
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

PDAs ARE EQUIVALENT TO CFGs

THURSDAY Jan 30

PUSHDOWN AUTOMATA (PDA)

FINITE
STATE

CONTROL

STACK
(Last in,
first out)

INPUT

ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

string pop push

PUSHDOWN AUTOMATA (PDA)

A → 0A1
A → ε

CONTEXT-FREE GRAMMARS

A ⇒ 0A1 ⇒ 00A11 ⇒ 000A111 ⇒ 000111

variable terminals

∈ (V∪Σ)*

(yields)
A ⇒* 000111

(derives)

Production rules

A Language L is generated by a CFG
⇔

L is recognized by a PDA

A Language L is generated by a CFG
⇒

L is recognized by a PDA

Suppose L is generated by a CFG G = (V, Σ, R, S)
Construct P = (Q, Σ, Γ, δ, q, F) that recognizes L

Suppose L is generated by a CFG G = (V, Σ, R, S)
Construct P = (Q, Σ, Γ, δ, q, F) that recognizes L

ε,ε →S$

ε,$ → ε

For each rule 'A → w’ ∈ R:

For each terminal a ∈ Σ:
ε,A → w

a,a → ε

S → aTb
T → Ta | ε

ε,ε → $

ε,$ → ε

ε,ε → S

ε,ε → T

ε,ε → a

ε,ε → T

ε,T → ε
a,a → ε
b,b → ε

Suppose L is generated by a CFG G = (V, Σ, R, S)
Describe P = (Q, Σ, Γ, δ, q, F) that recognizes L
(via pseudocode):

(1) Push $ and then S on the stack
(2) Repeat the following steps forever:

(b) If x is a variable A, guess a rule for A and push
yield (in reverse) into the stack and Go to (a).
(c) If x is a terminal, read next symbol from input
and compare it to x. If they’re different, reject.
If same, pop x and Go to (a).
(d) If x is $: then accept iff no more input

(a) Suppose x is now on top of stack

A Language L is generated by a CFG
<= L is recognized by a PDA

Given PDA P = (Q, Σ, Γ, δ, q, F)

Construct a CFG G = (V, Σ, R, S) such that
L(G) = L(P)

First, simplify P to have the following form:

(1) It has a unique accept state, qacc

(2) It empties the stack before accepting

(3) Each transition either pushes a symbol or
pops a symbol, but not both at the same time

ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε

SIMPLIFY

q0 q1

q2 q3
ε,$ → ε

ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

SIMPLIFY

q0 q1

q2 q3

ε,0 → ε

q4

q5

ε,ε → 0

ε,ε → 0

V = {Apq | p,q∈Q }

S = Aq0qacc

Our task is to construct Grammar G to generate
exactly the words that PDA P accepts.

Idea For Our Grammar G:
For every pair of states p and q in PDA P,

G will have a variable Apq whose production
rules will generate all strings x that can take:

 P from p with an empty stack
 to q with an empty stack

ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

q0 q1

q2 q3

ε,ε → ε

ε,ε → ε

ε,0 → ε

ε,ε → 0

ε,ε → 0

q4

q5

Aq0q1 generates?
Aq1q2 generates?
Aq1q3 generates?

WANT: Apq generates all strings that take p
with an empty stack to q with empty stack

Let x be such a string
• P’s first move on x must be a push (why?)
• P’s last move on x must be a pop

Two possibilities:
1. The symbol popped at the end is the one

pushed at the beginning

2. The symbol popped at the end is not the
one pushed at the beginning

(so P must empty stack somewhere in the middle,
and then start pushing symbols on it again)

stack
height

input
string p q

Apq → aArsb

r s

1. The symbol t popped at the end is exactly
the one pushed at the beginning

push t pop t

x = ayb takes p with empty stack to q with empty stack

δ(p, a, ε) → (r, t)

δ(s, b, t) → (q, ε)

─ ─ ─ ─ x ─ ─ ─ ─ - -
b a

stack
height

input
string

p r q

Apq → AprArq

2. The symbol popped at the end is not
the one pushed at the beginning

V = {Apq | p, q ∈ Q }
S = Aq0qacc

Formally:

For every p, q, r, s ∈ Q, t ∈ Γ and a, b ∈ Σε

If (r, t) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, t)
Then add the rule Apq → aArsb

For every p, q, r ∈ Q,
add the rule Apq → AprArq

For every p ∈ Q,
add the rule App → ε

Apq generates x
⇔

x can bring P from p with an empty stack
to q with an empty stack

Show, for all x,

Apq generates x
⇒

x can bring P from p with an empty stack
to q with an empty stack

Proof (by induction on the number of steps in
the derivation of x from Apq):
Base Case: The derivation has 1 step: App ⇒* ε

Show, for all x,

Apq generates x
⇒

x can bring P from p with an empty stack
to q with an empty stack

Proof (by induction on the number of steps in
the derivation of x from Apq):

Assume true for derivations of length ≤ k and
prove true for derivations of length k+1:

or Apq → aArsb Apq → AprArq First step in derivation:
Apq ⇒* x in k+1 steps

Show, for all x,

Inductive Step:

