∈ S if and only if y ∉ S 

Can give a more constructive argument! 



Theorem: There is no onto function from the 
positive integers to the real numbers in (0, 1) 

1 
2 
3 
4 
5 
: 

0.28347279… 
0.88388384… 
0.77635284… 
0.11111111… 
0.12345678… 

: 

Proof: Suppose f is any function mapping the 
positive integers to the real numbers in 
(0, 1: 

[ n-th digit of r ] = 

2 
8 
6 
1 
5 

1  if [ n-th digit of f(n) ] ≠ 1  

 2 otherwise 

f(n) ≠ r for all n   ( Here, r = 11121... )  So f is not onto  



THE MORAL: 
No matter what L is,  

2L always has more elements than L 



Not all languages over {0,1} are decidable, in fact: 
not all languages over {0,1} are semi-decidable 

{Turing Machines} 

{Strings of 0s and 1s} {Sets of strings 
of 0s and 1s} 

{Languages over {0,1}} 

Set L Set of all subsets of L: 2L 

{decidable languages over {0,1}} 

{semi-decidable languages over {0,1}} 



Let Z+ = {1,2,3,4…}. There exists a bijection 
between Z+ and Z+ × Z+ 

(1,1)   (1,2)   (1,3)   (1,4)   (1,5) … 

(2,1)   (2,2)   (2,3)   (2,4)   (2,5) … 

(3,1)   (3,2)   (3,3)   (3,4)   (3,5) … 

(4,1)   (4,2)   (4,3)   (4,4)   (4,5) … 

(5,1)   (5,2)   (5,3)   (5,4)   (5,5) … 

(or Q+) 

 



Let Z+ = {1,2,3,4…}. There exists a bijection 
between Z+ and Z+ × Z+ 

(1,1)   (1,2)   (1,3)   (1,4)   (1,5) … 

(2,1)   (2,2)   (2,3)   (2,4)   (2,5) … 

(3,1)   (3,2)   (3,3)   (3,4)   (3,5) … 

(4,1)   (4,2)   (4,3)   (4,4)   (4,5) … 

(5,1)   (5,2)   (5,3)   (5,4)   (5,5) … 

(or Q+) 

 



ATM = { (M, w) | M is a TM that accepts string w } 
THE ACCEPTANCE PROBLEM 

Theorem: ATM is semi-decidable (r.e.)  
but NOT decidable 
ATM is r.e. : 
Define a TM U as follows:  
 

On input (M, w), U runs M on w. If M ever 
accepts, accept. If M ever rejects, reject. 

NB. When we write “input (M, w)” we really mean 
“input   code for (code for M, w)” 



ATM = { (M, w) | M is a TM that accepts string w } 
THE ACCEPTANCE PROBLEM 

Theorem: ATM is semi-decidable (r.e.)  
but NOT decidable 
ATM is r.e. : 
Define a TM U as follows:  
 

On input (M, w), U runs M on w. If M ever 
accepts, accept. If M ever rejects, reject. 

Therefore,  
U accepts (M,w) ⇔ M accepts w ⇔ (M,w) ∈ ATM 
Therefore, U recognizes ATM 

U is a universal TM 



ATM = { (M,w) | M is a TM that accepts string w } 
ATM is undecidable: (proof by contradiction) 

Assume machine H decides ATM 

H( (M,w) ) = 
Accept if M accepts w 
 
Reject  if M does not accept w 

Construct a new TM D as follows: on input M, 
run H on (M,M) and output the opposite of H 

D( M ) = 
Reject if M accepts M 
 
Accept   if M does not accept M 



ATM = { (M,w) | M is a TM that accepts string w } 
ATM is undecidable: (proof by contradiction) 

Assume machine H decides ATM 

H( (M,w) ) = 
Accept if M accepts w 
 
Reject  if M does not accept w 

Construct a new TM D as follows: on input M, 
run H on (M,M) and output the opposite of H 