Apq generates x
⇒

x can bring P from p with an empty stack
to q with an empty stack

Proof (by induction on the number of steps in
the derivation of x from Apq):

Assume true for derivations of length ≤ k and
prove true for derivations of length k+1:

Apq → AprArq First step in derivation:
Apq ⇒* x in k+1 steps

Inductive Step:

Then, x = yz with Apr ⇒* y , Arq ⇒* z
By IH, y can take p with empty stack to r with
empty stack; similarly for z from r to q. So, …

Show, for all x,

Apq generates x
⇒

x can bring P from p with an empty stack
to q with an empty stack

Proof (by induction on the number of steps in
the derivation of x from Apq):

Assume true for derivations of length ≤ k and
prove true for derivations of length k+1:

First step in derivation:
Apq ⇒* x in k+1 steps

Inductive Step:

Then x = ayb with Ars ⇒* y.
By IH, y can take r with empty stack to s with empty
stack

Show, for all x,

or Apq → aArsb

Apq generates x
⇒

x can bring P from p with an empty stack
to q with an empty stack

Proof (by induction on the number of steps in
the derivation of x from Apq):

Assume true for derivations of length ≤ k and
prove true for derivations of length k+1:

First step in derivation:
Apq ⇒* x in k+1 steps

Inductive Step:

(r,t) ∈ δ(p,a,ε) and (q, ε) ∈ δ(s,b,t)

state push state alphabet pop

By def of rules of G,

Show, for all x,

or Apq → aArsb

Apq generates x
⇒

x can bring P from p with an empty stack
to q with an empty stack

Proof (by induction on the number of steps in
the derivation of x from Apq):

Assume true for derivations of length ≤ k and
prove true for derivations of length k+1:

First step in derivation:
Apq ⇒* x in k+1 steps

Inductive Step:

So if P starts in p then after reading a, it can go to r and push t.
By IH, y can bring P from r to s, with t at the top of the stack.
Then from s reading b, it can pop t and end in state q.

Show, for all x,

or Apq → aArsb

Apq generates x
⇔

x can bring P from p with an empty stack to
q with an empty stack

⇐

Proof (by induction on the number of steps in
the computation of P from p to q with empty
stacks on input x):

Base Case: The computation has 0 steps
So it starts and ends in the same state.

The only string that can do that in 0 steps is ε.

Since App → ε is a rule of G, App ⇒* ε

Show, for all x,

Inductive Step:
Assume true for computations of length ≤ k,
we’ll prove true for computations of length k+1
Suppose that P has a computation where x
brings p to q with empty stacks in k+1 steps

1. The stack is empty only at the beginning
and the end of this computation

2. The stack is empty somewhere in the
middle of the computation

Two cases: (idea!)

Inductive Step:
Assume true for computations of length ≤ k,
we’ll prove true for computations of length k+1
Suppose that P has a computation where x
brings p to q with empty stacks in k+1 steps

1. The stack is empty only at the beginning
and the end of this computation

2. The stack is empty somewhere in the
middle of the computation

To Show: Can write x as ayb where Ars ⇒* y
 and Apq → aArsb is a rule in G. So Apq⇒*x

Two cases: (idea!)

Inductive Step:
Assume true for computations of length ≤ k,
we’ll prove true for computations of length k+1
Suppose that P has a computation where x
brings p to q with empty stacks in k+1 steps

1. The stack is empty only at the beginning
and the end of this computation

2. The stack is empty somewhere in the
middle of the computation

To Show: Can write x as ayb where Ars ⇒* y
 and Apq → aArsb is a rule in G. So Apq⇒*x

To Show: Can write x as yz where Apr ⇒* y, Arq ⇒* z
and Apq → AprArq is a rule in G. So Apq⇒*x

Two cases: (idea!)

Inductive Step:
1. The stack is empty only at the beginning
and the end of this computation

The symbol t pushed at the beginning must be the same
symbol popped at the end. why?)
Let a be input symbol read at beginning, b read at end.
• So x = ayb, for some y.
Let r be the state after the first step, let s be the state
before the last step.
• y can bring P from r with an empty stack to s with an

empty stack. (why?) So by IH, Ars ⇒* y.
• Also, Apq → aArsb must be a rule in G. (why?)

To Show: Can write x as ayb where Ars ⇒* y
 and Apq → aArsb is a rule in G. So Apq⇒*x

Inductive Step:
2. The stack is empty somewhere in the
middle of the computation

To Show: Can write x as yz where Apr ⇒* y, Arq ⇒* z
and Apq → AprArq is a rule in G. So Apq⇒*x

Let r be a state in which the stack becomes empty
in the middle.
Let y be the input read to that point, z be input
read after. So, x = yz where |y|, |z| > 0.
By IH, both Apr ⇒* y, Arq ⇒* z

By construction of G, Apq → AprArq is a rule in G

A Language L is generated by a CFG
⇔

L is recognized by a PDA

Corollary: Every regular
language is context-free

WWW.FLAC.WS
Read Chapters 2 and 3 of the book for next time

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 19
	Slide Number 20
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53