D( M ) = 
Reject if M accepts M 
 
Accept   if M does not accept M 

D 
D D 

D D 



ATM = { (M,w) | M is a TM that accepts string w } 
ATM is undecidable: (proof by contradiction) 

Assume machine H decides ATM 

H( (M,w) ) = 
Accept if M accepts w 
 
Reject  if M does not accept w 

Construct a new TM D as follows: on input M, 
run H on (M,M) and output the opposite of H 

D( M ) = 
Reject if M accepts M 
 
Accept   if M does not accept M 

D 
D D 

D D 



M1 

M2 

M3 

M4 

: 

M1 M2 M3 M4 … 

accept accept 

accept 

accept 

accept 

accept 

accept 

reject 

reject 

reject 

reject 

reject 

reject 

reject 

reject 

reject 

OUTPUT OF H 

accept 

accept 

accept 

reject 



M1 

M2 

M3 

M4 

: 

M1 M2 M3 M4 … 

accept accept 

accept 

accept 

accept 

accept 

accept 

reject 

reject 

reject 

reject 

reject 

reject 

reject 

reject 

reject 

OUTPUT OF H 

accept 

accept 

reject 

reject 

D 

D 

reject 

accept 

accept 

accept 

accept reject 

reject 

accept ? 



Theorem: ATM is r.e. but NOT decidable 

Theorem: ¬ATM is not even r.e.! 



ATM = { (M,w) | M is a TM that accepts string w } 
ATM is undecidable: 

Let machine H semi-decides ATM   (Such ∃ , why?) 

H( (M,w) ) = 
Accept if M accepts w 
 

Reject or 
No output if M does not accept w 

Construct a new TM D as follows: on input M, 
run H on (M,M) and output  

D( M ) = 
Reject if H ( M, M ) Accepts 
Accept      if H ( M , M ) Rejects 
No output if H ( M, M ) has No output 

M 
M, M 

M, M 
M M 

A constructive proof: 



ATM = { (M,w) | M is a TM that accepts string w } 
ATM is undecidable: 

Let machine H semi-decides ATM   (Such ∃ , why?) 

H( (M,w) ) = 
Accept if M accepts w 
 

Reject or 
No output if M does not accept w 

Construct a new TM D as follows: on input M, 
run H on (M,M) and output  

D( M ) = 
Reject if H ( M, M ) Accepts 
Accept      if H ( M , M ) Rejects 
No output if H ( M, M ) has No output 

D 
D, D 

D, D 
D D, 

A constructive proof: 

H( (D,D) ) = No output No Contradictions ! 



We have shown: 
Given any machine H for semi-deciding  ATM, 
we can effectively construct a TM D such that 
(D,D) ∉ ATM  but H fails to tell us that. 
 

That is, H fails to be a decider on  instance (D,D). 
 

In other words, 
Given any “good” candidate for deciding the 
Acceptance Problem, we can effectively construct 
an instance where the candidate fails. 



HALTTM = { (M,w) | M is a TM that halts on string w } 

Theorem: HALTTM is undecidable 

THE classical HALTING PROBLEM 

Proof:     Assume, for a contradiction, that TM H 
decides HALTTM 

We use H to construct a TM D that decides ATM 

On input (M,w), D runs H on (M,w): 
If H rejects then reject 
If H accepts, run M on w until it halts: 

Accept if M accepts ie halts in an accept state   
Otherwise reject 



H 

(M,w) 

(M,w) 

M 

w 

If M doesn’t 
halt: REJECT 

If M halts 
Does M 

halt on w? 
D 

ACCEPT if halts in accept state 
REJECT otherwise 



In many cases, one can show that a 
language L is undecidable by showing 

that if it is decidable, then so is ATM 

We reduce deciding ATM to deciding 
the language in question 

ATM   ≤   L 

We just showed: ATM   ≤   HaltTM 
Is HaltTM  ≤ ATM  ? 



WWW.FLAC.WS 
Read chapter 4 of the book for next time 
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